聚四氟乙烯与基底复合的制品的制作方法

文档序号:2446184阅读:210来源:国知局
专利名称:聚四氟乙烯与基底复合的制品的制作方法
技术领域
本发明涉及到一种将PTFE(聚四氟乙烯)粘合到各种自然基底上的方法。
可以认为PTFE是一种世界范围内公知的塑料,由于其特有的性质使它在材料领域独具魅力。在它的各种性能中,尤其受珍视的是对于极强侵蚀性物质在高温下也是化学惰性的。对于这种高化学惰性还兼有惊人的热稳定性,这就可以在很宽的使用领域中使用,通常在-200℃~+260℃之间,这在聚合物领域中是罕见的。
然而,PTFE对基底无粘合力。为使PTFE具有这种性质在现有技术中已公知各种方法,通常为使PTFE粘合到任何基底上,必须化学侵蚀PTFE。由于其特殊的耐化学性,为进行这种处理采用基于溶解于氨、四氢呋喃(THF)等中的碱金属体系。除了操作这些物质的困难和危险之外,这种处理对贮存后的使用条件和保持化合物的性质都极为敏感。
利用腐蚀体系的另一种供选择的方法包括使用PTFE的分数液和/或用在PTFE加工/熔融温下热稳定的聚合物配制的其它含氟聚合物,例如PAI(聚酰胺—酰亚胺)和/或对聚萃硫(PPS)。参见美国专利4,252,859,4,049,863和4,031,286。这种溶液,例如用于厨具领域中的金属涂覆,被局限于含水分散液体系且为极薄厚度如在10微米范围的情况。然而,所得到的粘接强度不很高。并且,事实上必须在高于PTFE熔点温度的条件下操作这对于金属基底不成问题,但是当不同基底,例如必须用塑料时,这就有很大局限性。
会使要被粘合的含氟聚合物表面膨胀的基于含氟溶剂体系是公知的。参见专利申请号WO96/20982,其中提到通过在CoF3作为催化剂条件下菲与氟之间的化学反应所制得的二聚物。粘合作用是通过在上述含氟溶剂中(1小时,300~343℃)制备PFA溶液(四氟乙烯共聚物与全氟丙基乙烯醚)而得到的。接着将PFA膜在225~250℃的所述溶液中浸泡1小时,然后将这种膜放置在PTFE和所述择基底之间。要被粘接到基底上的PTFE薄片也必须浸泡到上述溶液中以得到良好效果。粘接作用是通过在320℃下压制各种层状结构1小时来要实现的。这种方法的缺点是需要在高温下长时间滞留;并且需要使用适宜擦洗体系的溶剂。
本发明意想不到和惊人地发现一种使薄膜或板状PTFE粘接到金属或塑料基底上,但却没有上述现有技术中所记载缺陷的方法。此外还获得了极佳的粘合性能。
因此,本发明的一个目的是提供一种使薄膜或板状PTFE粘接到金属或塑料基底上的方法,包括1)通过喷砂使基底表面粗糙化;2)在薄膜或板状PTFE上涂布一种悬浮液,该悬浮液含有一种溶剂或水和一种1,1-二氟乙烯(VDF)与全氟丙烯(HFP)的氟基弹性材料的化合物,以及PTFE,以及任选地存在四氟乙烯(TFE),氟基弹性材料/PTFE的重量比例为80∶20至20∶80,较佳为60∶40至30∶70,蒸发溶剂;在一个带有形状和尺寸都适合于容纳耦接有(复合)基底/PTFE制品的腔体的坩埚中于优选340℃~380℃温度下烧结足够长的时间以烧结此材料,通常时间在1’~10’之间,优选在1’~5’;然后冷却;3)将已在步骤2)中经过处理的PTFE材料再覆盖与2)相同的氟基弹性材料悬浮液;4)再将基底1)与按照3)的方式对其表面进行过处理的PTFE带材进行接触;然后在温度为150℃~200℃,优选在170℃~190℃下压制此复合体系。
步骤1)按照现有技术所公知的方法进行,例如采用金钢砂、二氧化硅等。
作为基底,应当提到金属类,如铝、钢、铁、黄铜等;在塑料种类中应该提到其本身和复合材料如基于矿物填料、增强纤维、普通玻璃或碳纤维的复合材料,以及聚合材料。通常,此聚合物或复合材料应该具有熔点或软化点高于150℃,优选高于190℃。这些塑料材料通常是那些发现可用于轴密封结构件的用途。这些材料耐150℃以上的高温,并且保持长时间使用不改变是广为人知。在这些塑料材料中。应该提到的是PPS、尼龙、PAI、PI(聚酰亚胺)、PEEK(聚醚醚酮)等。
在步骤3)中用氟基弹性的材料化合物的附加处理可以在基底1上进行,代替步骤2)中指出的对PTFE板材处理。
在步骤2)中指出的处理之前,PTFE板材较佳是用基于聚酰胺—酰亚胺和/或PPS、聚醚砜、双马来酰亚胺、聚酰亚胺的底漆进行处理。这些产品在上述的用于厨具方面的专利文献中是公知的。
在步骤4)中,基底1,尤其是金属基底较佳提用底漆处理,这样当氟基弹性材料用下面指出的过氧化方式固化时,能释放出本发明的氟基弹性材料和金属之间的粘合力,所述底漆通常是基于硅烷、氨基硅烷、环氧树脂等的底漆,例如商品名为MEGUMV 16510的工业产品。
在步骤2)中加入到氟基弹性材料中的PTFE可以粉末的形式用于含水乳胶。所用PTFE一般的分子量为1,000,000~20,000,000,较佳为5,000,000 ~15,000,000。经过部分分解处理的PTFE也可使用,例如以得到分子量在10,000~1,000,000之间,较佳在100,000~500,000之间。具有这些特征的聚合物可通过热处理高分子量的PTFE方法,或通过如用γ射线辐射,或直接通过利用链转移剂进行聚合反应的途径制备。另一种方法,可用使用填充有玻璃纤维和/或碳纤维的PTFE,其中纤维含量为5~30%(重量),较佳为15~25%。PTFE可以均聚物方式使用,或以用少量通常1~3个碳原子的全氟烷基乙烯醚或六氟丙烯通过将TFE与上述共聚单体共聚作用来改性的PTFE方式使用。共聚单体的含量为0.05~0.8%(重量),较佳为0.5~0.15%(重量)。
加入到步骤2)中的氟基弹性材料中的PTFE还可全部地或部分地用全氟聚合物代替,例如共聚物TFE/全氟烷基乙烯醚(如PFA或MFA),任选地用全氟间二环杂环戊烯改性,或者共聚物TFE/全氟间二环杂环戊烯,参见欧洲专利633,257。
制备步骤2)中的悬浮液的方法如下将带有上述各种添加物的氨基弹性材料悬浮在溶剂中,如甲乙酮,然后加入PTFE。所用溶剂是那些溶解VDF-HFP氟基弹性材料的物质,任选地其中含有TFE。应该提到的是通常为3~10碳原子的酮,如丙酮、二乙酮、乙基异丙基酮等。在水悬浮液的情况下,所有其它在下文中指出的添加剂都可以加入到PTFE乳胶和本发明的氨基弹性材料的混合物中。
步骤2)中处理用的PTFE板材的PTFE具有1,000,000到20,000,000之间的分子量,且不进行辐射,或者用上面指出的那些相同类型的纤维进行填充,和/或用硫化钼填充;填料量通常在5~20%(重量)范围,较佳在5~10%(重量)范围。片材的PTFE可以是均聚物,或者优选地用少量通常为1~3碳原子的全氟烷基乙烯基醚,或用六氟丙烯通过将TFE与上述涉及到的共聚单体进行共聚合反应来改性的PTFE。共聚单体含量通常为0.05~0.8%(重量),较佳为0.5~0.15%(重量)。
用于步骤2)中的氟基弹性材料按照本领域公知的方法制备,如参见专利US4,259,463,EP684,276在此结合入本文供参考。VDF含量通常为40~68%(重量),HFP含量为20~50%,TFE含量(当其存在时)可以达到40%(重量)。
步骤2)中的氟基弹性材料化合物包括氟基弹性材料交联所需的试剂。如果此固化是离子型,则制备是通过加入100重量份的橡胶(phr)(本发明的氟基弹性材料)、1~5份的交联剂,如双酚AF;1~5份的加速剂,如Onio-有机化合物,或1~5phr的交联剂与加速剂的加成物。此外还存在1~40份的一种或多种酸受体,和0.5~10份的一种或多种碱性化合物(通常为Ca(OH)2和MgO),通常5~60phr的填料(如碳、二氧化硅、染料)也可存在。这些化合物为本领域所熟知,如记载于上述专利中。
如果固化是过氧化型的,由此聚合物通常含有碘或溴,其含量相对于聚合物总重量通常在0.001~5%重量范围,且化合物的固化是采用过氧化物,通常为二烷基过氧化物,如二叔丁基过氧化物、二枯基过氧化物、二苄氧基过氧化物等;固化活性助剂(通常在0.5~10%重量),如三烯丙烯氰脲酸酯、三烯丙基异氰脲酸酯、三烯丙基亚磷酸酯等;上述填料。参见欧洲专利说明书683,149。
在步骤2)或3)中的悬浮体用量范围通常在100~200微米范围。用本发明方法制得的复合材料是新颖的,且发现作为轴密封材料的特殊用途。本申请人通过实验发现本发明的复合材料当与加有极性化合物(如醇类、胺类)的油一起使用时,显示出意想不到的优良的耐化学性。
现有技术中的复合材料,如那些通过浸蚀PTFE片材所制得的(溶解在氨或THF中的碱金属)具有差的耐化学性。
下面的实施例仅用于具体说明目的,并不对本发明的范围构成限制。实施例制备表面基底铸铁板和/或PPS板(RYTON(R))用Al2O3(60目)喷砂,在喷砂机中的滞留时间为30~40秒。在所述喷砂机中,压缩空气喷枪以4大气压使用。在铸铁(碳钢)情况下,喷砂阶段后接着用甲乙酮清洗。制备化合物按照ASTM D 3182标准制备此化合物。所有成份(彼此之间预混)在敞开式混合器中加入到含氟弹性体中,且将所得到的混合物搅匀7-8分钟。经过24小时放置后,通过将此掺合物在混合机中经过6次来再次均质化。制备悬浮液此悬浮体是通过将氟基弹性体化合物(切成小块状)引入到甲乙酮中而制备。所制得的混合物在一罐式驱动机中搅匀4小时,并经过这阶段后,装入PTFE。涂布此悬浮液如上制备的悬浮液采用公知技术涂布,优选地使用涂辊,这样可以得到具有最终厚度的均匀膜层,此最终厚度经干燥后等于100~200微米。剥离试验按照ASTM D413标准,采用INSTRON(R)dinamometer进行粘着性试验。该试验是通过施加力进行的,连续地记录所施力的数值,这样使制做的粘着表面分离。在进行实验之前的两表面的分离速度就已确定,此数值在整个实验中保持恒定。
粘着力的数值以所测得的瞬间应力表达,并通过将所得到的每个力曲线的最大值和最小值作平均计算来确定结果。每次剥离试验的数值都以例表方式给出,并以牛顿/毫米表示,每个数值都是四次实验的平均值。
进行此试验所用的铸铁和/或聚硫板的规格如下25mm×60mm×2mm。PTFE板的规格为25mm×90mm×1mm。在进行试验的过程中,两个粘着表面的分离速度等于0.08毫米/秒。实施例1(比较例)在水中的PTFE悬浮液成份 %(重量)N-甲基吡咯烷酮 6三乙醇胺2PTFE(Algoflon(R)D60 T11) 22聚酰胺-酰亚胺树脂 5沉淀SiO22Triton(R)X100 1聚萃硫 5糠醇4H2O 53用上述的组合物构成的底漆涂布在PTFE板[它是分子量为10,000,000的均聚物,并掺有5%(重量)的玻璃纤维和5%(重量)的MoS2,是用于制造轴密封材料的典型组合物]上,再将所得到的膜在烘箱中于50℃下干燥15秒。然后将经这样处理过的PTFE板在360℃、20巴的压缩压力中与铸铁板一起烧结3秒,该铸铁板已预先喷砂,并用甲乙酮清洗过。用在此分散液中的PTFE是由于链中存在0.1%(重量)的HFP而改性的PTFE。剥离试验的结果记载于表中。实施例2(比较例)底漆(溶剂基料) %(重量)成分 28化合物A 28PTFE(Algoflon(R)L 206) 44甲乙酮化合物A具有下列组成氟基弹性材料TECNOFLON(R)100(VDF 60.9%重量,HEP鏻30.1%重量)用于M1的TECNOFLON(R)(双酚AF50%) 4phr用于M2的TECNOFLON(R)2.5phr(氯化二苯苄基-N-二乙氨基鏻30%)TREMIN(R)283 600EST(用环氧硅氧烷处理过的硅灰石)50phrCa(OH)26phrMgO 6phr聚苯硫130phr用上面底漆处理与实施例1相同类型的PTFE板。制备复合PTFE/金属的步骤与实施例1相同。
剥离试验结果记录在表中。实施例3(比较例)含有聚酰胺-酰亚胺和PTFE的水基的底漆A1成分%(重量)
N-甲基吡咯烷酮6三乙醇胺 2PTFE(ALGOFLON(R)D60 T111) 25聚酰胺-酰亚胺树脂 5SiO22TRITON(R)×100 1糠醇 4H2O 55底漆B1(溶剂基)成份 %(重量)化合物B 28PTFE ALGOFLON L20628甲乙酮44此化合物B具有下面组成氟基弹性体TECNOFLON(R)三元共聚物 100phrDrimix(三烯丙基异氰脲酸酯75%重量)5phrLuperco(R)101XL 2.5phr[2,5-二甲基-2,5-双(叔丁基过氧)己烷45%]Tremin(R)283 600est 50phrZnO 10phr处理与实施例1相同类型的PTFE板,先用底漆A1,接着在烘箱中于50℃下干燥所制得的膜,再用底漆B1处理。铸铁板在经过喷砂、用甲乙酮洗涤,并用MEGUM(R)V16510膜覆盖后,再用底漆B1处理。制备复合金属/PTFE的步骤与实施例1相同。
所用的氟基弹性材料TECNOFLON(R)三元共聚物的分子组成(重量)为42.8%VDF、32.3%HFD和24.9%TFE。溴和碘的重量百分组成分别是0.40%和0.11%。此剥离试验结果记录在表中。实施例4底漆A1(例3的底漆A1)底漆B2(溶剂基质)成份 %(重量)化合物B(即实施例3) 28PTFE(ALGOFLON(R)25GL) 28甲乙酮 44处理与实施例1相同类型的PTFE板,先用底漆A1,然后在50℃的压力通风炉中干燥制得的膜15秒,再用底漆B2处理。在第二层膜的空气中干燥后,将此板在压缩压力中于360℃、20巴下烧结3秒。经室温冷却后,将已经这样处理过的PTFE板用50%(重量)的化合物B于MEK的悬浮液涂覆,再将制得的膜于空气中干燥。
碳钢板经喷砂和用甲乙酮清洗后,再用MEGUM(R)V 16510薄膜(100微米)覆盖。用于制备悬浮液的PTFE的分子量约10,000,000,其中填充了25%(重量)的玻璃纤维。
经处理过的两种基底在压缩压力于190℃下模压成型3秒,剥离试验的结果记录于表中。实施例5底漆A1(实施例3的底漆A1)底漆B3(溶剂基料)成份%(重量)化合物B(即实施例3的) 28PTFE[Algoflon(R)L 206] 28甲乙酮 44此复合的金属/PTFE(复合层)按实施例4方式制备。用于制备悬浮液的PTFE是具有约100,000到约500,000平均分子量的照射PTFE。剥离试验结果记录于表中。实施例6底漆A1(实施例3的底漆A1)底漆B4(溶剂基料)成份 %(重量)化合物B(实施例3的) 28改性的PTFE(ALGOFLON(R)F3140) 28
甲乙酮 44用于制备复合PTFE/金属的步骤与实施例4相同。用于制备悬浮液的PTFE是一种改性的PTFE(0.1%(重量)的全氟丙基乙烯醚)。剥离试验结果记录于表中。实施例7溶剂基质的底漆1(实施例2的底漆)溶剂基质的底漆2成份%(重量)化合物C50甲乙酮 50化合物C具有下列组成TECNOFLON(R)共聚物100phr用于M1的TECNOFLON(R)4phr用于M2的TECNOFLON(R)2.5phrTremin(R)283600(环氧硅氧烷) 50phrCa(OH)26phrMgO3phr用底漆1处理与实施例1相同类型的PTFE板,所制得的膜在空气中干燥。
如同在实施例4中一样,经如此处理的板先烧结,再经冷却后用底漆2覆盖,接着于压缩压力下于190℃与铸铁板一起模压成型8秒。该铸铁板已预先喷砂并用甲乙酮清洗过。此TECNOFLON(R)共聚物和底漆中的PTFE与实施例2中的相同。剥离试验结果记录于表中。实施例8在此例中,使用与实施例7相同的底漆和相同的步骤。唯一的区别在于用聚萃硫代替金属基底。剥离试验结果记录于表中。实施例9重复实施例4,用聚苯硫板代替碳钢板。剥离试验结果记录在表中。实施例10水基底漆成份 %(重量)
TECNOFLON(R)三元共聚物乳胶(50%重量) 50Luperco(R)101 XL 1.0Drimix(R)0.8PTFE(ALGOFLON(R)D60 T11) 47.7含氟表面活性剂 FORAFAC(R)1110/D0.5用上述底漆处理与实施例1相同类型的PTFE板,再将所制得的膜层在空气压力通风炉中于50℃下干燥15’秒。
采用与实施例4相同的条件,将已处理过的板先在压力下烧结,再用上述的底漆处理,接着经50℃的炉中通风干燥15分钟后,在压缩压力中与碳钢板一起模压成型,该碳钢板已预先喷砂、用甲乙酮清洗,并用MEGUM(R)V 16510覆盖。所用的含氟弹性材料的组成为43.1%重量的VDF,32.1%的HFP和24.8%的TFE。溴和碘的百分含量分别是0.45和0.09。
剥离试验结果记录于表中。实施例11水基底漆成分%(重量)TECNOFLON(R)三元共聚物乳胶(50%重量) 50Luperco(R)101XL 0.8Drimix(R) 1.0PTFE(Algoflon(R)D 60 T11)25乳胶(56%重量) 22.7(含有96.5%摩尔TFE的TFE和/全氟甲基乙烯醚的共聚物)含氟表面活性剂FORAFAC(R)1110/D0.5按照与实施例10相同的步骤制备此复合材料。并且氟基弹性材料与实施例10的相同。剥离试验的结果记录于表中。实施例12重复实施例4,使用PTFE板代替PTFE均聚物,通过将TFE与丙基乙烯基醚聚合制备TFE共聚物,丙基乙烯基醚在最终聚合物中的含量为0.1%(重量)。
使用与实施例4相同的步骤和相同的条件,然而在压力中进行烧结是在340℃,而不是360℃。剥离试验结果记录在表中。
表剥离实验
权利要求
1.一种将薄膜或板状PTFE粘着到金属或塑料基底上的方法,包括1)通过喷砂使基底表面粗糙化;2)在薄膜状或板状PTFE上涂布一种悬浮液,该悬浮液含有一种溶剂或水和一种1,1-二氟乙烯(VDF)与全氟丙烯(HFP)的氟基弹性材料的化合物,以及PTFE,其中任选地存在四氟乙烯(TFE),氟基弹性材料/PTFE的重量比例为80∶20至20∶80,较佳为60∶40至30∶70,蒸发溶剂;在一个带有形状和尺寸都适合于容纳耦接有(复合)基底/PTFE制品的腔体的坩埚中于优选340℃~380℃温度下烧结足够长的时间以烧结此材料,通常时间在1’~10’之间,优选在1’~5’;然后冷却;3)将已在步骤2)中经过处理的PTFE材料再覆盖与2)相同的氟基弹性材料悬浮液;4)再将基底1)与按照3)的方式对其表面进行过处理的PTFE带材进行接触;然后在温度为150℃~200℃,优选在170℃~190℃下压制此复合体系。
2.根据权利要求1的粘着薄膜或板状PTFE的方法,其中的基底是金属或者塑料类本身或基于矿物填料、增强纤维类的复合材料。
3.根据权利要求2的粘着薄膜或板状PTFE的方法,其中塑料基底的熔点或软化点高于150℃,较佳高于190℃。
4.根据权利要求1-3的粘着薄膜或板状PTFE的方法,其中在步骤3)中的用氟基弹性材料掺合物的附加处理可以在基底1上进行,代替如2)中的在PTFE板上处理。
5.根据权利要求1-4的粘着薄膜或板状PTFE的方法,其中在步骤2)中指出的处理之前,PTFE板用基于聚酰胺-酰亚胺和/或PPS、聚醚砜、双马来酰胺、聚酰亚胺的底漆进行处理。
6.根据权利要求1-5的粘着薄膜或板状PTFE的方法,其中在步骤4)中,在基底1为金属基底的情况下,则用底漆处理,这样当氟基弹性材料通过过氧化方式固化时,可使氟基弹性材料与金属的粘合更为容易。
7.根据权利要求6的粘着薄膜或板状PTFE的方法,其中底漆选自硅烷类、氨基硅烷类、环氧树脂类。
8.根据权利要求1-7的粘着薄膜或板状PTFE的方法,其中在步骤2)中加入到氟基弹性材料掺合物中的PTFE可以是粉状或以含水乳胶形式;所用的PTFE的分子量为1,000,000~20,000,000范围,优选5,000,000~15,000,000范围;任选地,PTFE经过部分分解处理以制得分子量在10,000~1,000,000范围,较佳在100,000~500,000范围的PTFE;任选地,PTFE填充占5~30%重量的玻璃纤维或碳纤维,较佳为15~25%重量范围;任选地,PTFE可以用少量的通常含1~3碳原子的全氟烷基乙烯醚、或用六氟丙烯、通过将TFE与上述共聚单体的共聚反应来改性,其中共聚单体占有0.05~0.8%重量,优选占有0.5~0.15%重量。
9.根据权利要求1-8的粘着薄膜或板状PTFE的方法,其中在步骤2)中被处理的PTFE板的PTFE具有1,000,000到20,000之间的分子量且不经过辐射,或者用上面指出的那些相同类型的纤维进行填充和/或用硫化钼填充;填料量通常在5~20%重量范围,较佳在5~10%重量范围;板状PTFE可以是均聚物,或者优选的用少量通常为1~3碳原子的全氟烷基乙烯基或用六氟丙烯,通过将TFE与上述涉及到的共聚单体进行共聚反应来改性的PTFE,其中共聚单体通常含有0.05~0.8%重量,较佳为0.5~0.15%重量。
10.根据权利要求1-9的粘着薄膜或板状PTFE的方法,其中氟基弹性材料含有40~68%重量的VDF、20~50%重量的HFP,任选地含有高达40%重量的TFE。
11.根据权利要求1-10的粘着薄膜或板状PTFE的方法,其中步骤2)中的氟基弹性材料化合物含有固化氟基弹性材料所需的试剂。
12.根据权利要求11的粘着薄膜或板状PTFE的方法,其中所述固化是离子型和/或过氧化型的固化。
13.根据权利要求1-12的方法所制得的复合制品(复合材料)。
全文摘要
本发明涉及一种将薄膜或板状PTFE粘到金属或塑料基底上的方法,包括1)通过喷砂使基底表面粗糙化;2)在薄膜或板状的PTFE上涂布一种由溶剂或水和1,1-二氟乙烯(VDF)与全氟丙烯(HFP)构成氟基弹性材料的掺合物(其中加入PTFE)的悬浮液;在330℃~400℃烧结;3)将已在步骤2)中处理过的PTFE部件用与2)中相同的氟基弹性材料悬浮液覆盖;4)再将基底1与按照3)的方法处理过的PTFE板的已处理过表面接触,然后在温度为150℃~200℃下压制此复体系。
文档编号B32B15/082GK1190618SQ971252
公开日1998年8月19日 申请日期1997年9月30日 优先权日1996年10月4日
发明者G·毛罗 申请人:奥西蒙特公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1