检验设备、光刻设备、光刻处理单元以及检验方法

文档序号:2752947阅读:170来源:国知局
专利名称:检验设备、光刻设备、光刻处理单元以及检验方法
技术领域
本发明涉及探测方法,所述探测方法例如可以用在通过光刻技术的器件制造中,并且涉及使用光刻技术制造器件的方法。
背景技术
光刻设备是一种将所需图案应用到衬底上,通常是衬底的目标部分上的机器。例 如,可以将光刻设备用在集成电路(IC)的制造中。在这种情况下,可以将可选地称为掩模 或掩模版的图案形成装置用于生成待形成在所述IC的单层上的电路图案。可以将该图案 转移到衬底(例如,硅晶片)上的目标部分(例如,包括一部分管芯、一个或多个管芯)上。 所述图案的转移通常是通过将图案成像到提供到衬底上的辐射敏感材料(抗蚀剂)的层 上。通常,单个衬底将包含连续形成图案的相邻目标部分的网络。公知的光刻设备包括所 谓步进机,在所述步进机中,通过将整个图案一次曝光到所述目标部分上来辐射每一个目 标部分;以及所谓扫描器,在所述扫描器中,通过辐射束沿给定方向(“扫描”方向)扫描所 述图案、同时沿与该方向平行或反向平行的方向扫描所述衬底来辐射每一个目标部分。也 可能通过将图案压印(imprinting)到衬底的方式从图案形成装置将图案转移到衬底上。为了监测光刻过程,需要测量图案化的衬底的参数,例如形成在衬底上或衬底内 的连续的层之间的重叠或覆盖误差。已有多种技术用于测量在光刻过程中形成的显微结 构,包括使用扫描电子显微镜和多种专门工具。一种专用检验工具是散射仪,其中辐射束被 引导到衬底表面的目标上并且测量散射或反射束的特征或属性。通过比较束在被衬底反射 或散射前后的属性,可以确定衬底的特征或属性。通过将反射束同与已知衬底特征或属性 相关的已知测量值的库中存储的数据比较可以确定衬底的特征或属性。已知两种主要类型 的散射仪。分光镜散射仪引导宽带辐射束到衬底上并且测量散射到特定的窄的角度范围的 辐射的光谱(强度作为波长的函数)。角度分解散射仪使用单色辐射束并且测量作为角度 的函数的散射辐射的强度。在角度分解光谱测定中,衬底上的周期标记以不同的角度同时被照射。由这种标 记衍射的光被用来测量该标记的特定的特征或属性。如果标记的周期足够大,衍射光将包 含更高衍射级。然而,第一衍射级的一部分通常与零级衍射级的一部分混合,如图5所示。 衍射级的重叠通常产生较低精度的标记特征或属性的重建。为了将不同的衍射级分离出 来,可以采用环形照射,这导致如图6所示的分离的零级和第一级衍射图案。然而,已经发 现,使用这种环形照射会在所测量的标记特征或属性中带来误差,因为环形照射在衍射光 中提供较少的信息。例如,在环形照射中,在也包含对于测量标记特征或属性有价值的信息 的正入射或垂直入射附近没有光。

发明内容
本发明旨在提供一种照射衬底的方法,其中在用所有可能的入射角和方位角同时 照射衬底的同时,可以将第一和零衍射级分开。根据本发明的一方面,提供一种检验设备,其配置用以测量衬底的特征或属性。设备包括配置用以提供辐射束的照射系统;配置用以将所述辐射投影到所述衬底上的辐射投影装置;高数值孔径透镜;和探测器。探测器配 置用以探测从所述衬底的表面反射的所述辐射束,并且分离地探测零衍射级和第一衍射 级。由辐射投影装置投影得到的辐射束的照射轮廓使得所述辐射束的强度分布关于光瞳面 内的虚拟线是不对称的并且传播通过所述辐射投影装置的光学轴线。


下面仅通过示例的方式,参考附图对本发明的实施例进行描述,其中示意性附图 中相应的标记表示相应的部件,在附图中图1示出光刻设备;
图2示出光刻单元或光刻簇;
图3示出第一散射仪;
图4示出第二散射仪;
图5示出采用常规照射的光瞳面;
图6示出采用角照射的光瞳面;
图7a示出了根据本发明一个实施例的照射轮廓;
图7b示出了采用图7a中示出的照射轮廓的光瞳
图8a示出了根据本发明另一实施例的照射轮廓;
图8b示出了采用图8a中示出的照射轮廓的光瞳
图9a示出了替换的照射轮廓;和
图9b示出了采用图9a中示出的照射轮廓的光瞳
具体实施例方式图1示意地示出了一光刻设备。所述光刻设备包括-照射系统(照射器)IL,其配置用于调节辐射束B(例如,紫外(UV)辐射或深紫 外(DUV)辐射);-支撑结构(例如掩模台)MT,其构造用于支撑图案形成装置(例如掩模)MA,并与 用于根据确定的参数精确地定位图案形成装置的第一定位装置PM相连;_衬底台(例如晶片台)WT,其构造成用于保持衬底(例如涂覆有抗蚀剂的晶片) W,并与配置用于根据确定的参数精确地定位衬底的第二定位装置PW相连;和-投影系统(例如折射式投影透镜系统)PL,其配置成用于将由图案形成装置MA 赋予辐射束B的图案投影到衬底W的目标部分C(例如包括一根或多根管芯)上。照射系统可以包括各种类型的光学部件,例如折射型、反射型、磁性型、电磁型、静 电型或其它类型的光学部件、或其任意组合,以引导、成形、或控制辐射。所述支撑结构支撑,即承载图案形成装置的重量。支撑结构以依赖于图案形成装 置的方向、光刻设备的设计以及诸如图案形成装置是否保持在真空环境中等其他条件的方 式保持图案形成装置。所述支撑结构可以采用机械的、真空的、静电的或其它夹持技术保持 图案形成装置。所述支撑结构可以是框架或台,例如,其可以根据需要成为固定的或可移动 的。所述支撑结构可以确保图案形成装置位于所需的位置上(例如相对于投影系统)。在这里任何使用的术语“掩模版”或“掩模”都可以认为与更上位的术语“图案形成装置”同 义。这里所使用的术语“图案形成装置”应该被广义地理解为表示能够用于将图案在 辐射束的横截面上赋予辐射束、以便在衬底的目标部分上形成图案的任何装置。应当注意, 被赋予辐射束的图案可能不与在衬底的目标部分上的所需图案完全相符(例如如果该图 案包括相移特征或所谓辅助特征)。通常,被赋予辐射束的图案将与在目标部分上形成的器 件中的特定的功能层相对应,例如集成电路。图案形成装置可以是透射式的或反射式的。图案形成装置的示例包括掩模、可编 程反射镜阵列以及可编程液晶显示(LCD)面板。掩模在光刻术中是公知的,并且包括诸如 二元掩模类型、交替型相移掩模类型、衰减型相移掩模类型和各种混合掩模类型之类的掩 模类型。可编程反射镜阵列的示例采用小反射镜的矩阵布置,每一个小反射镜可以独立地 倾斜,以便沿不同方向反射入射的辐射束。所述已倾斜的反射镜将图案赋予由所述反射镜 矩阵反射的辐射束。
这里使用的术语“投影系统”应该广义地解释为包括任意类型的投影系统,包括折 射型、反射型、反射折射型、磁性型、电磁型和静电型光学系统、或其任意组合,如对于所使 用的曝光辐射所适合的、或对于诸如使用浸没液或使用真空之类的其他因素所适合的。这 里使用的术语“投影透镜”可以认为是与更上位的术语“投影系统”同义。如这里所示的,所述设备是透射型的(例如,采用透射式掩模)。替代地,所述设备 可以是反射型的(例如,采用如上所述类型的可编程反射镜阵列,或采用反射式掩模)。所述光刻设备可以是具有两个(双台)或更多衬底台(和/或两个或更多的掩模 台)的类型。在这种“多台”机器中,可以并行地使用附加的台,或可以在一个或更多个台 上执行预备步骤的同时,将一个或更多个其它台用于曝光。所述光刻设备还可以是这种类型,其中衬底的至少一部分可以由具有相对高的折 射率的液体覆盖(例如水),以便填满投影系统和衬底之间的空间。浸没液体还可以施加到 光刻设备的其他空间中,例如掩模和投影系统之间的空间。浸没技术在本领域是熟知的,用 于提高投影系统的数值孔径。这里使用的术语“浸没”并不意味着必须将结构(例如衬底) 浸入到液体中,而仅意味着在曝光过程中液体位于投影系统和该衬底之间。参照图1,所述照射器IL接收从辐射源SO发出的辐射束。该源SO和所述光刻设 备可以是分立的实体(例如当该源为准分子激光器时)。在这种情况下,不会将该源考虑成 形成光刻设备的一部分,并且通过包括例如合适的定向反射镜和/或扩束器的束传递系统 BD的帮助,将所述辐射束从所述源SO传到所述照射器IL。在其它情况下,所述源可以是所 述光刻设备的组成部分(例如当所述源是汞灯时)。可以将所述源SO和所述照射器IL、以 及如果需要时设置的所述束传递系统BD —起称作辐射系统。所述照射器IL可以包括用于调整所述辐射束的角强度分布的调整器AD。通常,可 以对所述照射器IL的光瞳平面中的强度分布的至少所述外部和/或内部径向范围(一般 分别称为σ-外部和ο-内部)进行调整。此外,所述照射器IL可以包括各种其它部件, 例如积分器IN和聚光器CO。可以将所述照射器用于调节所述辐射束,以在其横截面中具有 所需的均勻性和强度分布。所述辐射束B入射到保持在支撑结构(例如,掩模台MT)上的所述图案形成装置(例如,掩模ΜΑ)上,并且通过所述图案形成装置来形成图案。已经穿过掩模MA之后,所述 辐射束B通过投影系统PL,所述投影系统将辐射束聚焦到所述衬底W的目标部分C上。通 过第二定位装置PW和位置传感器IF(例如,干涉仪器件、线性编码器、2-D编码器或电容传 感器)的帮助,可以精确地移动所述衬底台WT,例如以便将不同的目标部分C定位于所述辐 射束B的路径中。类似地,例如在从掩模库的机械获取之后,或在扫描期间,可以将所述第 一定位装置PM和另一个位置传感器(图1中未明确示出)用于相对于所述辐射束B的路径 精确地定位掩模ΜΑ。通常,可以通过形成所述第一定位装置PM的一部分的长行程模块(粗 定位)和短行程模块(精定位)的帮助来实现掩模台MT的移动。类似地,可以采用形成所 述第二定位装置PW的一部分的长行程模块和短行程模块来实现所述衬底台WT的移动。在 步进机的情况下(与扫描器相反),掩模台MT可以仅与短行程致动器相连,或可以是固定 的。可以使用掩模对准标记Ml、Μ2和衬底对准标记Pl、Ρ2来对准掩模MA和衬底W。尽管 所示的衬底对准标记占据了专用目标部分,但是它们可以位于目标部分之间的空间(这些 公知为划线对齐标记)中。类似地,在将多于一个的管芯设置在掩模MA上的情况下,所述 掩模对准标记可以位于所述管芯之间。可以将所示的设备用于以下模式中的至少一种中1.在步进模式中,在将掩模台MT和衬底台WT保持为基本静止的同时,将赋予所 述辐射束的整个图案一次投影到目标部分C上(即,单一的静态曝光)。然后将所述衬底 台WT沿X和/或Y方向移动,使得可以对不同目标部分C曝光。在步进模式中,曝光场的 最大尺寸限制了在单一的静态曝光中成像的所述目标部分C的尺寸。2.在扫描模式中,在对掩模台MT和衬底台WT同步地进行扫描的同时,将赋予所述 辐射束的图案投影到目标部分C上(S卩,单一的动态曝光)。衬底台WT相对于掩模台MT的 速度和方向可以通过所述投影系统PL的(缩小)放大率和图像反转特征来确定。在扫描 模式中,曝光场的最大尺寸限制了单一动态曝光中所述目标部分的宽度(沿非扫描方向), 而所述扫描运动的长度确定了所述目标部分的高度(沿所述扫描方向)。3.在另一个模式中,将用于保持可编程图案形成装置的掩模台MT保持为基本静 止,并且在对所述衬底台WT进行移动或扫描的同时,将赋予所述辐射束的图案投影到目标 部分C上。在这种模式中,通常采用脉冲辐射源,并且在所述衬底台WT的每一次移动之后、 或在扫描期间的连续辐射脉冲之间,根据需要更新所述可编程图案形成装置。这种操作模 式可易于应用于利用可编程图案形成装置(例如,如上所述类型的可编程反射镜阵列)的 无掩模光刻术中。也可以采用上述使用模式的组合和/或变体,或完全不同的使用模式。如图2所示,光刻设备LA形成光刻单元LC的一部分(有时也称为光刻元或者光刻簇),光刻单元LC还包括用以在衬底上执行曝光前和曝光后处理的设备。通常,这些包括 用以沉积抗蚀剂层(例如涂层)的旋涂器SC、用以显影曝光后的抗蚀剂的显影器DE、激冷 板CH和烘烤板ΒΚ。衬底输送装置或机械手RO从输入/输出口 1/01、1/02拾取衬底,然后 将它们移动到不同的处理设备之间,然后将他们移动到光刻设备的进料台LB。经常统称为 轨道的这些装置处在轨道控制单元TCU的控制之下,所述轨道控制单元TCU自身由管理控 制系统SCS控制,所述管理控制系统SCS也经由光刻控制单元LA⑶控制光刻设备。因此, 不同的设备可以被操作用于将生产量和处理效率最大化。
为了由光刻设备曝光的衬底被正确地和一致地曝光,需要检验经过曝光的衬底以 测量属性,例如连续层之间的重叠误差、线厚度、临界尺寸(CD)等。如果检测到误差,可以 对连续衬底的曝光进行调整(尤其是如果检验能够即刻完成或足够迅速到使同一批次的 其他衬底仍处于待曝光状态时)。已经曝光过的衬底也可以被剥离并被重新加工(以提高 产率),或被遗弃,由此避免在已知存在缺陷的衬底上进行曝光。在仅仅衬底的一些目标部 分存在缺陷的情况下,可以仅对完好的那些目标部分进行进一步曝光。检验设备被用于确定衬底的属性,且尤其,用于确定不同的衬底或同一衬底的不 同层的属性如何从层到层变化。检验设备可以被集成到光刻设备LA或光刻单元LC中,或 可以是独立的装置。为了能进行最迅速地测量,需要检验设备在曝光后立即测量在经过曝 光的抗蚀剂层上的属性。然而,抗蚀剂中的潜影具有很低的对比度(在经过辐射曝光的抗 蚀剂部分和没有经过辐射曝光的抗蚀剂部分之间仅有很小的折射率差),且并非所有的检 验设备都对潜影的有效测量具有足够的灵敏度。因此,测量可以在曝光后的烘烤步骤(PEB) 之后进行,所述曝光后的烘烤步骤通常是在经过曝光的衬底上进行的第一步骤,且增加了 抗蚀剂的经过曝光和未经曝光的部分之间的对比度。在该阶段,抗蚀剂中的图像可以被称 为半潜在的。也能够在抗蚀剂的曝光部分或者非曝光部分已经被去除的点上,或者在诸如 刻蚀等图案转移步骤之后,对经过显影的抗蚀剂图像进行测量。后一种可能性限制了有缺 陷的衬底进行重新加工的可能,但是仍旧可以提供有用的信息。图3示出散射仪SM1,其可以用于本发明。散射仪包括宽带(白光)辐射投影装置 2,其将辐射投影到衬底W上。反射的辐射通至光谱仪探测器4,光谱仪探测器4探测(例 如测量)镜面反射辐射的光谱10 (强度是波长的函数)。通过这个数据,引起探测的光谱 的结构或轮廓可以通过处理单元PU(例如通过严格耦合波分析和非线性回归,或通过与图 3底部示出的模拟光谱库进行比较)进行重建。通常,对于所述重建,获知所述结构的通常 形式,且通过根据所述结构的制作工艺的知识假定一些参数,仅留有一些结构参数根据散 射仪的数据确定。这种散射仪可以被配置为正入射散射仪或斜入射散射仪。可以用于本发明的另一个散射仪如图3所示。在该装置中,由辐射源2发出的辐 射采用透镜系统12通过干涉滤光片13和偏振器17被聚焦,由部分反射表面16反射并经 由具有高数值孔径(NA)(优选至少0.9或更优选至少0.95)的显微镜物镜15聚焦到衬底W 上。浸没式散射仪甚至可以具有超过1的数值孔径的透镜。然后,所反射的辐射通过部分 反射表面16透射入检测器18,以便检测散射光谱。检测器可以位于在透镜系统15的焦距 处的后投影光瞳平面11上,然而,光瞳平面可以替代地以辅助的光学元件(未示出)在检 测器上重新成像。所述光瞳平面是在其上辐射的径向位置限定入射角而角位置限定辐射的 方位角的平面。所述检测器优选为二维检测器,以使得可以测量衬底目标30的两维角散射 谱。检测器18可以是例如电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器的 阵列,且可以采用例如每帧40毫秒的积分时间。参考束经常被用于例如测量入射辐射的强度。为此,当辐射束入射到分束器16上 时,辐射束的一部分通过所述分束器作为参考束朝向参考反射镜14透射。然后,所述参考 束被投影到同一检测器18的不同部分上。一组干涉滤光片13可用于在如405-790nm或甚至更低例如200_300nm的范围中 选择感兴趣的波长。干涉滤光片可以是可调谐的,而不是包括一组不同的滤光片。光栅可能被用于替代干涉滤光片。检测器18可以测量单一波长(或窄波长范围)的被散射光的强度,所述强度在多 个波长上是独立的,或者所述强度集中在一个波长范围上。进而,检测器可以分立地测量横 向磁场(TM)和横向电场(TE)偏振光的强度和/或在横向磁场和横向电场偏振光之间的相位差。能够采用给出大集光率的宽带光源(即具有宽的光频率范围或波长以及由此而 生的色彩),由此允许多个波长的混合。在宽带上的多个波长优选每个具有δ λ的带宽和 至少2δ λ (即波长的两倍)的间距。多个辐射“源”可以是已经用光纤束被分割的扩展辐 射源的不同部分。以这样的方式,角度分解散射谱可以并行地在多个波长上被测量。可以 测量包含比二维谱更多的信息的三维谱(波长和两个不同角度)。这允许更多的信息被测 量,这增加量测工艺的鲁棒性。这在ΕΡ1,628,164Α中进行了更详细的描述,该文档以引用 的方式整体并入本文中。衬底W上的目标30可以是被印刷的光栅,以使得在显影之后,所述条纹为实抗蚀 剂线的形式。所述条纹可以替代地被蚀刻到所述衬底中。该图案对于光刻投影设备(尤其 是投影系统PL)中的色差和照射对称度敏感,且这种像差的存在将表明自身在所印刷的光 栅中的变化。相应地,所印刷的光栅的散射仪数据被用于重建光栅。光栅的参数(例如线 宽和线形)可以被输入到重建过程中,所述重建过程由处理单元PU根据印刷步骤和/或其 他的散射仪工艺的知识实现。根据本发明,在角分解光谱测量过程中照射衬底的辐射束具有虚拟线。对于被照 射的照射轮廓中的任意点(或区域),在没有被照射的虚拟线的相对侧存在相应的点(或区 域)。类似地,对于没有被照射的照射轮廓中的任意点,在没有被照射的虚拟线的相对侧存 在相应的点。执行这种操作的最简单的方法是照射照射轮廓的一半,如图7a所示。将要被 照射的标记的对称线应该与照射轮廓的对称面匹配并且平行。最终的光瞳面在图7b中示 出。正如看到的,在光瞳面的一半中示出了第一级衍射图案,而在光瞳面的另一半中示出了 零级衍射图案。因而,衍射图案是分离的,而不会有任何与采用环形照射轮廓有关的缺点。 在这种方式中,在不用去除零衍射级中的信息的情况使用来自第一级的额外信息。然后,使 用采用本发明的方法测量的分别地测量的零衍射级和第一衍射级来重建标记的特征。图8示出了本发明的另一实施例。在这个实施例中,如图8a示出的照射轮廓被分 成四个扇形,第一和第三扇形被照射而第二和第四扇形不被照射。优选地,扇形尺寸相等。 因而,在这个实施例中有两条虚拟线。这种类型的照射轮廓与平行于照射轮廓的虚拟线对 准的具有至少两个对称度的标记结合使用。最终的光瞳面在图8b中示出。虽然图8a示出了四个扇形中的两个被照射的照射轮廓,但是可以仅需要照射一 个扇形并且在图9a中示出了这种照射轮廓。最终的光瞳面在图9b中示出。这种照射轮廓 在例如接触孔的阵列的照射中尤其是有利的。然而,照射第二扇形降低了传感器不对称性 的影响。而且,还可以给出更多的有助于改善或提高测量的标记特征的再现性的测量图片。虽然本发明已经描述了零级和第一级衍射图案,相同的原理可以应用到第一和第 二级衍射图案,和第二和第三级衍射图案。通过例如采用仅具有特定扇形被照射的照射轮 廓,照射轮廓可以布置成使得它们是分离的。所测量的角分解光谱包含分离的零衍射级和第一衍射级信息,它们都用于重建标记特征。重建方法可以例如依赖于实时回归方法、库(libraries)或两者的混合。虽然在本文中详述了光刻设备用在制造ICs (集成电路),但是应该理解到这里所述的光刻设备可以有制造具有微米尺度、甚至纳米尺度的特征的部件的其他应用,例如制 造集成光学系统、磁畴存储器的引导和检测图案、平板显示器、液晶显示器(IXDs)、薄膜磁 头等。本领域技术人员应该认识到,在这种替代应用的情况中,可以将这里使用的任何术语 “晶片”或“管芯”分别认为是与更上位的术语“衬底”或“目标部分”同义。这里所指的衬 底可以在曝光之前或之后进行处理,例如在轨道(一种典型地将抗蚀剂层涂到衬底上,并 且对已曝光的抗蚀剂进行显影的工具)、量测工具和/或检验工具中。在可应用的情况下, 可以将所述公开内容应用于这种和其他衬底处理工具中。另外,所述衬底可以处理一次以 上,例如为产生多层IC,使得这里使用的所述术语“衬底”也可以表示已经包含多个已处理 层的衬底。虽然上面详述了本发明的实施例在光刻设备的应用,应该注意到,本发明可以有 其它的应用,例如压印光刻,并且只要情况允许,不局限于光学光刻。在压印光刻中,图案形 成装置中的拓扑限定了在衬底上产生的图案。可以将所述图案形成装置的拓扑印刷到提供 给所述衬底的抗蚀剂层中,在其上通过施加电磁辐射、热、压力或其组合来使所述抗蚀剂固 化。在所述抗蚀剂固化之后,所述图案形成装置从所述抗蚀剂上移走,并在抗蚀剂中留下图 案。这里使用的术语“辐射”和“束”包含全部类型的电磁辐射,包括紫外(UV)辐射 (例如具有约365、355、248、193、157或126歷的波长)和极紫外(EUV)辐射(例如具有 5-20nm范围的波长),以及粒子束,例如离子束或电子束。在允许的情况下术语“透镜”可以表示不同类型的光学构件中的任何一种或其组 合,包括折射式的、反射式的、磁性的、电磁的以及静电的光学构件。尽管以上已经描述了本发明的具体实施例,但应该认识到,本发明可以以与上述 不同的方式来实现。例如,本发明可以采用包含用于描述一种如上面公开的方法的一个或 更多个机器可读指令序列的一个或更多个计算机程序的形式,或具有存储其中的所述一个 或更多个计算机程序的一个或更多个数据存储介质(例如半导体存储器、磁盘或光盘)的 形式。以上的描述是说明性的,而不是限制性的。因此,本领域的技术人员应当理解,在 不背离所附的权利要求的保护范围的条件下,可以对本发明进行修改。
权利要求
一种检验设备,其配置用以测量衬底的属性,所述设备包括照射系统,其配置用以提供辐射束;辐射投影装置,其配置用以将所述辐射投影到所述衬底上;高数值孔径透镜;探测器,其配置用以探测从所述衬底的表面反射的所述辐射束并且分离地探测零衍射级和更高衍射级;其中,由所述辐射投影装置投影的辐射束的照射轮廓使得能够使用所述分离地探测的零衍射级和更高衍射级来重建标记的至少一个特征。
2.如权利要求1所述的检验设备,其中,所述更高衍射级是第一衍射级。
3.如权利要求1或2所述的检验设备,其中,所述辐射束关于光瞳面中通过辐射投影装 置的光学轴线的虚拟线是不对称的。
4.如权利要求3所述的检验设备,其中,所述照射轮廓使得在所述照射轮廓的至少一 部分上,在所述虚拟线第一侧处的被照射的部分具有在所述虚拟线的对称相对的另一侧处 的没有被照射的对应部分,并且在所述虚拟线第一侧处的没有被照射的部分中的至少一部 分具有在所述虚拟线的对称相对的另一侧处的被照射的对应部分。
5.如权利要求1所述的检验设备,其中,所述照射系统配置所述辐射束以具有所述辐 射轮廓。
6.如权利要求3所述的检验设备,其中,所述照射轮廓具有垂直于所述第一虚拟线的 第二虚拟线,并且在所述照射轮廓的至少一部分上,在所述第二虚拟线第一侧处的被照射 的部分具有在所述第二虚拟线的对称相对的另一侧处的没有被照射的对应部分,并且在所 述第二虚拟线第一侧处的没有被照射的部分的至少一部分具有在所述第二虚拟线的对称 相对的另一侧处的被照射的对应部分。
7.如权利要求1、2和3中任一项所述的检验设备,其中,所述照射轮廓具有四个相等的 扇形,一个扇形被照射而其他三个扇形没有被照射。
8.如权利要求1所述的检验设备,其中,所述照射轮廓具有四个相等的扇形,两个不相 邻的扇形被照射而其他两个不相邻的扇形不被照射。
9.如权利要求1所述的检验设备,还包括衬底,所述衬底具有具有对称线的标记,所述 照射轮廓的虚拟线平行于所述标记的对称线。
10.如权利要求1所述的检验设备,其中,所述孔配置成堵塞所述辐射的与光瞳面中所 述第一衍射级被探测的区域相对应的部分。
11.一种光刻设备,包括照射光学系统,其布置用以照射图案;投影光学系统,其布置用以将所述图案的图像投影到衬底上;和如权利要求1所述的检验设备。
12.—种光刻单元,包括涂布器,其布置用以给衬底涂覆辐射敏感层;光刻设备,其布置用以将图像曝光到衬底的由涂布器涂覆的辐射敏感层上;显影装置,其布置用以显影由光刻设备曝光的图像;和如权利要求1所述的检验设备。
13.—种测量衬底属性的方法,所述方法包括步骤曝光目标;将辐射束投影到所述衬底上的所述目标上;探测由所述衬底反射的所述辐射;和由所述反射辐射确定所述属性,其中由所述辐射投影装置投影的辐射束的所述照射轮廓使得辐射束的强度分布关于 光瞳面内通过辐射投影装置的光学轴线的虚拟线是不对称的。
14.一种检验设备,其配置用以测量衬底的属性,所述设备包括照射系统,其配置用以提供辐射束;辐射投影装置,其配置用以将辐射束投影到所述衬底上;高数值孔径透镜;和探测器,其配置用以探测从衬底表面反射的辐射束并且用以分离地探测零衍射级和第 一衍射级;其中由所述辐射投影装置投影的辐射束的照射轮廓使得辐射束的强度分布关于光瞳 面中通过辐射投影装置的光学轴线的虚拟线是不对称的。
15.如权利要求12所述的检验设备,其中,照射轮廓使得在所述照射轮廓的至少一部 分上,在所述虚拟线第一侧处的被照射的部分具有在所述虚拟线的对称相对的另一侧处的 没有被照射的对应部分,并且在所述虚拟线第一侧处的没有被照射的部分具有在所述虚拟 线的对称相对的另一侧处的被照射的对应部分。
16.如权利要求12所述的检验设备,其中,照射系统配置辐射束以具有辐射轮廓。
17.如权利要求12所述的检验设备,其中,所述照射轮廓具有垂直于所述第一虚拟线 的第二虚拟线,并且其中在照射轮廓的至少一部分上,在所述第二虚拟线第一侧处的被照 射的部分具有在所述第二虚拟线的对称相对的另一侧处的没有被照射的对应部分,并且在 所述第二虚拟线第一侧处的没有被照射的部分具有在所述第二虚拟线的对称相对的另一 侧处的被照射的对应部分。
18.如权利要求12所述的检验设备,其中,所述照射轮廓具有四个扇形,一个扇形被照 射而其他扇形没有被照射。
19.如权利要求16所述的检验设备,其中,四个扇形尺寸相等。
20.如权利要求12所述的检验设备,其中,所述照射轮廓具有四个扇形,两个不相邻的 扇形被照射而另外两个不相邻的扇形没有被照射。
21.如权利要求17所述的检验设备,其中,四个扇形尺寸相等。
22.如权利要求12所述的检验设备,还包括衬底,所述衬底具有标记,所述标记具有对 称线,所述照射轮廓的虚拟线平行于所述标记的对称线。
23.如权利要求12所述的检验设备,其中,数值孔径配置成堵塞所述辐射束的与光瞳 面中所述第一衍射级被探测的区域相对应的部分。
24.一种光刻设备,包括照射光学系统,其布置用以照射图案;投影光学系统,其布置用以将图案的图像投影到衬底上;和检验设备,其具有配置用以探测从衬底表面反射的辐射束并且用以分离地探测零衍射级和第一衍射级的探测器,其中反射辐射束的照射轮廓使得其强度分布关于光瞳面内通过投影光学系统的光学 轴线的虚拟线是不对称的。
25.一种光刻单元,包括涂布器,其布置用于给衬底涂覆辐射敏感层;光刻设备,其布置用以将图像曝光到衬底的由涂布器涂覆的辐射敏感层上; 显影装置,其布置用以显影由光刻设备曝光的图像;和检验设备,其具有配置用以探测从衬底表面反射的辐射束并且用以分离地探测零衍射 级和第一衍射级的探测器,其中反射辐射束的照射轮廓使得其强度分布关于光瞳面内通过投影光学系统的光学 轴线的虚拟线是不对称的。
26.一种测量衬底的属性方法,所述方法包括步骤 曝光目标;利用投影光学系统将辐射束从目标投影到所述衬底上;探测由所述衬底反射的辐射并且分离地探测零衍射级和更高衍射级;和使用分离地探测的零衍射级和更高衍射级来重建标记的至少一个特征。
27.如权利要求26所述的方法,其中,所述辐射束的强度分布关于光瞳面内通过投影 光学系统的光学轴线的虚拟线是不对称的。
全文摘要
本发明提供一种检验设备、光刻设备、光刻处理单元以及检验方法。对于角度分解光谱测量,使用具有四个扇形的照射轮廓的辐射束。第一和第三扇形被照射,而第二和第四扇形没有被照射。因此,最终的光瞳面被分成四个扇形,并且仅零级衍射图案出现在第一和第三扇形中,而仅第一级衍射图案出现在第二和第三扇形中。
文档编号G03F7/20GK101819384SQ20101011682
公开日2010年9月1日 申请日期2010年2月9日 优先权日2009年2月11日
发明者A·G·M·基尔斯, H·A·J·克瑞姆, H·P·M·派勒曼斯 申请人:Asml荷兰有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1