彩膜、微LED器件及其制作方法、显示装置与流程

文档序号:15561831发布日期:2018-09-29 02:25阅读:137来源:国知局

本发明涉及显示技术领域,尤其涉及一种彩膜、一种微led器件及其制作方法,以及一种显示装置。



背景技术:

现有技术中,实现led显示彩色化的方案主要分为以下两种:第一种方案为,综合运用led、荧光粉和彩膜,通过单色led激发荧光粉发出白光,白光经过彩膜后实现彩色化显示;第二种方案为,直接在基板上转印红、绿、蓝三种单色led芯片。

上述两种方案中,第一种方案中由于彩膜层的存在,导致总体的光利用率降低,且色纯度也不高;第二种方案中,虽然光利用率和色纯度都较高,但是由于不同颜色的led芯片是在不同的基板上生长的,因此会增加转印次数,且转印精度也较低。

为了在保证实现led显示彩色化的同时又可避免上述的缺陷,因此有必要提供一种解决方案。



技术实现要素:

本发明的目的旨在提供一种彩膜,其特点是能同时透过不同的单色光,并且提高光利用率和色纯度。

本发明的另一目的是提供一种微led器件,其发光层发出的光经所述彩膜后形成不同的单色光。

本发明的又一目的是提供一种微led器件的制作方法,可将能够同时通过红、绿、蓝三种单色光的彩膜进行转印,提高转印效率。

本发明的再一目的是提供一种显示装置,该显示装置运用了所述微led器件,因此具有所述微led器件的优点。

为了实现上述目的,本发明提供以下技术方案:

本发明提供一种彩膜,包括至少两个微腔单元,所述微腔单元包括两微腔调整层及设于两所述微腔调整层之间的微腔层;各所述微腔单元的微腔层折射率、微腔层厚度、微腔调整层折射率及微腔调整层厚度至少其中之一不同。

可选地,各所述微腔单元的微腔层厚度、微腔调整层折射率及微腔调整层厚度分别相同,各所述微腔单元的微腔层折射率不同;或者各所述微腔单元的微腔层折射率、微腔调整层折射率及微腔调整层厚度分别相同,各所述微腔单元的微腔层厚度不同;或者各所述微腔单元的微腔层折射率、微腔层厚度及微腔调整层厚度分别相同,各所述微腔单元的微腔调整层折射率不同;或者各所述微腔单元的微腔层折射率、微腔层厚度及微腔调整层折射率分别相同,各所述微腔单元的微腔调整层厚度不同。

较佳地,所述微腔调整层的厚度范围为20-40nm。

优选地,各所述微腔层采用折射率范围为1.3-2.0的透明材料制作。

相应地,本发明提供一种微led器件,包括依次层叠设置的阵列基板、发光层、上述任意一项技术方案所述的彩膜及母板。

较佳地,所述彩膜包括三个分别能够透过红、绿、蓝单色光的微腔单元。

进一步地,所述微led器件还包括设于所述发光层和所述彩膜之间的荧光层。

相应地,本发明还提供一种上述任一项技术方案所述的微led器件的制作方法,包括:在所述母板上形成所述彩膜;在所述彩膜远离所述母板一侧形成所述发光层;将所述母板、彩膜及发光层组成的结构转印至所述阵列基板上。

具体地,所述在所述母板上形成所述彩膜的步骤,具体包括:将同一所述彩膜中的各所述微腔单元的微腔层折射率、微腔层厚度、微腔调整层折射率及微腔调整层厚度多项参数中设置成至少有一项参数不同,以使同一所述彩膜中形成能够透过不同单色光的多个所述微腔单元。

进一步地,当所述微led器件包括所述荧光层时,所述在所述彩膜远离所述母板一侧形成所述发光层的步骤之前,还包括:在所述彩膜远离所述母板的一侧形成所述荧光层。

相应地,本发明还提供一种显示装置,包括上述任一项技术方案所述的微led器件。

相比现有技术,本发明的方案具有以下优点:

本发明的彩膜中,当微腔单元中的微腔层折射率、微腔层厚度、微腔调整层折射率及微腔调整层厚度等多个参数中的至少一个参数发生改变时,所述微腔单元能够透过的单色光也随着改变。因此,通过将所述彩膜中各所述微腔单元的微腔层折射率、微腔层厚度、微腔调整层折射率及微腔调整层厚度多项参数设置成至少有一项参数不同,可以使得不同的微腔单元透过不同的单色光,同时可提高光利用率和色纯度。

本发明的微led器件采用了所述彩膜,因此所述发光层发出的光经过所述彩膜后可形成不同的单色光。

本发明的微led器件的制作方法,通过在所述母板上形成所述彩膜,且每个彩膜包括能够分别通过红绿蓝三原色光的微腔单元,提高了色纯度,可将所述母板、彩膜及发光层组成的结构批量转印至所述阵列基板上,转印时无需对准所述母板和阵列基板,提高了转印效率和精度。

本发明的显示装置包括本发明一些实施例提供的微led器件,因此具有所述微led器件的优点。

本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1为本发明的彩膜的一种实施例的结构示意图;

图2为本发明的彩膜实现透射红光的光谱图;

图3为本发明的彩膜实现透射绿光的光谱图;

图4为本发明的彩膜实现透射蓝光的光谱图;

图5为本发明的彩膜的另一种实施例的结构示意图;

图6为本发明的彩膜实现不同单色光出射的示意图;

图7本发明的彩膜实现不同单色光出射的另一示意图;

图8本发明的彩膜实现不同单色光出射的再一示意图;

图9为本发明的微led器件的结构示意图;

图10为本发明的微led器件中所述发光层的一种实施例的结构示意图;

图11为本发明的微led器件的制作方法的流程示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。

本发明的彩膜包括至少两个并排设置的微腔单元,各所述微腔单元皆包括两微腔调整层及设于两所述微腔调整层之间的微腔层。所述微腔层的厚度、所述微腔层的折射率、所述微腔调整层的厚度及所述微腔调整层的折射率皆可影响所述微腔单元对不同颜色的光的透射率,因此通过设置使得不同微腔单元中所述微腔层的厚度、所述微腔层的折射率、所述微腔调整层的厚度及所述微腔调整层的折射率等多项参数中的至少一项参数不同,可以实现不同微腔单元通过不同单色光的目的。

优选地,所述微腔层采用折射率在1.3-2.0范围内的透明材料制作,如玻璃(折射率为1.5),pmma(polymethylmethacrylate,聚甲基丙烯酸甲酯,折射率为1.4),等等,从而保证较高的光透过率。

图1示出了本发明的彩膜10的一种典型实施例,所述彩膜10包括并排设置的第一微腔单元1、第二微腔单元2及第三微腔单元3。以图1为基准,所述第一微腔单元1包括第一微腔层101、第一上微腔调整层102及第一下微腔调整层103,所述第一微腔层101设于所述第一上微腔调整层102和所述第一下微腔调整层103之间;所述第二微腔单元2包括第二微腔层201、第二上微腔调整层202及第二下微腔调整层203,所述第二微腔层201设于所述第二上微腔调整层202和所述第二下微腔调整层203之间;所述第三微腔单元3包括第三微腔层301、第三上微腔调整层302及第三下微腔调整层303,所述第三微腔层301设于所述第三上微腔调整层302和所述第三下微腔调整层303之间。优选地,在各所述微腔单元中,先形成下微腔调整层,一般而言,相邻的下微腔调整层之间相互隔离,而当相邻下微腔调整层采用相同材料制作(此时相邻的下微腔调整层的折射率相同)时,可不做隔离设置;同理可依次设置所述微腔层和上微腔调整层。

各所述微腔单元中,上微腔调整层和下微腔调整层的厚度可以相同,也可以不同,优选地,所述第一上微腔调整层102和第一下微腔调整层103的厚度保持一致,同理,所述第二上微腔调整层202和第二下微腔调整层203的厚度保持一致,所述第三上微腔调整层302和第三下微腔调整层303的厚度也相同。

对于影响所述微腔单元的透射率的因素,如所述微腔层的厚度、所述微腔层的折射率、所述微腔调整层的厚度及所述微腔调整层的折射率等多项参数,通常采用时域有限差分法建模计算以确定特定单色光透射率较高时对应的所述微腔单元中各项参数的具体数值或数值范围。换言之,在所述微腔层的厚度、所述微腔层的折射率、所述微腔调整层的厚度及所述微腔调整层的折射率等多项参数中,在保持其他三项参数不变的条件下,只需改变其中一项参数,以确定特定单色光透射率较高时该参数的具体数值或数值范围。

两所述微腔调整层的厚度皆在20-40nm时的单峰透射特性好,即其他波长的杂散光很少,色纯度高。因此,优选地,两所述微腔调整层的厚度在20nm-40nm之间,可保证较高的光透过率。当然,根据不同的透光需要,也可基于上述优选范围对两所述微腔调整层的厚度进行调整。

以包括三个微腔单元的彩膜为例进行说明,三个微腔单元分别可以透射不同颜色的光。

请结合图2,在所述第一微腔单元1中,当所述第一微腔层101的折射率为1.4,所述第一微腔层101的厚度为280nm,所述第一上微腔调整层102和所述第一下微腔调整层103的厚度皆为20nm,所述第一上微腔调整层102和所述第一下微腔调整层103的折射率皆为2.0时,所述第一微腔单元1可实现在650nm±60nm左右范围内透射出光,即透射红光,半峰宽约为120nm,在约为660nm处红光透射率可达到的最高值为97%。

请结合图3,在所述第二微腔单元2中,当所述第二微腔层201的折射率为1.4,所述第二微腔层201的厚度为240nm,所述第二上微腔调整层202和所述第二下微腔调整层203的厚度皆为20nm,所述第二上微腔调整层202和所述第二下微腔调整层203的折射率皆为2.0时,所述第二微腔单元2可实现在580nm±40nm左右范围内透射出光,即透射绿光,半峰宽约为80nm,在约为580nm处绿光透射率可达到的最高值为96%。

请结合图4,在所述第三微腔单元3中,当所述第三微腔层301的折射率为1.4,所述第三微腔层301的厚度为180nm,所述第三上微腔调整层302和所述第三下微腔调整层303的厚度皆为20nm,所述第三上微腔调整层302和所述第三下微腔调整层303的折射率皆为2.0时,所述第三微腔单元3可实现在450nm±25nm左右范围内透射出光,即透射蓝光,半峰宽约为50nm,在约为460nm处蓝光透射率可达到的最高值为96%。

可见,在所述微腔层的折射率、所述微腔调整层的折射率及所述微腔调整层的厚度保持不变的前提下,通过将各所述微腔单元中的微腔层的厚度设置成不同的特定值,可以使得不同的微腔单元能够透射不同的单色光。

图5示出了本发明的彩膜10的另一种实施例,其中,所述第一上微腔调整层102、第一下微腔调整层103、第二上微腔调整层202、第二下微腔调整层203、第三上微腔调整层302及第三下微腔调整层303具有相同的厚度和相同的折射率,所述第一微腔层101、第二微腔层201及第三微腔层301三者的厚度相同,但三者的折射率互不相同,即所述第一微腔层101、第二微腔层201及第三微腔层301采用不同的材料制作。当所述第一微腔层101、第二微腔层201及第三微腔层301三者的折射率不同时,可实现透射不同单色光的目的。

请参阅图6,在各所述微腔单元中,在所述微腔层厚度为160nm、两所述微腔调整层的厚度皆为20nm、两所述微腔调整层的折射率皆为4.0的条件下,所述微腔层的折射率依次为1.3、1.4、1.5、1.6、1.8、2.0时,所述微腔单元可透射不同波长范围内的单色光。观察图6可知,随着所述微腔层的折射率的增大,所述微腔单元能够透射的光的波长越大,半峰宽也越来越大,对于各波长范围内的单色光的最大透射率均为95%以上。

具体地,当所述微腔层的折射率为1.3时,所述微腔单元对应于波长约为400nm的单色光的透射率最大;当所述微腔层的折射率为1.4时,所述微腔单元对应于波长约为420nm的单色光的透射率最大;当所述微腔层的折射率为1.5时,所述微腔单元对应于波长约为450nm的单色光的透射率最大;当所述微腔层的折射率为1.6时,所述微腔单元对应于波长约为470nm的单色光的透射率最大;当所述微腔层的折射率为1.8时,所述微腔单元对应于波长约为500nm的单色光的透射率最大;当所述微腔层的折射率为2.0时,所述微腔单元对应于波长约为540nm的单色光的透射率最大。

优选地,同一所述微腔单元中,两所述微腔调整层采用同种材料制作,换言之,两所述微腔调整层具有相同的折射率和消光系数。所述微腔调整层通常选取为ag、au或其他金属,也可以选取为si或其他高折射率的非金属材料。

请参阅图7,在各所述微腔单元中,在所述微腔层厚度为160nm、所述微腔层折射率为1.5、两所述微腔调整层的厚度皆为20nm的条件下,两所述微腔调整层依次采用ag、au、si等材料(每种材料具有不同的折射率)制作时,所述微腔单元可透射不同波长范围内的单色光。观察图7可知,两所述微腔调整层依次采用ag、au、si等材料制作时,所述微腔调整层的最大透射率在70%左右。

具体地,当两所述微腔调整层采用si制作时,所述微腔单元对应于波长为460nm的单色光(蓝光)的透射率最大;当两所述微腔调整层采用ag制作时,所述微腔单元对应于波长为660nm的单色光(红光)的透射率最大;当两所述微腔调整层采用au制作时,所述微腔单元对应于波长为700nm的单色光(红光)的透射率最大。

请参阅图8,各所述微腔单元中,在所述微腔层厚度为160nm、所述微腔层折射率为1.5、两所述微腔调整层的折射率皆为4.0的条件下,两所述微腔调整层的厚度皆依次为10nm、20nm、40nm、50nm、60nm时,所述微腔单元可透射不同波长范围内的单色光。观察图8可知,随着所述微腔调整层的厚度的增大,所述微腔单元能够透射的光的波长越大,对于各波长范围内的单色光的最大透射率均为95%以上。特别地,当所述微腔调整层的厚度为50nm或60nm时,所述微腔单元无法透过单色光,红光的透射率无法达到95%以上,即不存在透射红光的波峰。

当所述微腔调整层的厚度范围为20±10nm时,主要透过蓝光;当所述微腔调整层的厚度范围为40±10nm时,主要透过绿光。具体地,当两所述微腔调整层的厚度皆为10nm时,所述微腔单元对应于波长约为400nm的单色光的透射率最大;当两所述微腔调整层的厚度皆为20nm时,所述微腔单元对应于波长约为450nm的单色光(蓝光)的透射率最大;当两所述微腔调整层的厚度皆为40nm时,所述微腔单元对应于波长约为530nm的单色光(绿光)的透射率最大;当两所述微腔调整层的厚度皆为50nm时,所述微腔单元对应于波长约为420nm和580nm两种单色光的透射率最大,此时所述微腔单元无法透射同一单色光;当两所述微腔调整层的厚度皆为60nm时,所述微腔单元对应于波长约为410nm、490nm、620nm三种单色光的透射率最大,此时所述微腔单元无法透射同一单色光。

根据上述所有实施例可知,对于所述彩膜10而言,通过使得各所述微腔单元中所述微腔层的厚度与折射率及两所述微腔调整层的厚度与折射率等四项参数中的至少一项参数不同,则可实现不同微腔单元透射不同单色光的目的。当然,也可同时使得上述四项参数中的两项或多项不同,从而实现上述目的。

请参阅图9,相应地,本发明还提供一种微led器件100,所述微led器件100包括依次层叠设置的阵列基板40、发光层30、所述彩膜10及母板20。所述母板20可以选取但不限于单色晶圆基板、gan、sic、氧化铝、蓝宝石、石英或单晶硅等。由于所述彩膜10可通过设置其内部的微腔层厚度与折射率以及微腔调整层的厚度与折射率等因素而使得其内部的不同微腔单元能够透过不同的单色光,因此所述发光层30发出的光经所述彩膜10后形成不同的单色光射出。

较佳地,在所述微led器件100中,所述彩膜10包括三个并排设置的微腔单元,可实现所述彩膜10能够同时透射红、绿、蓝三种单色光的目的,以便于混合成任意颜色的光。

进一步地,所述微led器件还包括荧光层50所述荧光层50设于所述发光层30和所述彩膜10之间,所述发光层30发射的单色光可经所述荧光层50混合成白光,从而有利于提高所述彩膜10的光透过率。例如,所述发光层30发射蓝光时,所述荧光层50可以为黄色荧光粉、量子点或红绿色混合的荧光粉,以使得所述荧光层50可以将蓝光混合成白光。

具体地,所述发光层包括依次层叠设置的n-gan层31、多量子阱32和p-gan层33,所述多量子阱32和p-gan层33在所述n-gan层31上的投影小于所述n-gan层31的面积,所述p-gan层33与所述阵列基板40之间设有正电极34,所述n-gan层31与所述阵列基板40之间设有负电极35。所述正电极34与所述阵列基板40之间设有第一凸台801,以便于所述正电极34与所述阵列基板40导通;同理,所述负电极35与所述阵列基板40之间设有第二凸台802,以便于所述负电极35与所述阵列基板40导通。

需要说明的是,所述多量子阱32是所述微led器件100的核心结构,其中包括上下两侧的p-algainp限制层(未图示)和n-algainp限制层(未图示)。两所述限制层的作用有两点:一是约束少数载流子,限制层的材料al组分较高,禁带宽度比发光区大,注入到发光区的载流子被有效的限制在发光层,增加了复合的载流子对数;二是窗口作用,因为限制层的禁带宽度较宽,发光区发出的光被吸收的概率较小,很容易通过限制层,可以提高所述微led器件100的量子效率。al组分、掺杂浓度和厚度是限制层的关键因素。al组分越高,algainp的禁带宽度越宽,限制层对少数载流子的限制作用也越强。有源层采用多量子结构具有诸多优点:可以有效增加载流子密度,提高辐射复合效率;能够缩短发光区长度,减少材料对光子的自吸收;产生量子尺寸效应,在不增加al组分的前提下有效减少发光波长。

图10示出了所述发光层30的另一种典型实施例,在上述实施例的基础上,所述p-gan层33与所述多量子阱32之间设有p-algan层,所述多量子阱32与所述n-gan层31之间依次层叠设有n-ingan层和n-algan层。而与上述实施例不同的是,所述n-gan层31的一侧并排设有另一p-gan层,所述负电极35与该p-gan层连接。

进一步地,所述微led器件还包括设于所述n-gan层31远离所述多量子阱32一侧的缓冲层60和衬底层70,可对所述发光层30起支撑和保护作用。

请结合图11,本发明还提供了一种微led器件的制作方法,该制作方法运用于本发明的微led器件100中,包括如下步骤:

步骤s1:在所述母板上形成所述彩膜。

在传统的设置方式中,不同的单色芯片需要单独转印于阵列基板上,转印效率低,精度低。而在本发明的制作方法中,由于所述彩膜组件10中的各微腔单元可设置为可透射不同的单色光,因此,当所述彩膜10包括三个所述微腔单元时,通过设置使得三个所述微腔单元依次可透射红、绿、蓝三种原色光,因此可同时实现红、绿、蓝三色芯片同时转印,玻璃基板预先设置驱动电极,通过加电,即可一次形成rbg三色显示。相对于传统转印方式而言,其转印效率大大提高,并且rgb子像素之间没有对位误差。

进一步地,要在所述母板20上形成所述彩膜10,还需要进行如下步骤:将同一所述彩膜10中的各所述微腔单元的微腔层折射率、微腔层厚度、微腔调整层折射率及微腔调整层厚度多项参数中设置成至少有一项参数不同,以使同一所述彩膜10中形成能够透过不同单色光的多个所述微腔单元。具体可参见本发明的彩膜10部分的实施例,在此不再赘述。

步骤s2:在所述彩膜远离所述母板一侧形成所述发光层。

所述发光层30发出的光经所述彩膜10后可形成单色光发出。进一步地,当所述微led器件包括所述荧光层50时,在本步骤之前,还需要在所述彩膜10远离所述母板20的一侧形成所述荧光层50,所述荧光层50用于将所述发光层30发出的光混合成白光,从而有利于提高光透射率。所述荧光层50位于所述彩膜10与所述发光层30之间。

步骤s3:将所述母板、彩膜及发光层组成的结构转印至所述阵列基板上。

例如采用倒装方式,在所述彩膜10远离所述母板20一侧形成所述发光层30后,先固定所述阵列基板40,然后在所述阵列基板40上设置所述正电极34和负电极35,再将由所述母板20、彩膜10及发光层30组成的结构倒装转印至所述阵列基板40上,由于所述彩膜10具有红、绿、蓝三色出光的功能,因此不需要对所述母板20和所述阵列基板40进行对位,对转印精度的要求不高,因此可提高转印效率,降低工艺难度。

相应地,本发明还提供一种显示装置,该显示装置运用了上述任一项技术方案所述的微led器件100,因此具有所述微led器件100的优点。所述显示装置可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。

以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1