光学膜和使用该光学膜的偏振膜以及用于改善偏振膜视角的方法

文档序号:2781028阅读:199来源:国知局
专利名称:光学膜和使用该光学膜的偏振膜以及用于改善偏振膜视角的方法
技术领域
本发明涉及一种用于液晶显示装置的偏振膜和延迟膜。
背景技术
用于液晶显示装置的基本光学组件的偏振膜是通过使用粘合剂将偏振元件设置在保护膜如表面层用碱处理过的三乙酸纤维素薄膜之间得到的。偏振元件通过,例如,单轴定向浸渍在水溶性二向色性染料或二向色性颜料例如温的硼酸水溶液中的多碘化合物离子中的聚乙烯醇薄膜,并通过单轴定向聚乙烯醇膜后的脱水反应形成聚烯结构而得到。
然而,当两片这种偏振元件或者偏振膜被设置好以便各自的吸收光轴互相垂直时,因为通过入射方偏振元件或偏振膜的偏振光不能充分地被出射方偏振膜吸收,当观察点从前向倾斜到偏离各自轴方向的方向时,出现了漏光,所谓的偏振元件或偏振膜的视角依赖性问题。这种现象大大地影响了使用各种液晶单元例如垂直排列向列型(VA)、共面开关型(IPS)和弯曲向列型(OCB)的液晶显示装置的视角特性。

发明内容
在为解决上述问题进行的深入研究中,发明人根据新发现完成了本发明,该新发现是,借助于光学膜和偏振膜,通过观察点从前向到偏离各自吸收光轴方向的方向的倾斜产生的漏光能够被降低,视角依赖性能够得到改善,甚至改善视角的波长依赖性,该光学膜通过层压至少一层第一延迟膜以及至少一层第二延迟膜进行制备,该第一延迟膜具有平均共面折射率n0和在厚度方向的折射率ne,其中ne-n0>0,第二延迟膜具有在显示最大共面折射率方向的折射率nx,在垂直于刚才所述方向的方向上的折射率ny和在厚度方向的折射率nz,其中nx>ny≥nz,该偏振膜通过层压该光学膜以及偏振元件进行制备,假设上述偏振膜与另一偏振元件或者与将所述另一偏振元件夹在两个保护膜中间的偏振膜进行设置,以便吸收光轴方向能够互相垂直。
本发明提供依据本发明的一个方面,提供了一种光学膜,包括消色延迟膜和偏振元件,所述消色延迟膜具有表示最大折射率的共面折射率nx,与先前所述方向垂直的方向中的折射率ny,以及厚度方向上的折射率nz,其中nx>ny且nz>ny,所述消色延迟膜和偏振元件被层压以使得所述消色延迟膜的最大折射率方向和所述偏振元件的吸收轴的方向一致。
所述消色延迟膜的Δna·da在550nm处为100到400nm,其中Δna=nx-ny,而dy是所述膜的厚度。
所述消色延迟膜和偏振元件、以及一层保护膜是通过层压制备。
所述保护膜是一种其主要成份为环烯聚合物,例如降莰烷衍生物的膜。
层压制备一种偏振膜包括在三乙酸纤维素薄膜和所述消色延迟膜之间夹层所述偏振元件,其中所述三乙酸纤维素薄膜的表面经过了碱处理。
在本发明的另一方面提供了一种用于改进偏振元件视角的方法,其中消色延迟膜具有表示最大折射率的共面折射率nx,与先前所述方向垂直的方向中的折射率ny,以及厚度方向上的折射率nz,其中nx>ny且nz>ny,所述消色延迟膜被安排在两个偏振元件之间,所述两个偏振元件的吸收轴彼此垂直放置,通过这种方式,所述消色延迟膜的nx方向与所述偏振元件中一个元件的吸收轴的方向一致。
所述偏振元件中的任一元件是如权利要求1到5中任一权利要求所述的光学膜。
本发明还提供了一种液晶显示设备,其特征在于,包括如权利要求1到5中任一权利要求所述的光学膜。


图1所示为延迟膜;图2为显示常规的聚碳酸酯延迟膜的延迟量随波长变化的曲线图;
图3为显示理想的消色差延迟膜的延迟量随波长变化的曲线图;图4所示为倾斜的光学膜的实施例;图5所示为本发明用作光学膜的第二延迟膜的层压结构实施例;图6所示为本发明的光学膜的另一实施例;图7所示为本发明用作光学膜的第二延迟膜的层压结构的另一实施例;图8所示为本发明光学膜的一个不同的实施例;图9所示为本发明光学膜的一个进一步不同的实施例;图10所示为本发明光学膜的一个进一步不同的实施例;图11所示为本发明光学膜的一个进一步不同的实施例;图12所示为本发明光学膜的一个进一步不同的实施例;图13所示为本发明光学膜的一个进一步不同的实施例;图14所示为本发明光学膜的一个进一步不同的实施例;图15所示为本发明偏振膜的实施例;图16所示为本发明偏振膜的另一实施例;图17所示为本发明偏振膜的一个不同的实施例;图18所示为本发明偏振膜的一个进一步不同的实施例;图19所示为本发明偏振膜的结构;图20所示为本发明偏振膜的另一结构;图21所示为本发明偏振膜的一个不同结构;图22所示为本发明用于改善偏振膜视角的方法的实施例;图23所示为本发明用于改善偏振膜视角的方法中的结构;图24所示为本发明用于改善偏振膜视角的方法的一个不同的实施例;图25所示为本发明用于改善偏振膜视角的方法中的另一结构;图26为有关偏振膜视角依赖性的附图;图27所示为本发明用于改善偏振膜视角的方法的一个进一步不同的实施例;图28所示为本发明用于改善偏振膜视角的方法中的一个不同结构;图29所示为本发明用于改善偏振膜视角的方法的一个进一步不同的实施例;图30所示为本发明用于改善偏振膜视角的方法中的一个进一步不同的结构;
图31所示为本发明用于改善偏振膜视角的方法中的一个进一步不同的结构;图32所示为本发明偏振膜的一个不同结构;图33所示为本发明偏振膜的一个进一步不同的结构;图34所示为本发明视角特性得到改善的液晶显示装置的实施例;图35所示为视角特性得到改善的液晶显示装置的结构;图36所示为视角特性得到改善的液晶显示装置的另一结构;图37所示为视角特性得到改善的液晶显示装置的另一实施例;图38所示为视角特性得到改善的液晶显示装置的一个不同结构;图39所示为视角特性得到改善的液晶显示装置的一个不同结构;图40为显示本发明实例1中所述的延迟量随第一延迟膜倾斜度变化的曲线图;图41所示为实例4中所述的本发明液晶显示装置的结构;图42为显示本发明实例5中所述的延迟量随第一延迟膜倾斜度变化的曲线图;图43为显示用于实例5的第二延迟膜的延迟值随波长变化的曲线图;图44所示为比较实例3所述的液晶显示装置;图45为显示透过率随实例和比较实例中所测的当各吸收光轴互相垂直时,从偏离各吸收光轴45°方向以倾斜度50°的入射光的波长变化的曲线图。
具体实施例方式
本发明将根据所附图例进行更详细的描述。
本发明的光学膜包含有多层延迟膜的层压结构。在用于本发明的第一延迟膜中,由下面方程式(1)所决定的共面平均折射率n0和由下面方程式(2)所决定的厚度方向的折射率ne满足关系式ne-n0>0,其中,如图1所示,在显示最大共面折射率方向的折射率由nx表示,并且垂直于上述方向的折射率由ny表示。
n0=(nx+ny)/2 (1)ne=nz(2)nx与ny之间的差额较小较好,它们互相相等则更好。最好,对薄膜的dp与Δnp进行调整以便作为其乘积的Δnp·dp得到调整以便使它最好为5到200nm,为10到100nm则更好,尤其为20到60nm,其中薄膜厚度用dp表示,并且Δnp被定义为ne-n0。这种延迟膜的实例包括聚碳酸酯、聚对苯二甲酸乙二醇酯、聚醚砜、聚乙烯、环烯聚合物例如降莰烷衍生物,或者主要包含三乙酸纤维素、联乙酰纤维素、聚烯烃、聚乙烯和聚乙烯醇的塑料薄膜,这些延迟膜在nx与ny方向进行双轴延伸,接着在nz方向延伸,这种延迟膜的实例或者是包含同向排列于薄膜平面的液晶化合物的薄膜。然而,由于nx与ny变得基本上互相相等,使用包含同向排列于薄膜平面的液晶化合物的薄膜是特别可取的。
垂直于用于本发明第一延迟膜的薄膜平面同向排列的液晶化合物的实例包括在一定温度范围显示结晶性的热致液晶化合物,以及在特定浓度范围内显示液晶性能的溶致液晶化合物。为了能够使热致液晶化合物在一个宽的温度范围内显示结晶性,众多液晶化合物被混合在一起。液晶化合物可以是低分子量化合物、高分子量化合物或者它们的混合物。为了固定其定向状态,这些液晶化合物最好通过紫外光或热进行聚合或者交联。液晶化合物最好具有可聚合基团例如丙烯酰(异丁烯酰基)、环氧和乙烯基基团,或者具有可交联的功能基团如氨基和羟基基团。这些化合物的实例在WO97/44703和WO98/00475中有描述。这些化合物包括当化合物层在经摩擦处理的基片如用于生成扭曲向列型(TN)液晶单元的常规的聚酰亚胺取向排列层上形成时,以稍微倾斜的角度在取向排列层一侧进行水平定向(共面定向),并且在空气界面一侧几乎同向排列的液晶化合物;或者是当化合物层在能使化合物几乎同向排列的基片或者玻璃基片上形成时,定向排列的液晶化合物。包含容易同向排列于薄膜平面的液晶化合物的薄膜能够通过使用这种液晶化合物和通过使用能够使化合物同向排列于薄膜平面的取向排列层得到。当这些化合物在聚合引发剂或交联剂存在的条件下通过紫外光或热进行聚合或者交联而保持取向排列状态时,得到的光学各向异性膜能够随之后的温度变化保持它们的取向排列状态。
能够使液晶化合物同向排列于薄膜平面的方法包括形成能使液晶化合物同向排列于基片薄膜的取向排列层,并且在取向排列层表面形成液晶化合物层。能进行同向排列的取向排列层的实例包括具有支链如长链烷基基团的聚酰亚胺薄膜;通过使用交联剂如甲苯二异氰酸酯和1,6-己烷二异氰酸酯进行丙烯酸聚合物的交联得到的薄膜,该聚合物是通过进行长链烷基丙烯酸脂(甲基丙烯酸酯)如n-丙烯酸丁酯(甲基丙烯酸丁酯)和n-己基丙烯酸脂(异丁烯酸酯)与具有功能基团如2-羟乙基丙烯酸脂(异丁烯酸酯)的丙烯酸或丙烯酸脂(异丁烯酸酯)的共聚合反应得到的;用硼酸处理的单轴延伸聚乙烯醇薄膜;以及在基片薄膜上形成并用硼酸处理的聚乙烯醇薄膜。这些薄膜进行了摩擦处理。
当液晶化合物自身能够被单独用于形成取向排列层上的液晶化合物层,液晶化合物层可以通过直接应用液晶化合物到取向排列层上形成时,应用该化合物作为溶液同样也是可能的。只要溶液在应用到取向排列层上具有好的可湿性,用于化合物应用溶液的溶剂不进行特别限定,并且液晶层的定向在干燥后不被干扰。溶剂的实例包括芳族烃如甲苯和二甲苯;醚类如茴香醚、二氧杂环乙烷和四氢呋喃;酮类如甲基异丙基酮、甲基亚乙基酮、环己酮、环戊酮、2-戊酮、-戊酮、2-己酮、3-己酮、2-庚酮、3-庚酮、4-庚酮和2,6-二甲基-4-庚酮;醇类如n-丁醇、2-丁醇、环己醇和异丙醇;纤维素溶剂类如甲基溶纤剂和乙酸甲基溶纤剂;以及酯类如乙酸乙酯、乙酸丁酯以及甲基乳酸酯,另外,溶剂是不限定于这些的。溶剂可以被单独使用,或者作为它们的混合物使用。当用于溶解液晶化合物的浓度随着应用后溶剂的加溶能力、基片薄膜上的溶剂的可湿性和厚度不同时,浓度按重量计算,最好为5到80%,为10到70%则更好。为了提高包含同向取向排列层的基片薄膜上的可湿性和应用厚度的一致性,加入各种均化剂同样也是可能的。只要液晶的取向排列不被干扰,任一均化剂是可以利用的。
当在取向排列层上涂上液晶化合物的的方法不进行特别限定时,因为涂层后液晶层的厚度影响到Δnp·dp的值,化合物最好尽量均匀地进行涂层。涂层方法的实例包括显微凹版照相涂层方法、凹版照相涂层方法、拉丝锭涂层方法、浸渍涂层方法、溅射涂层方法以及凹凸涂层方法。当液晶化合物层的厚度随定向液晶化合物的Δnp·dp期望值和Δnp值而不同时,厚度最好为0.05到20μm,为0.1到10μm则更好。
例如,液晶化合物层可以通过以下步骤形成应用通过考虑具有能进行薄膜平面上的同向排列的取向排列层的基片薄膜上的可溶性和可湿性来制备的液晶化合物溶液(如果必要的话,加入聚合引发剂或交联剂以及均化剂);使液晶化合物通过加热干燥进行同向排列;并且如果必要的话,用紫外光或热进行聚合或交联反应固定该定向层。通过考虑所用溶剂的类型,以及温度依赖性的变化和液晶化合物取向排列的稳定性,用于加热干燥的条件,以及用紫外光或热进行聚合或交联的条件被适当地确定。如上所述形成的液晶化合物层可以在剥除膜层后使用压敏粘合(PSA)联结到第二延迟膜,或者实际上,第一延迟膜可以被用来在具有取向排列层的第二延迟膜上直接形成,只要基片薄膜在这种情况下不会损害光学膜如本发明第二延迟膜的特性。
如图1所示,用于本发明的第二延迟膜具有在薄膜平面中显示最大折射率方向的折射率nx,在垂直于刚才所述方向的方向上的折射率ny以及在厚度方向的折射率nz,其中nx>ny≥nz。当第二延迟膜的厚度用d表示,在550nm处的(nx-ny)·d的值最好为100到700nm,为100到300nm则更好,尤其为100到200nm。这种延迟膜的实例包括包含聚碳酸酯、聚对苯二甲酸乙二醇酯、聚醚砜,以及环烯聚合物如降莰烷衍生物,或者主要包含三乙酸纤维素、联乙酰纤维素、聚烯烃、聚乙烯或聚乙烯醇的塑料薄膜的通过单轴延伸制备的延迟膜,以及包含水平定向于薄膜平面的液晶化合物层的薄膜。主要包含聚碳酸酯的薄膜可能被使用,这是因为它在耐用性如潮湿和热阻条件下非常出色,并且由于它作为超扭曲向列(STN)液晶显示器的光学补偿膜应用非常广泛,该薄膜很容易得到。主要包含聚乙烯醇的薄膜更为可取,这是由于它在能够直接用作本发明光学膜的同时,通过硼酸处理它能使液晶化合物同向排列。在膜层平面具有基本平行的光轴并包含平行于薄膜平面取向排列的液晶化合物层的薄膜可以通过以下方式得到使用下文欲述的第三延迟膜作为基片薄膜,通过摩擦处理进行取向排列处理;在进行定向处理之后在薄膜平面上涂上液晶化合物溶液;通过加热干燥形成液晶化合物层;并且当液晶化合物水平排列于薄膜平面时,固定其取向排列。这样的处理对于不用PSA或粘合剂粘合第三延迟膜和第二延迟膜而生成第三延迟膜和第二延迟膜的整体薄膜更为可取,并且对于通过减少本发明光学膜的厚度来简化制作过程也是更为可取的。液晶化合物可以是低分子量化合物、高分子量化合物或者它们的混合物,并且为了固定其定向状态,该化合物可以通过紫外光或热进行聚合或者交联反应。这种化合物的实例最好包括具有可聚合基团如丙烯酰(异丁烯酰基)基团、环氧基团和乙烯基基团的化合物,或者是具有可交联的功能基团如氨基基团和羟基基团的化合物,这些实例在日本专利申请公开No.2000-98133中被公开了。
用于本发明的第二延迟膜可以是消色差延迟膜,该延迟膜具有在显示最大共面折射率方向的折射率nx,在垂直于刚才所述方向的方向上的折射率ny和在厚度方向的折射率nz,其中nx>ny≥nz。术语“消色差”表示延迟作用具有小的波长依赖性。如图2所示,当延迟膜在常规聚碳酸酯薄膜的前向550nm处提供约1/4波长的延迟量,在短波一侧波长短于550nm处的延迟量变得比1/4波长大,而在长波一侧给定波长处的延迟量变得比1/4波长小。相比之下,如图3所示,在理想的消色差延迟膜中,当薄膜在其前向550nm处提供1/4波长的延迟量,延迟量在波长短于和长于550nm的两侧任意波长处变成1/4波长。当用于本发明的消色差延迟膜的延迟量用nx-ny=Δn表示,并且薄膜厚度用d表示,在薄膜前550nm处,Δn·d值为100到400nm,为120到150nm和240到300nm则更好。在理想消色差薄膜(例如,当延迟量为波长的1/4时,提供在400nm处100nm的延迟量,在550nm处137.5nm的延迟量,在800nm处200nm的延迟量的延迟膜)中得到的与实际得到的在波长短于550nm的给定波长处的延迟量之间的差额最好在-50到50nm,为-30到30nm则更好,在波长长于550nm的给定波长处,最好为-80到80nm,为-60到60nm则更好。为了减少本发明所得偏振膜的视角改善效果的波长依赖性,使用这样的消色差延迟膜是更为可取的。
本发明的消色差延迟膜可以通过单轴延伸具有消色差特性的物质得到。这种物质的实例是在日本专利申请公开No.2000-137116中有述的纤维素衍生物。由纤维素衍生物制成的薄膜表面用碱进行处理,并且为了使聚酯衍生物薄膜能具有作为偏振元件保护膜的同样功能,最好用聚乙烯醇粘合剂如聚乙烯醇水溶液将偏振元件与其他保护薄膜一起夹在纤维素衍生物之间。偏振元件是通过单轴定向浸渍在二向色性颜料如水溶性二向色性染料或温的硼酸水溶液中的多碘化合物离子中的聚乙烯醇薄膜得到的。该薄膜可以通过对包含上述物质的薄膜的单轴共面延伸进行单轴定向。
本发明的光学膜是通过层压至少一层第一延迟膜和至少一层第二延迟膜得到的。图4所示为本发明通过层压第一延迟膜2和第二延迟膜3得到的光学膜4。延迟膜可以用PSA或粘合剂进行层压,或者第一延迟膜可以通过取向排列层的插入在第二延迟膜上直接进行层压。当第一延迟膜的nx与ny不相等时,薄膜最好进行层压以便第一延迟膜的nx方向与nx或ny方向取向排列。另外,本发明的光学膜5是通过使用两层具有互相相等的nx、ny和nz的第二延迟膜3,层压这些薄膜得到的,所以,如5图所示,这两层薄膜的nx方向互相排齐,并且,如图6所示,第一延迟膜2在其上面进行层压。这种安排对减少本发明所得偏振膜的视角改善效果的波长依赖性是更为可取的。在这种情况下,当第一延迟膜2中的nx与ny不相等时,层压延迟膜以便第一延迟膜的nx方向与第二延迟膜3的nx方向或ny方向取向排列是可取的。当使用两层第二延迟膜时,在两层第二延迟膜之间,nx、ny与nz中的至少一项可以与其他的不同。在这样的实例中,延迟膜6和延迟膜7被层压,延迟膜6具有在显示最大共面折射率方向的折射率nx1,在垂直于刚才所述方向的方向上的折射率ny1和在厚度方向的折射率nz1,其中nx1>ny1≥nz1,延迟膜7具有在显示最大共面折射率方向的折射率nx2,在垂直于刚才所述方向的方向上的折射率ny2和在厚度方向的折射率nz2,其中nx2>ny2≥nz2,因此,如图7所示,nx1与nx2方向互相垂直,并且,如图8所示,第一延迟膜2在其上面被层压以得到本发明的光学膜8。在这种情况下,当第一延迟膜的nx与ny不相等时,层压延迟膜以便第一延迟膜的nx方向与第二延迟膜的nx1方向或ny1方向对准排齐是更为可取的。
在本发明的光学膜中,除第一延迟膜和第二延迟膜之外,同样也可以使用至少一层第三延迟膜。在用于本发明的第三延迟膜中,由方程式(1)决定的共面平均折射率n0和由方程式(2)所决定的厚度方向的折射率ne满足关系式ne-n0<0。nx与nx之间的差额较小较好。最好,当薄膜厚度用dn表示,并且差额ne-n0用Δnn表示时,对dn与Δnn进行调整以便作为Δnn与dn乘积的绝对值|Δnn·dn|最好为5到200nm,为10到150nm则更好,尤其是为10到100nm。这种延迟膜的实例包括通过在nx与ny方向单轴延伸三乙酸纤维素薄膜、聚碳酸酯薄膜、聚对苯二甲酸乙二醇酯薄膜、聚醚砜、环烯聚合物如降莰烷衍生物,或者主要包含聚烯烃、聚乙烯和聚乙烯醇的塑料薄膜得到的延迟膜,以及包含取向排列胆甾型液晶的延迟膜。然而,因为三乙酸纤维素薄膜在广泛用作偏振元件的保护膜时在透明度上是非常好的,通过使用它作为光学膜和偏振膜的整体膜,三乙酸纤维素薄膜对于使它能够作为用于本发明的偏振膜保护膜和第三延迟膜两者是特别可取的。
本发明具有第三延迟膜的光学膜实例包括,如图9所示,通过层压第一延迟膜2与附加层压的第三延迟膜9得到的光学膜10,该第一延迟膜被层压在第二延迟膜上,以及如图10和11所示,层压的顺序被改变的光学膜11和12。如图12所示,其他的实例包括本发明通过在两层层压过的第二延迟膜3上层压第三延迟膜9以便薄膜的nx方向互相排列整齐,并接着在其上面层压第一延迟膜2得到的光学膜13。如图13所示,同样,也可以通过颠倒第一延迟膜2和第二延迟膜9的层压顺序得到本发明的光学膜14。特别地,如图13所示,因为偏振元件能够直接地在第三延迟膜9一侧与另一保护膜一起夹入,使用第三延迟膜9作为同样用作偏振元件保护膜的薄膜是更为可取的。如果必要的话,用于本发明的延迟膜可以用PSA或粘合剂进行层压。最好,当第一延迟膜2与第三对照薄膜9的nx和ny不相等时,第一延迟膜2和第三、第一延迟膜9被层压以便前者的nx方向与后者的nx或ny方向取向对齐。
期望地,为了更加明显地显示本发明所得的视角改善效果,对各薄膜的Δnp·dp和|Δnp·dp|进行调整以便组成本发明光学膜的每层第一延迟膜的Δnp·dp之和∑Δnp·dp与组成本发明光学膜的第三延迟膜的|Δnn·dn|之和∑|Δnn·dn|的差额的绝对值|(∑Δnp·dp-∑|Δnn·dp)|为5到100nm,为5到70nm则更好。
用于本发明的第四延迟膜具有消色差特性以及在显示最大折射率方向的共面折射率nx,在垂直于刚才所述方向的方向上的折射率ny和在厚度方向的折射率nz,它们的关系为nx>ny并且nz>ny。当Δna用Δna=nx-ny表示,并且薄膜厚度用da表示时,用于本发明的第四延迟膜在薄膜前向550nm处的延迟量Δna·da为100到400nm,为120到150nm和240到300nm则更好。如图3所示,在理想的消色差薄膜中得到的延迟量(例如,当延迟量为波长的1/4时,提供在400nm处100nm的延迟量,在550nm处137.5nm的延迟量,以及在800nm处的200nm延迟量的延迟膜)与实际得到的在波长短于550nm的给定波长处的延迟量之间的差额最好为-50到50nm,为-30到30nm则更好,在波长长于550nm的给定波长处,最好为-80到80nm,为-60到60nm则更好。
用于本发明的第四延迟膜是通过,例如,延伸在共面方向和厚度方向两个方向具有消色差特性的物质得到的。这种物质的实例包括在日本专利申请公开No.2000-137116和2000-81743中公开的纤维素衍生物,以及在日本专利申请公开No.2001-135622中有述的包含降莰烷链和苯乙烯链的共聚物组合物。由纤维素衍生物制成的薄膜是特别可取的,这是因为,通过用碱处理聚乙烯醇薄膜的表面层之后,用聚乙烯醇粘合剂如聚乙烯醇水溶液将偏振元件夹入纤维素薄膜和另一保护膜之间,它能同样用作偏振元件的保护膜。偏振元件是通过单轴延伸浸渍在二向色性颜料如水溶性二向色性染料或温的硼酸水溶液中的多碘化合物离子中的聚乙烯醇薄膜得到的。该薄膜可以通过在共面方向单轴延伸后用粘性滚筒对在厚度方向包含上述物质的薄膜的两面进行延伸而进行二轴定向;单轴延伸共面方向的薄膜,接着通过适当地在与延伸方向相反的方向收缩薄膜使薄膜能够在厚度方向定向;并且在共面方向进行单轴延伸后,通过在厚度方向施加电场或磁场使薄膜在厚度方向定向。期望地,nx、ny和nz方向的定向度被控制以便以下式(3)表示的Nz系数最好为0.3到1,为0.5到0.8则更好。
Nz=(Nx-Nz)/(Nx-Ny)(3)本发明的光学膜可以通过使用第四延迟膜,或者通过层压第四延迟膜与第三延迟膜生成。图14所示为本发明通过层压第四延迟膜15和第三延迟膜9得到的光学膜16。
本发明的偏振膜可以通过结合由上所述生成的光学膜和偏振膜得到。例如,偏振元件可以通过单轴定向浸渍在二向色性颜料如二向色性染料或温的硼酸水溶液中的多碘化合物离子中的聚乙烯醇薄膜得到,或者通过单轴延伸聚乙烯醇薄膜,接着通过脱水反应形成多烯结构得到。本发明偏振膜的实例包括如图15所示的包含有第一延迟膜2、第二延迟膜3、偏振元件17以及保护膜18的偏振膜19;以及如图16所示的包含有第一延迟膜2、第二延迟膜3、第三延迟膜9、偏振元件17以及保护膜18的偏振膜20。保护膜在具有适当的强度时,在透明度以及在偏振元件上的粘着性方面是非常出色的,它们的实例包括三乙酸纤维素薄膜和主要包含环烯聚合物如降莰烷衍生物的薄膜。作为保护薄膜的功能可以通过形成不具有光学各向异性的树脂层如丙烯酸树脂层得到。由于三乙酸纤维素薄膜在具有用于本发明的第三延迟膜功能的同时,适合被用作包含有聚乙烯醇的偏振元件的保护膜,因此它是特别可取的。三乙酸纤维素薄膜的表面建议在使用之前用碱进行处理,这是因为,当三乙酸纤维素薄膜的表面用碱处理时,为了夹入偏振元件,由聚乙烯醇薄膜组成的偏振元件的粘着性通过使用包含有聚乙烯醇水溶液的粘合剂得到改善。图17所示为本发明包含第二延迟膜3、第一延迟膜2,以及插在表面层用碱处理的作为第三延迟膜的三乙酸纤维素薄膜21之间的偏振元件17的偏振膜22的实例。图18所示为本发明包含两层具有互相垂直的nx方向的第二延迟膜3、第一延迟膜2,以及插在表面层用碱处理的作为第三延迟膜的三乙酸纤维素薄膜21之间的偏振元件17的偏振膜23的另一实例。当偏振元件被插在表面经过简单粘合处理后的作为保护膜的聚乙烯醇薄膜中间时,用水联结包含有聚乙烯醇薄膜的偏振元件和保护膜是可能的。当使用上述粘合剂,保护膜和偏振元件之间的粘着性不够时,其他的粘合剂或PSA可以被使用。
本发明的偏振膜是通过层压光学膜,偏振元件以及保护膜得到的。例如,如图19所示,本发明示于图17的偏振膜22能够通过将偏振膜25层压在本发明包含有被层压的第一延迟膜2和延迟膜3的光学膜4上得到,其中,在偏振膜25中,偏振元件17被夹在第三延迟膜或者具有被碱处理表面的三乙酸纤维素薄膜21中间。在另一个例子中,如图20所示,示于图16的偏振膜20能够通过层压第一延迟膜2在第二延迟膜3上,接着层压只将保护膜18联结在偏振元件17一侧的光学膜26在本发明包含被层压的第三延迟膜9的光学膜10上得到。每个延迟膜和偏振元件可以同粘合剂或PSA进行层压。如图19和20所示,薄膜进行特别层压以便偏振元件的吸收光轴24的方向与第二延迟膜3的nz方向取向排列。此外,当图19和20中各第一延迟膜2和第三延迟膜中的nx和ny互相不等时,第一,第二和第三延迟膜进行更适当的层压以便它们的nx方向互相取向排列,使偏振元件吸收光轴24的方向与每一层的nx方向取向排列。如图21所示,示于图18的本发明偏振膜23能够通过层压两层被层压以便其nx方向互相垂直的第二延迟膜3和本发明包含第一延迟膜2的光学膜5,使用表面层用碱处理的三乙酸纤维素薄膜21作为第三延迟膜,并且使用将偏振元件17插在第三延迟膜中间的偏振膜25而得到。然而,层压偏振元件和第二延迟膜,以便如图21所示,在偏振元件17一侧的第二延迟膜3的nx方向与偏振元件17的吸收光轴24的方向取向排列是可取的。此外,当各第一延迟膜2和第三延迟膜21的nx和ny互相不等时,层压第一、第二和第三延迟膜更为可取,这样使得第一延迟膜2与第三延迟膜21的nx方向,以及在偏振元件一侧的第二延迟膜3的nx方向互相取向排列,并且使得第一延迟膜2和第三延迟膜21的nx方向,以及在偏振元件一侧的第二延迟膜3的nx方向和偏振元件吸收光轴24的方向互相取向排列。
视角对偏振膜的依赖性可以通过使用本发明上述所得的光学膜得到改善。如图22所示,这个改善可以通过将本发明的光学膜4设置到两个偏振膜25之间来达到,该偏振膜25将偏振元件17夹在表面层用碱处理的三乙酸纤维素薄膜21之间。三乙酸纤维素薄膜同样用作第三延迟膜,该第三延迟膜被设置好以便它们的吸收光轴互相垂直。设置第二延迟膜3和偏振膜25更为可取,这样使得如图23所示,第二延迟膜3的nx方向与在第一延迟膜2一侧的偏振膜25的吸收光轴24的方向取向排列。在另一个实例中,如同24所示,这个改善是通过将光学膜5设置在两个偏振膜25之间得到的,该偏振膜25包含夹在表面层用碱处理的三乙酸纤维素薄膜21之间的偏振元件17,其中,三乙酸纤维素薄膜同样也是第三延迟膜,该第三延迟膜被设置好以便它们的吸收光轴互相垂直。如图25所示,设置第二延迟膜3和偏振膜25更为可取,这样使得第二延迟膜3的nx方向与设置在第二延迟膜一侧的偏振膜25的吸收光轴24的方向取向排列。如图24所示,另一个偏振膜作为本发明偏振膜的一对组件的一个可以进行构造,以便偏振元件17被夹在表面层用碱处理作为第三延迟层的三乙酸纤维素薄膜21之间。位于第二延迟膜一侧的第三延迟膜被考虑为本发明光学膜的结构之一,该第三延迟膜作为本发明偏振膜的一对组件的一个被用作另一个偏振膜。相应地,,当由方程式(1)决定的共面平均折射率n0和由方程式(2)所决定的厚度方向的折射率ne满足关系式ne-n0<0,并且薄膜厚度用dn表示,ne-n0的差额用Δnn表示时,最好对薄膜的dn与Δnn进行调整以便作为Δnn与dn乘积的Δnn·dn的绝对值|Δnn·dn|最好为5到200nm,为10到150nm则更好,尤其为10到100nm。为了更加明显地显示改善本发明所得效果的视角,各薄膜的Δnp·dp和|Δnn·dn|值可以进行调整以便各夹在偏振元件之间的第一延迟膜的Δnp·dp之和∑Δnp·dp与夹在偏振元件之间的第三延迟膜的|Δnn·dn|之和∑|Δnn·dn|的差额的绝对值|(∑Δnp·dp-∑|Δnn·dp|)|为5到100nm,为5到70nm则更好。如图26所示,当观察的方向从偏振膜的前向倾斜到偏离吸收光轴不同角度27的方向(例如离开吸收光轴45°),如上所述处理薄膜能够使发生在观察28方向的漏光大大地减少,由此使得偏振膜的视角依赖性得到改善。
偏振膜的视角依赖性能够通过使用本发明的偏振膜得到改善。如图27所示,偏振膜的视角依赖性同样可以通过将另一偏振膜25设置在本发明包含在偏振膜29中的光学膜一侧得到改善。如图28所示,偏振膜最好经过层压以便偏振膜29的吸收光轴24的方向与包含在偏振膜29中的第二延迟膜3的nx方向取向排列。偏振膜的吸收光轴互相垂直。
如图29所示,在另一实例中,视角依赖性同样可以通过将另一偏振膜25设置在包含在本发明偏振膜23中的光学膜一侧得到改善。如图30所示,层压偏振膜和延迟膜同样也是非常可取的,这样使得本发明偏振膜23的吸收光轴的方向与位于包含在偏振膜23中的偏振元件17一侧的第二延迟膜3的nx方向取向排列。位于另一偏振膜25一侧的包含在本发明偏振膜23中的第二延迟膜3的nx方向与该另一偏振元件25的吸收光轴24取向排列。偏振膜的吸收光轴的方向24同样也是互相垂直的。
视角特性同样可以通过单独使用第四延迟膜或者使用本发明的包含与第三延迟膜进行层压的第四延迟膜的光学膜得到改善。如图31所示,上述效果可以通过将第四延迟膜15设置在包含偏振元件17的两个偏振膜25或者第三延迟膜之间以便它们的吸收光轴互相垂直而得到,该偏振元件17插在表面用碱处理的三乙酸纤维素薄膜21之间。第四延迟膜15最好进行设置以便它的nx方向与其中一个偏振元件的吸收光轴方向24取向排列。如图32和33所示,通过在一侧使用本发明包含层压过的第三延迟膜15、偏振元件17和保护膜18的偏振膜30或偏振膜31,并在另一侧使用包含插在表面层用碱处理过的三乙酸纤维素薄膜之间的偏振元件的另一偏振膜,偏振膜的视角特性同样能够通过设置这些偏振膜以便这些偏振膜的偏振元件的吸收光轴方向互相垂直而得到改善。偏振膜31包含有延迟膜15和具有插在表面用碱处理的三乙酸纤维素薄膜21之间的偏振元件17或者第三延迟膜的偏振膜。
液晶显示装置的视角特性能够通过使用本发明如上所述得到的光学膜或偏振膜,或者通过使用偏振膜的视角依赖性已经得到改善的液晶显示装置而得到改善。如图34所示,这样的液晶显示装置可以通过将偏振膜33设置在液晶单元32的一侧,并将包含有插在表面层用碱处理过的三乙酸纤维素薄膜之间的偏振元件的偏振膜25设置在该液晶单元另一侧而得到,这样使得各偏振膜的吸收光轴24的方向互相垂直。偏振膜和液晶单元可以用PSA进行联结。如图35所示,在本发明液晶显示装置的另一实例中,本发明的偏振膜22被设置在液晶单元32的一侧,偏振膜25被设置在该液晶单元的另一侧,以便各偏振膜的吸收光轴的方向互相垂直。偏振膜25或者第三延迟膜包含有插在表面层用碱处理过的三乙酸纤维素薄膜之间的偏振元件。液晶显示装置的视角特性同样可以通过将液晶单元设置在从组成本发明偏振膜的偏振元件到位于偏振膜一侧的第二延迟膜的任意膜之间得到改善。如图36所示,在这样的实例中,液晶单元32被夹在两层第二延迟膜3之间,并且第二延迟膜进行层压以便第二延迟膜的nx方向在位于每一侧的偏振元件的吸收光轴24的方向取向排列。这种结构对于简单并有效地生成偏振膜更为可取。也就是说,在偏振膜的生成过程中,延伸方向被设置成与吸收光轴的方向相等。在单轴延伸过程中,第二延迟膜和第四延迟膜的nx方向同样可以被设置成与延伸方向相等。同样,假设这些薄膜为持续成形的长条薄膜,当第一和第三延迟膜的nx方向在纵向取向排列,或者当它们的nx和ny方向互相相等时,所有偏振元件以及第一、第二和第三延迟膜可以通过辊对辊(roll-to-roll process)过程进行层压。另一偏振元件和第二延迟膜同样可以通过辊对辊过程进行层压。在本发明液晶显示装置的另一实例中,当液晶单元32显示某些视角依赖性时,为了改善液晶单元的视角依赖性,如图37所示,补偿膜34最好至少在液晶单元的一侧进行设置,或者如果必要的话在其两侧均进行设置。另外,本发明的偏振膜33被设置在液晶单元的一侧,并且包含有插在表面层用碱处理的三乙酸薄膜之间的偏振元件的偏振膜25被设置在液晶单元的另一侧。这种安排使液晶单元以及偏振膜的视角特性能够同时得到改善,由此大大地改善了液晶显示装置的视角特性。在本发明液晶显示装置的另一实例中,如图38所示,偏振膜25和第四延迟膜15被层压以便偏振膜的吸收光轴24的方向与第四延迟膜的nx方向取向排列。第四延迟膜被设置在液晶单元32的补偿膜34一侧,该液晶单元32包含薄膜34以补偿液晶单元的视角依赖性,并且偏振膜25被设置在液晶单元32的相反一侧以便偏振膜的吸收光轴24的方向互相取向排列。在本发明液晶显示装置的另一实例中,如图39所示,本发明的偏振膜33与延迟膜35进行层压以便吸收光轴24的方向相对延迟膜的nx方向为大约45°,并且得到的圆二向色性薄膜37被层压在具有反射层或反射膜的液晶单元36上。在该情况下,如图39所示,为补偿液晶单元,将薄膜34层压在圆二向色性薄膜37与液晶单元36之间同样也是可能的。用于圆偏振膜的延迟膜最好为所谓的1/4波片,该1/4波片对于550nm波长的光提供130nm到145nm的延迟量,为135到140nm则更好,该薄膜在可见光范围的波长提供1/4波长的延迟作用则更为可取。该薄膜的一个较好的实例是消色差第二延迟膜,本发明消色差第二延迟膜与第一延迟膜进行层压的光学膜,或者是第四延迟膜。层压过的具有大约1/4波长延迟作用的消色差延迟膜同样可以被使用,其中,该层压的消色差延迟膜是通过使用描述于日本专利申请No.3174367,Proc.Indian Acad,Sci,A41,130,137(1955),以及SPIE VOL.307,Plarizers and Aoolication,120(1981)中的方法,层压多个包含环烯聚合物如降莰烷衍生物的延迟膜和包含聚碳酸酯的示于图2的非消色差延迟膜(最好,该薄膜具有折射率关系nx>ny>nz,并对nx、ny和nz方向的定向进行控制以便由方程式(3)所定义的Nz系数最好为0.3到0.7,为0.4到0.6则更好)得到的。
用于本发明液晶显示装置的液晶单元的实例包括扭曲向列型(TN)、超扭曲向列型(STN)、垂直取向排列向列型(VA)、共面开关型(IPS)、弯曲向列型(OCB)、铁磁型(SSF)、反铁磁型(AF)液晶单元。使用这些液晶单元的液晶显示装置能够被用为透射型、反射型和反射半透射型液晶显示器。只有一个或两个偏振膜可以用于反射型液晶显示装置,并且,在每种情况下,延迟膜的延迟作用依赖于延迟膜的视角特性而进行调整。由于液晶单元自身的视角依赖性依赖于液晶单元的种类而被显示出来,最好使用液晶单元自身的视角依赖性被补偿的液晶单元。当为了补偿液晶单元自己的视角依赖性,依赖于液晶单元的结构而采取了各种方法时,使用具有混合取向排列(alignment)的混合液晶层的薄膜的补偿方法已被用于TN液晶单元。在本领域熟知的方法中,VA液晶通过使用双轴延伸的薄膜进行补偿,以便满足关系ne-n0<0,或者通过使用具有同向排列的混合液晶层的薄膜进行补偿。液晶显示装置的视角依赖性可以通过使用经上述本领域中熟知的方法进行补偿的液晶单元,以及在使用示于图37、38和39中的用于补偿液晶单元的视角依赖性的薄膜34时,通过本发明的方法使用本发明的光学膜或者本发明的偏振膜,而得到进一步的改善。
实例本发明将根据实例和比较实例进行更详细地描述。
(实例1)固体分数浓度为20%的溶液是通过在300份重量的甲苯和100份重量的环己酮的混合溶剂中,溶解分别示于化学式(1)和(2)中的23.5份重量和70.5份重量的描述于WO97/44703的可紫外固化液晶化合物,以及6份重量的光聚合引发剂Irga-cure 907(Ciba Specialty Chemicals公司)的混合物进行制备的。
(化学式1) (化学式2) 该溶液通过使用拉丝锭被应用在由Polatechno公司制造的碘化物基偏振膜的偏振元件一侧(硼酸盐在具有1700聚合度和延伸后大约20μm厚度的聚乙烯醇中的含量为15%;聚乙烯醇薄膜通过使用聚乙烯醇粘合剂被联结到作为保护膜的表面层用碱处理的三乙酸纤维素薄膜的一侧)。包含第一延迟膜的偏振膜通过在加热去除溶剂后用高压汞蒸汽灯(80w/cm)进行紫外聚合得到。第一延迟膜具有1μm的厚度。为了确定第一延迟膜的光学特性,用涂PSA的玻璃片将第一延迟膜从偏振元件剥落,通过从薄膜表面倾斜引起的延迟量的变化用自动双折射仪(由Oji Scientific Instruments制造的KOBRA-21ADH)进行测量。结果如图40所示。图40显示第一延迟膜同向排列于薄膜平面。当平均共面折射率用n0表示,厚度方向的折射率用ne表示,并且厚度用dp表示,具有关系式ne-n0=Δnp时,Δnp·dp值从倾斜引起的延迟值的变化被确定为39nm。然后,作为第二延迟膜的聚碳酸脂薄膜用PSA在偏振膜的第一延迟膜的表面进行层压,以便nx方向与偏振元件的吸收光轴方向取向排列,其中聚碳酸脂薄膜在显示最大共面折射率方向的折射率nx为1.5864,在垂直于刚才所述方向的方向上的折射率ny为1.5844,在厚度方向的折射率nz为1.5841,厚度d为70μm,并且在550nm处的(nx-ny)·d为140nm。接着,包含有相同聚碳酸脂薄膜的第二延迟膜用PSA联结在已联结的第一延迟膜表面,以便nx方向与偏振元件吸收光轴的方向互相垂直,由此得到本发明的偏振膜。本发明的偏振膜和由Polatechno公司制造的碘化物基偏振膜用PSA进行联结以便偏振元件的吸收光轴互相垂直。碘化物基偏振膜的偏振元件的两侧均被夹入表面层用碱处理的三乙酸纤维素薄膜(在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz为1.49461,厚度d为80μm,平均共面折射率n0为1.49520,在关系式(ne-n0)=Δnn下,|Δnn·dn|为49nm)。|(Δnp·dp-|Δnn·dn|)|值为10nm。在具有正交吸收光轴的偏振膜每个偏振元件的前向,450、550或650nm处的透过率(正交透过率),以及在偏离偏振膜每个偏振元件的吸收光轴45°方向倾斜50°的方向,450、550或650nm处的透过率(倾斜正交透过率)用分光光度计(由Shimadzu公司制造的UV-3100)进行测量。结果如表1所示。每个偏振元件在偏离吸收光轴45°方向倾斜50°的方向,400到700nm的波长范围的透过率(倾斜正交透过率)同样用分光光度计(由Shimadzu公司制造的UV-3100)进行测量。结果如图45所示。
(实例2)本发明的偏振膜是用与实例1相同的方法得到的,除了一片偏振膜,或者聚碳酸脂薄膜,用PSA在用于实例1的偏振膜(Δnp·dp=39nm)的第一延迟膜表面进行层压,以便nx方向与偏振元件的吸收光轴方向取向排列。第二延迟膜在显示最大共面折射率方向的折射率nx为1.5864,在垂直于刚才所述方向的方向上的折射率ny为1.5844,在厚度方向的折射率nz为1.5841,厚度d为70μm,并且在550nm处的(nx-ny)·d为140nm。该偏振膜用PSA联结到用于实例1的碘化物基偏振膜(由Polatechno公司制造),以便偏振元件的吸收光轴互相垂直。该偏振膜包含有夹在用碱处理的三乙酸纤维素薄膜之间的偏振元件。所得偏振膜用与实例1相同的方法进行评价。结果如图45所示。
(实例3)通过与实例1相同的程序制备的第一延迟膜(Δnp·dp=65nm)被联结到第三延迟膜,或者一面具有粘性膜层并且表面层用碱进行处理的三乙酸纤维素薄膜上,并将第一延迟膜从偏振元件上剥落下来。该三乙酸纤维素薄膜在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm。然后,第二延迟膜,或者用于实例1的在550nm处(nx-ny)·d为140nm的聚碳酸脂薄膜,用PSA在被剥落的第三延迟膜和第二延迟膜层压结构的第一延迟膜一侧进行层压,以便第二延迟膜的nx方向与第三延迟膜的nx方向取向排列。本发明的光学膜是通过用PSA将第二延迟膜,或者与上述相同的聚碳酸脂薄膜,联结到前面被联结的第二延迟膜一侧得到的,以便第二延迟膜的nx方向互相垂直。然后,本发明的偏振膜通过用聚乙烯醇粘合剂联结碘化物基偏振膜的偏振元件一侧到本发明光学膜的三乙酸纤维素薄膜的碱处理过的表面层,以便偏振元件的吸收光轴方向与位于光学膜偏振元件一侧的第二延迟膜的nx方向取向排列,该碘化物基偏振膜与一侧表面层用碱处理过的三乙酸纤维素薄膜进行联结。该偏振膜用PSA联结到碘化物基偏振膜(由Polatechno公司制造),以便偏振膜的吸收光轴互相垂直。碘化物基偏振膜包含用于实例l的夹在表面层用碱处理过的三乙酸纤维素薄膜(该三乙酸纤维素薄膜在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm。)之间的偏振元件。位于偏振元件之间的一层第一延迟膜的Δnp·dp与两层第三延迟膜的|Δnn·dnn|之和之间的差额的绝对值为33nm。该偏振膜与实例1一样进行评价。结果示于表1和图45。
(实例4)固体分数浓度为20%的溶液是通过在300份重量的甲苯和100份重量的环己酮的混合溶剂中,溶解分别示于化学式(3)、(4)和(5)中的39.2份重量、45.0份重量和9.8份重量的描述于WO98/00475的可紫外固化的液晶化合物,以及6份重量的光聚合引发剂Irga-cure 907(Ciba Specialty Chemicals公司)的混合物进行制备的。
(化学式3) (化学式4) (化学式5) 第一延迟膜通过与实例1中相同的程序使用该溶液生成。第一延迟膜厚度为1.3μm。为了研究第一延迟膜的光学特性,用涂PSA的玻璃片将第一延迟膜从偏振元件剥落下来,发现第一延迟膜同向排列于薄膜表面。同样,从倾斜引起的延迟作用的变化发现,当平均共面折射率用n0表示,厚度方向的折射率用ne表示,并且厚度用dp表示时,在关系式ne-n0=Δnp下,Δnp·dp值为65nm为35nm。第一延迟膜用PSA转移到用于实例1的碘化物基偏振膜(由Polatechno公司制造),接着用PSA联结一片第二延迟膜,或者用于实例1的在550nm处(nx-ny)·d为140nm的聚碳酸脂薄膜,以便它的nx方向与偏振元件的吸收光轴的方向取向排列,由此得到本发明的偏振膜。碘化物基偏振膜包含夹在表面层用碱处理过的三乙酸纤维素薄膜(在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm。)之间的偏振元件。该偏振膜用PSA联结到用于实例1的碘化物基偏振膜(由Polatechno公司制造),以便偏振膜的吸收光轴互相垂直。碘化物基偏振膜包含夹在表面层用碱处理过的三乙酸纤维素薄膜(在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm。)之间的偏振元件。位于偏振元件之间的一层第一延迟膜的Δnp·dp与两层第三延迟膜的|Δnn·dnn|之和之间的差额的绝对值为63nm。该偏振膜与实例1一样进行评价,结果示于表1和图45。然后,本发明的液晶显示装置通过联结上述偏振膜到可通过商业途径得到的垂直排列向列型液晶单元上得到,使得形成图41的结构(在该结构中,每一个偏振膜的吸收光轴经过设置使得互相垂直)。随后,液晶显示装置被放置在平面白色光源上,并且亮度在80°角的所有方向的分布通过使用视角议(由ELDIM公司制造的Ezcontrast 160R)进行测量。在偏离偏振元件吸收光轴45°方向的区域里具有与中心亮度宽(2cd/cm2或更小)相同亮度的视角平均值,以及在所有方向的最大亮度示于表1。
(实例5)固体分数浓度为20%的溶液是通过在300份重量的甲苯和100份重量的环己酮的混合溶剂中,溶解分别示于化学式(6)和(7)中的23.5份重量和70.5份重量的描述于WO97/44703的可紫外固化的液晶化合物,以及6份重量的光聚合引发剂Irga-cure 907(Ciba Specialty Chemicals公司)的混合物进行制备的。
(化学式6) (化学式7) 该溶液通过使用拉丝锭被涂在由Polatechno公司制造的碘化物基偏振膜(硼酸在具有1700聚合度和延伸后大约20μm厚度的聚乙烯醇中的含量约为15%;表面层用碱处理的三乙酸纤维素薄膜用聚乙烯醇粘合剂在保护膜的一个表面进行联结)上。包含有第一延迟膜的偏振膜通过在加热除去溶剂后用高压汞蒸汽灯(80W/cm)进行照射而聚合液晶化合物得到。第一延迟膜具有1μm的厚度。为了研究第一延迟膜的光学特性,用涂PSA的玻璃片将第一延迟膜从偏振元件剥落下来,延迟膜倾斜于薄膜表面引起的延迟量的变化用自动双折射仪(由Ohji Instruments公司制造的KOBRA-21ADH)进行测量。结果示于图42。图42显示第一延迟膜同向排列于薄膜表面。当共面折射率用n0表示,厚度方向的折射率用ne表示,并且厚度用dp表示,具有关系式ne-n0=Δnp时,由倾斜引起的延迟量变化决定的Δnp·dp值为65nm。如图43所示,本发明的偏振膜是通过用PSA层压消色差第二延迟膜得到的,这样使得第二延迟膜的nx方向与偏振元件的吸收光轴方向取向排列(延迟作用的波长依赖性通过Cauchy方程式用Ohji Instruments公司制造的自动双折射仪KOBRA-21ADH的测量值进行计算,并且)。消色差第二延迟膜在显示最大折射率方向的共面折射率nx为1.6286,在垂直于刚才所述方向的方向上的折射率ny为1.6272,在厚度方向的折射率nz为1.6268(每一个折射率用Abbe折射计进行测量),厚度d为100μm,并且在550nm处的(nx-ny)·d为140nm。本发明的偏振膜用PSA联结到碘化物基偏振膜(由Polatechno公司制造),以便偏振元件的吸收光轴互相垂直。碘化物基偏振膜包含有夹在表面层用碱处理过的三乙酸纤维素薄膜(在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm)之间的偏振元件。|(Δnp·dnp-|Δnn·dnn|)|值为16nm。该偏振膜与实例1中一样进行评价。结果示于表1和图45。
(实例6)本发明的偏振膜是通过用PSA将附加的一层用于实例5的第二延迟膜联结到本发明与实例5中相同的偏振膜的第二延迟膜上,除了Δnp·dnp为80nm,这样使得第二延迟膜的nx方向互相垂直。该偏振膜与实例1中一样进行评价。结果示于表1和图45。
(实例7)固体分数浓度为20%的溶液通过在300份重量的甲苯和100份重量的环己酮的混合溶剂中,溶解分别示于化学式(8)、(9)和(10)中的39.2份重量、45.0份重量和9.8份重量的描述于WO97/44703的可紫外固化的液晶化合物,以及6份重量的光聚合引发剂Irga-cure 907(Ciba Specialty Chemicals公司)的混合物进行制备。
(化学式8) (化学式9) (化学式10) 该溶液通过使用显微照相凹版涂镀机被应用在具有一层包含用甲苯二异氰酸脂进行交联的n-甲基丙烯酸丁酯、n-丙烯酸丁酯、甲基丙烯酸甲酯以及2-羟乙基丙烯酸脂的共聚合丙烯酸聚合物的PET膜的薄膜表面。第一延迟膜通过在加热除去溶剂后用高压汞蒸汽灯(120W/cm)进行照射而聚合液晶化合物进行制备。为了研究第一延迟膜的光学特性,用涂PSA的玻璃片将第一延迟膜从包含被交联的丙烯酸聚合物层的PET薄膜上剥落下来。通过与实例1中相同的测量表明第一延迟膜同向排列于薄膜表面。当共面折射率用n0表示,厚度方向的折射率用ne表示,厚度用dp表示,并具有关系式ne-n0=Δnp时,从倾斜引起的延迟量变化决定的Δnp·dp值为34nm。然后,第一延迟膜用PSA转移到用于实例1的由Polatechno公司制造的碘化物基偏振膜上。该碘化物基偏振膜包含夹在表面层用碱处理过的三乙酸纤维素薄膜(在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,并且在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm)之间的偏振元件。本发明的偏振膜是通过用PSA层压实例5中使用的消色差第二延迟膜得到的,这样使得它的nx方向与偏振元件的吸收光轴方向取向排列(延迟作用的波长依赖性用Cauchy方程式从用Ohji Instruments公司制造的自动双折射仪KOBRA-21ADH测量的值进行计算)。本发明的偏振膜用PSA联结到由Polatechno公司制造的碘化物基偏振膜,以便偏振元件的吸收光轴互相垂直。该碘化物基偏振膜包含有夹在表面层用碱处理过的三乙酸纤维素薄膜(在显示最大共面折射率方向的折射率nx为1.49522,在垂直于刚才所述方向的方向上的折射率ny为1.49517,在厚度方向的折射率nz(ne)为1.49461,厚度dn为80μm,平均共面折射率n0为1.49520,并且在关系式ne-n0=Δnn下,|Δnn·dnn|为49nm)之间的偏振元件。位于偏振元件之间的一层第一延迟膜的Δnp·dp与两层第三延迟膜的|Δnn·dnn|之和之间的差额的绝对值为63nm。该偏振膜与实例1中一样进行评价。结果示于表1和图45。
比较实例(比较实例1)由Polatechno公司制造的包含用在实例1和2中的夹在具有用碱处理表面层的三乙酸纤维素薄膜之间的偏振元件的两个碘化物基偏振膜用PSA进行联结,使得偏振元件的吸收光轴互相垂直。该偏振元件与实例1中一样进行评价。结果示于表1和图45。
(比较实例2)由Polatechno公司制造的包含在元件一侧具有表面层用碱处理的三乙酸纤维素薄膜的偏振元件的两个碘化物基偏振膜用PSA进行联结,使得偏振元件的吸收光轴互相垂直,并且使得偏振元件的表面互相面对。该偏振元件与实例1中一样进行评价。结果示于表1和图45。
(比较实例3)液晶单元是通过与实例4相同的程序将偏振膜联结到通过商业途径可得到的向列型液晶单元上,以形成图44中的结构(偏振膜被设置以便它们的吸收光轴互相垂直)进行制备的,除了用在比较实例1中的偏振膜被使用了。该液晶显示单元与实例4中一样进行评价。结果示于表1。
表1

实例与比较实例中的结果显示,通过使用本发明的偏振膜,当观察点从前向倾斜到偏离偏振元件吸收光轴方向的方向时,产生的漏光减少了,说明偏振膜的视角依赖性得到了改善。从实例1和2的比较,同样显而易见,视角改善效果的波长依赖性通过使用两个第二延迟膜降低了,同样说明视角依赖性在更宽的波长范围得到了改善。实例5、6和7进一步显示视角改善效果的波长依赖性通过使用消色差延迟膜降低了,同样说明视角依赖性在更宽的波长范围得到了改善。此外,实例4和比较实例3的比较说明,与比较实例进行比较,本发明的液晶显示装置具有更宽视角特性。
工业实用性偏振膜的视角依赖性能够通过本发明的方法使用具有通过层压至少一层第一延迟膜和至少一层第二延迟膜制备的光学膜的偏振膜得到改善,第一延迟膜具有平均共面折射率n0和在厚度方向的折射率ne,其中ne-n0>0,第二延迟膜具有在显示最大折射率方向的共面折射率nx,在垂直于刚才所述方向的方向上的折射率ny和在厚度方向的折射率nz,其中nx>ny≥nz。使用本发明的光学膜和偏振膜的液晶显示装置通过本发明的方法改善液晶显示装置的视角特性同样也是可能的。
权利要求
1.一种光学膜,包括消色延迟膜和偏振元件,所述消色延迟膜具有表示最大折射率的共面折射率nx,与先前所述方向垂直的方向中的折射率ny,以及厚度方向上的折射率nz,其中nx>ny且nz>ny,所述消色延迟膜和偏振元件被层压以使得所述消色延迟膜的最大折射率方向和所述偏振元件的吸收轴的方向一致。
2.如权利要求1所述的光学膜,其特征在于,所述消色延迟膜的Δna·da在550nm处为100到400nm,其中Δna=nx-ny,而dy是所述膜的厚度。
3.如权利要求1或2所述的光学膜,其特征在于,所述消色延迟膜和偏振元件、以及一层保护膜是通过层压制备。
4.如权利要求3所述的光学膜,其特征在于,所述保护膜是一种其主要成份为环烯聚合物,例如降莰烷衍生物的膜。
5.如权利要求1或2所述的光学膜,其特征在于,层压制备一种偏振膜包括在三乙酸纤维素薄膜和所述消色延迟膜之间夹层所述偏振元件,其中所述三乙酸纤维素薄膜的表面经过了碱处理。
6.一种用于改进偏振元件视角的方法,其中消色延迟膜具有表示最大折射率的共面折射率nx,与先前所述方向垂直的方向中的折射率ny,以及厚度方向上的折射率nz,其中nx>ny且nz>ny,所述消色延迟膜被安排在两个偏振元件之间,所述两个偏振元件的吸收轴彼此垂直放置,通过这种方式,所述消色延迟膜的nx方向与所述偏振元件中一个元件的吸收轴的方向一致。
7.如权利要求6所述的方法,其特征在于,所述偏振元件中的任一元件是如权利要求1到5中任一权利要求所述的光学膜。
8.一种液晶显示设备,其特征在于,包括如权利要求1到5中任一权利要求所述的光学膜。
全文摘要
本发明提供了通过层压至少一层第一延迟膜(2)和至少一层第二延迟膜(3)制备的光学膜,该第一延迟膜(2)具有平均共面折射率n
文档编号G02F1/1335GK1704816SQ20051008228
公开日2005年12月7日 申请日期2001年12月17日 优先权日2000年12月18日
发明者田中兴一 申请人:日本化药株式会社, 日商宝来科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1