紧凑型全景摄像机:光学系统,装置,图像形成方法与流程

文档序号:11449469阅读:392来源:国知局
紧凑型全景摄像机:光学系统,装置,图像形成方法与流程

相关申请的交叉引用

本申请要求于2014年9月15日提交的序列号为62/050,725的美国临时专利申请的优先权和相关权益,该临时专利申请通过引用以其整体合并与此。



背景技术:

存在许多使用各种折射和反射光学组件的全景成像摄像机和光学系统。广角持续视觉成像的空间可以大致分为单摄像机系统(例如,鱼眼和折反射系统)和多摄像机系统。单摄像机系统通过以场压缩(fieldcompression)功能的形式在视场中引入畸变,能够看到比通常的视场更广的视场。一种方法使用宽视场仅折射光学器件(例如,鱼眼镜头)来获取相机周围的宽幅视场。仅折射光学器件在涉及到在视场中所有点处维持统一(或最小)的质量时面临独特的挑战。这是因为仅通过折射提供的场压缩方法是非常有限的。同时,鱼眼镜头的场压缩功能在计算上是复杂的,并且不完全可逆。单独由镜头进行场压缩在重量方面也产生巨大影响。与折反射系统相比,仅仅是对高折射致密弯月形镜头的需求就可能将系统的重量提高一个数量级。

折反射光学系统可以包括一个或多个凹面镜和/或凸面镜以及一个或多个折射透镜元件(通常放置在这些反射镜后面)。这些光学系统已经被开发以实现超广角视场,并且利用这个方法可以实现许多场压缩功能。



技术实现要素:

一个实施例涉及用于感测360度视场的具有旋转对称轴的紧凑型全景摄像机。紧凑型全景摄像机包括凸形反射体、硬件光圈和解压缩(decompression)透镜。凸形反射体具有轴对称非球面表面。凸形反射体被配置为提供360度全景场景的具有特定图像压缩的、弯曲且压缩的虚像。硬件光圈被配置为滤除除了从凸形反射体直接反射的那些光线以外的光线,从而提供期望的紧凑型物方空间视点以用于对感测图像的预期映射。硬件光圈被放置在凸形反射体的几何焦点处或附近,与凸形反射体相距一定距离。解压缩透镜被放置以接收由硬件光圈过滤的、弯曲且压缩的虚像。解压缩透镜被配置为将弯曲且压缩的虚像解压缩成具有高光学分辨率和抛物面图像解压缩的实像,并且将实像投影到图像传感器上。图像传感器被放置以接收由解压缩透镜投影的360度全景场景的实像。

另一实施例涉及一种用于具有图像传感器的紧凑型全景相机的系统。该系统包括凸形反射体和解压缩透镜。凸形反射体具有轴对称非球面表面,该凸形反射体提供全景场景的具有非抛物面图像压缩的、弯曲且压缩的虚像。解压缩透镜被放置以接收弯曲且压缩的虚像。解压缩透镜被配置为将弯曲且压缩的虚像解压缩成具有高光学分辨率和抛物面图像解压缩的实像,并且将实像投影到图像传感器上。

另一实施例涉及一种用于压缩和解压缩具有高分辨率的图像的方法。该方法包括:通过折反射光学元件接收来自场景的光线束;通过折反射光学元件将光线束压缩成具有非抛物面压缩的、弯曲且压缩的虚像;通过折反射光学元件将弯曲且压缩的虚像反射到硬件光圈上;通过硬件光圈滤除除了由折反射光学元件反射的那些光线以外的光线;通过解压缩透镜从硬件光圈接收弯曲且压缩的虚像;通过解压缩透镜将弯曲且压缩的虚像解压缩成实像;以及通过解压缩透镜将实像投影到图像传感器上。

另一实施例涉及一种用于与折反射光学系统中的非抛物面反射镜和图像传感器一起使用的解压缩透镜。解压缩透镜包括至少一个透镜元件,被放置以从非抛物面反射镜接收非抛物面压缩格式的、弯曲且压缩的虚像。至少一个透镜元件被配置为将弯曲且压缩的虚像解压缩成具有高光学分辨率和抛物面类型解压缩的实像,并且将实像投影到图像传感器上。

当结合附图查看下面的示例实施例的详细描述时,本公开的实施例的优点和特征将变得更加明显。

附图说明

图1是根据示例实施例的紧凑型全景摄像机的光学系统布局。

图2a和2b示出了根据示例实施例的图像压缩和解压缩的方法的示意图和流程图。

图3是一种基于折反射光学器件的理想凸抛物面反射镜。

图4描绘了针对图3的布置的场曲图示和畸变图示。

图5是具有理想折反射光学器件的理想透镜的凸双曲面反射镜。

图6描绘了针对图5的布置的场曲图示和畸变图示。

图7描绘了根据示例实施例的针对图1的布置的场曲图示和畸变图示。

图8是根据示例实施例的针对图1的布置的十二个垂直视点的多色衍射mtf的图示。

图9是根据示例实施例的针对图1的布置的水平点的多色衍射mtf的图示。

图10是根据示例实施例的针对图1的布置的衍射能量圈(ensquaredenergy)的图示。

图11是根据示例实施例的针对图1的布置的十二个垂直视点的多色惠更斯mtf的图示。

图12是根据示例实施例的针对图1的布置的在垂直视场中的相对照度的图示。

图13示出了根据示例实施例的针对图1的布置的十二个垂直视点的图像斑图。

图14示出了根据示例实施例的针对图1的布置的横向色差(lateralcolor)图示。

图15示出了根据示例实施例的针对图1的布置的瞬时视场(ivof)图示。

图16示出了根据示例实施例的全景摄像机的系统框图。

图17是根据另一示例实施例的通过使用圆筒形窗口安装的替代反射镜。

图18是根据第三示例实施例的通过使用中心支柱和丙烯酸板安装的替代反射镜。

图19是根据第四示例实施例的通过使用中心支柱和由丙烯酸截锥形窗口保护的丙烯酸板安装的替代反射镜。

图20是根据第五示例实施例的具有壳体、罩、尖峰和光阑的替代光学系统布局。

图21是根据第六示例实施例的具有evfov80度(从水平线向上30度和向下50度)的紧凑型全景摄像机。

图22是根据第七示例实施例的具有evfov80度(从水平线向上40度和向下40度)的紧凑型全景摄像机。

图23是根据第八示例实施例的具有evfov85度(从水平线向上45度和向下40度)的紧凑型全景摄像机。

图24是根据第九示例实施例的具有evfov80度(从水平线向上40度和向下40度)的紧凑型全景摄像机,和具有替代形状的coe。

图25是根据第十示例实施例的具有evfov80度(从水平线向上40度和向下40度)的紧凑型全景摄像机,该紧凑型全景摄像机具有中心尖峰,壳体,保护锥形窗口和陷光(lighttrap)光阑。

图26是根据第十一示例实施例的具有evfov80度(从水平线向上15度和向下65度)的紧凑型全景摄像机。

图27是根据第十一示例实施例的针对图26的布置的十二个垂直视点的多色衍射mtf的图示。

图28是根据第十一示例实施例的针对图26的布置的衍射能量圈的图示。

图29示出了根据第十一示例实施例的针对图26的布置的十二个垂直视点的光斑图像。

图30描绘了根据第十一示例实施例的针对图26的布置的场曲图示和畸变图示。

图31是根据第十二示例实施例的具有evfov80度(从水平线向上15度和向下65度)的紧凑型全景摄像机。

图32是根据第十二示例实施例的针对图31的布置的十二个垂直视点的多色衍射mtf的图示。

图33是根据第十二示例实施例的针对图31的布置的衍射能量圈的图示。

图34示出了根据第十二示例实施例的针对图31的布置的十二个垂直视点的点图图像。

图35描绘了根据第十二示例实施例的针对图31的布置的场曲图示和畸变图示。

图36是根据第十三示例实施例的针对具有平面图像传感器的图31的布置的十二个垂直视点的多色衍射mtf的图示。

图37是根据第十三示例实施例的针对具有平面图像传感器的图31的布置的衍射能量圈的图示。

图38示出了根据第十三示例实施例的针对具有平面图像传感器的图31的布置的十二个垂直视点的点图图像。

图39描绘了根据第十三示例实施例的针对具有平面图像传感器的图31的布置的场曲图示和畸变图示。

具体实施方式

参考附图,示出了具有光学系统的紧凑型全景摄像机、装置和图像形成方法。下面的公开中提出的系统可以被用来提供具有强大光学器件和高分辨率成像的紧凑型(即,小型化)全景摄像机。紧凑型可以表示摄像机的总体积为3立方英寸或更小。强大的光学器件可以表示相机具有f/2.8或更高的光学孔径。高分辨率成像可以表示摄像机针对150cy/mm具有30%以上的多色衍射调制传递函数(mtf)。根据不同的实施例,可以提供其他质量、尺寸、功率水平和分辨率水平。权利要求不限于任何特定的大小、功率或分辨率,除非在权利要求中这样明确限制。这些技术适用于电话会议、机器人视觉、无人驾驶车辆、医学内窥镜检查应用、或其中获取实时视频成像(垂直于光轴而不是沿着光轴)可能是重要的任何其他类似应用。

紧凑型全景摄像机光学器件包括两个主要光学组件。第一光学组件是折反射光学元件(coe)。根据示例实施例,coe包括凸形反射体,该凸形反射体被包含在第一折射表面和第二折射表面之间的折射透镜中。因此,coe具有三个光学表面:两个折射表面和一个反射表面。第二光学组件是解压缩透镜。根据示例实施例,解压缩透镜由至少一个透镜元件制成(例如,一个透镜元件、三个单一透镜元件(都是单透镜)等等),每个透镜元件具有非球面光学表面。通过这种设计,紧凑型非球面主反射镜结构、平的像表面场(由于场曲校正)、以及非球面图像压缩到抛物面解压缩的转换可以一起被实现。所有这些可以产生紧凑型全景摄像机,该紧凑型全景摄像机具有强大的光学系统,包括至多四个光学元件,其可以由总共两个塑料材料制成并且提供高分辨率图像。反射镜设计还可以允许将其直径减小先前设计的反射镜的三分之一或更多,并且还将摄像机体积减小到替代系统的十分之一。

现在参考图1,示出了根据示例实施例的紧凑型全景摄像机的光学系统布局。根据图1中示出的示例实施例,光学系统10包括两个主要光学组件:折反射光学元件(coe)14和解压缩透镜23。光学系统10还可以包括硬件光圈22、盖玻璃30和图像传感器32。光学系统10的全部光学元件被示出为相对于垂直光轴12居中,该垂直光轴12是对称轴。根据图1中示出的示例实施例,coe14包括三个光学表面:第一光学表面,被示出为第一折射表面16;第二光学表面,被示出为凸形反射体18;以及第三光学表面,被示出为第二折射表面20。在一个实施例中,第一折射表面16被构造为椭球形折射表面(即,椭球面透镜)。如果用于构造coe14的制造方法是塑料模制,则椭球面表面与球面表面相比的优点可以是平的筒边缘15,其可以允许coe14从模具中相对更容易地移出。在其他实施例中,第一折射表面16是另一形状(例如,球面、双曲面、抛物面或高阶非球面)。在一个实施例中,凸形反射体18具有凸形双曲面。在其他实施例中,凸形反射体18具有另一形状(例如,高阶非球面形状、球面、抛物面等)。在一个实施例中,第二折射表面20是球面折射表面(即,球面透镜)。在其他实施例中,第二折射表面20是另一形状(例如,非球面、双曲面、抛物面等)。

根据示例实施例,coe14具有32.4毫米(mm)的最大直径和负5.0毫米的焦距。因此,光学系统10可以产生位于凸形反射体18后面的物方空间点的、弯曲且压缩的虚像19(即,由负焦距指示)。在其他实施例中,coe14的直径和焦距是另一大小和长度(例如,30mm直径和负3.5mm焦距等)。coe14的其它表面(例如,平面的筒边缘15)是机械表面,其可以被用来便于将coe14安装在摄像机壳体(未示出)内和/或安装到解压缩透镜23。

根据图1中示出的示例实施例,解压缩透镜23包括三个透镜元件:第一透镜元件,被示出为第一负透镜元件24;第二透镜元件,被示出为正透镜元件26;以及第三透镜元件,被示出为第二负透镜元件28。在其它实施例中,解压缩透镜23包括至少一个透镜元件(例如,一个、两个等等)。根据示例实施例,第一负透镜元件24具有至少一个高阶非球面表面。第一负透镜元件24的(一个或多个)高阶非球面表面可以被构造为:具有负屈光度、扩散光线束、并且部分地校正场像差。在一个实施例中,第一负透镜元件24的焦距为负5.6mm。在其他实施例中,第一负透镜元件24的焦距是更大的焦距、更小的焦距和正焦距中的至少一个。根据示例实施例,正透镜元件26具有高阶非球面表面,该高阶非球面表面具有相对强的正屈光度。正透镜元件26的高阶非球面表面可以被构造为汇聚光线束、并且部分地校正场像差。在一个实施例中,正透镜元件26的焦距为正3.9mm。在其他实施例中,正透镜元件26的焦距为更大的焦距、更小的焦距和负焦距中的至少一个。根据示例实施例,第二负透镜元件28具有高阶非球面表面。由于第二负透镜元件28非常靠近图像传感器32,第二负透镜元件28的非球面表面可以通过与第一负透镜元件24和正透镜元件26的非球面表面合作来有效地校正图像压缩、场曲和残余场像差。在一个实施例中,第二负透镜元件28被构造为具有负屈光度,焦距为负3.2mm。在其他实施例中,焦距是更大的焦距、更小的焦距和正焦距中的至少一个。

解压缩透镜23的(一个或多个)透镜元件可以使用塑料模制技术由塑料材料以高效费比制成。第一负透镜元件24和第二负透镜元件28可以由高色散塑料材料(例如,聚苯乙烯、聚碳酸酯和rexolite中的至少一个)制成。根据示例实施例,高色散塑料材料的阿贝数约为30。在其它实施例中,高色散塑料材料的阿贝数基于光学系统10的应用而变化(例如,大于或小于30等等)。正透镜元件26和coe14可以由低色散光学塑料材料(例如,丙烯酸(acrylic)、pmma和zeone中的至少一个)制成。根据示例实施例,低色散塑料材料的阿贝数略小于60。在其他实施例中,阿贝数基于光学系统10的应用而变化(例如,大于或小于等于60等等)。可以使用这些类型的光学材料在从蓝线455nm到红线644nm的波长范围来校正色差(纵向和横向色差)。在广角光学器件中消除横向色差是重要的,这可以通过这个具体实施例来完成(参见例如图14)。为了进一步改进颜色校正,第一负透镜元件24的第一表面可以被薄膜红外(ir)截止滤光片涂覆,该截止滤光片阻挡波长大约680纳米(nm)以上的光线。ir滤光片涂层的另一优点是减少了系统10中所需的光学元件的数量。如果没有ir涂层,光学系统10可能还需要附加滤光器,该附加滤光器放置在图像传感器32前面。在其它实施例中,解压缩透镜23的一个或多个透镜元件和/或coe14的一个或多个光学表面由不同于塑料材料的材料(例如,玻璃等等)制成。

根据示例实施例,解压缩透镜23的有效焦距为6.2mm。在其他实施例中,焦距是不同的(即,被不同地构造以接收由不同折反射光学元件投影的、弯曲且压缩的虚像)(例如,更长、更短、基于coe14的结构等等)。在其它实施例中,解压缩透镜23包括具有总共一个或多个非球面表面的一个或多个透镜元件(例如,一个透镜、两个透镜、四个透镜等)。

如图1中示出的,硬件光圈22被放置在coe14的后面和解压缩透镜23的前面(即,在coe14和解压缩透镜23之间)。在一个实施例中,硬件光圈22被放置在距coe14一定距离处,使得硬件光圈22位于凸形反射体18的几何焦点处或附近。根据示例实施例,硬件光圈22被配置来:帮助形成光学图像;指定光学系统10的入射光瞳和出射光瞳;以及过滤来自物方点的光线束34(例如,滤除除了由反射镜18反射的那些光线以外的光线等等)。根据示例实施例,盖玻璃30被配置为保护图像传感器32的表面,其中光学实像(例如,高分辨率解压缩的图像等等)在图像传感器32中形成。在一个实施例中,图像传感器32是平面(即,二维(2d))感测表面。在其他实施例中,图像传感器32是弯曲的(即,三维(3d))(例如,参见图31)。本文将更详细地描述在图像传感器32上形成高分辨率解压缩的图像的过程。

根据示例实施例,光学系统10的总长度为60mm。在其他实施例中,基于对coe14和/或解压缩透镜23的结构和尺寸特性(例如,焦距、直径等等)的选择,光学系统10的总长度增加或减小。根据示例实施例,光学系统10的有效垂直视场(evfov)是70度:从水平线向上15度和从水平线向下55度。在其他实施例中,evfov的范围在70度和90度之间,其中从水平线向上的度数和从水平线向下的度数具有各种可能性(例如,evfov为80:从水平线向上30度和向下50度,evfov为80:从水平线向上40度和向下40度,evfov为85:从水平线向上45度和向下40度,等等)。在其他实施例中,光学系统10的evfov小于70度。由于光学系统10关于垂直光轴12是轴对称的,光学系统10的水平视场可以高达360度。

现在参考图2a和2b,示出了根据示例实施例的压缩和解压缩具有高分辨率的图像的方法200。在一个示例实施例中,方法200可以用图1的光学系统10来实现。因此,可以参考图1来描述方法200。

在过程202处,选择感兴趣的场景。例如,具有光学系统10的紧凑型全景摄像机可以被引导朝向会议室中的会议的参会人员和/或黑板以用于视频会议目的;可以被用作机器人竞赛中的机器人装置的眼睛以用于辅助路线导航;或者可以是可能需要和/或受益于具有强大光学器件和高分辨率成像的紧凑型全景摄像机的任何其他实现方式。在过程204处,主图像采集器(例如,凸形反射体18(即,高阶凸形非球面镜))接受(即,接收)来自场景的光线。例如,来自上述场景的物方点的光线束34通过第一折射表面16进入coe14。光线束34在朝向凸形反射体18穿过第一折射表面16时发生折射。光线束34被凸形反射体18的高阶非球面反射镜表面(例如,双曲面反射镜表面等等)反射,并且通过第二折射表面20离开coe14。

在过程206处,产生具有特定压缩的、弯曲且压缩的虚像19。例如,当光线束34被凸形反射体18反射时,在凸形反射体18的后面产生场景的物方空间点的、弯曲且压缩的虚像19(例如,由于如上所述的负焦距等等)。弯曲且压缩的虚像19具有凸形反射体18的高阶凸形非球面表面的非球面压缩(例如,双曲线压缩等等)。根据示例实施例,凸形反射体18具有双曲面结构,由此弯曲且压缩的虚像19具有特定于凸形反射体18的反射镜表面的双曲面结构的双曲线压缩。弯曲且压缩的虚像19沿弯曲的表面(例如,双曲面、抛物面等等)形成。校正或消除场曲以在平面表面上生成图像,是在图像传感器32上获得高分辨率锐利光学图像的基本重要任务。在其它实施例中,弯曲且压缩的虚像19的压缩根据凸形反射体18的表面的形状(例如,球面、抛物面、高阶非球面等等)的不同而不同。例如,如果凸形反射体18的表面在结构上是抛物面,则弯曲且压缩的虚像19可以具有抛物面压缩,并且其表面曲率可以是凸形反射体18的表面曲率的两倍。

在过程208处,如上所述,解压缩透镜23接收通过第二折射表面20离开coe14的光线束34。弯曲且压缩的虚像19通过硬件光圈22被投影到解压缩透镜23,弯曲且压缩的虚像19在硬件光圈22处被过滤并且被中继。弯曲且压缩的虚像19对于解压缩透镜23而言在物方(即,场景)。专门构造的非球面透镜元件24、26和28将具有高光学分辨率和期望的解压缩的上述图像锐利地投影到图像传感器32上(过程210)。根据示例实施例,解压缩透镜23接收具有双曲面压缩的、弯曲且压缩的虚像19,并且将具有高分辨率和抛物面解压缩的图像投影到图像传感器32上。在其它实施例中,解压缩透镜23接收不同形状的非球面压缩图像(例如,抛物面等等),并且将具有高分辨率和期望的解压缩(例如,抛物面、双曲面等等)的图像投影到图像传感器32上。根据示例实施例,用于压缩和解压缩光线束的方法是由光学系统10的光学器件装置完成的(即,以机械方式,等等),不需要数字图像处理。在替代实施例中,可以使用数字图像处理。

参考图3,示出了理想折反射光学系统100的现有技术光学器件,其中凸形反射体18被构造为凸形抛物面镜。理想折反射光学系统100还包括理想远心透镜27、摄像机透镜29和弯曲的图像传感器33。当使用纯抛物面反射镜时,需要远心透镜27。远心透镜27和摄像机透镜29一起工作,产生来自物方空间点的光线束34的弯曲实像。远心透镜27和摄像机透镜29通过将由抛物面凸形反射体18产生的、弯曲且压缩的虚像19(图3中未示出)以某个放大率投影到弯曲的图像传感器33上来实现这一点。放大率等于远心透镜27和相机透镜29的焦距的某种对应关系。虚像直径等于抛物面凸形反射体18的直径。在一个实施例中,放大率小于1.0,因为远心透镜27的焦距大于摄像机透镜29的焦距。放大率越小,弯曲的图像传感器33上的图像的直径相对于虚像直径越小。摄像机透镜29的较低放大率使得用于场平面化的透镜设计更简单。这使得凸形反射体18的直径与弯曲的图像传感器33的直径的比率数值更高。如果放大率小于4.5,则非常难以(即使不是不可能)获得高分辨率的锐利平面图像表面。

当被适当地设计时,类似于图3的折反射系统(例如,基于反射镜和透镜的系统)提供单传感器广角持续成像的最佳方法。这种方法可以实现广泛的场压缩功能。在捕捉中引入的场压缩可以在所得到的图像中以计算方式完全可逆。在这些系统中使用反射镜作为主要的场压缩工具使得随后的折射元件具有显著更小的尺寸(即,在某些情况下减小几个数量级)。对于理想折反射光学系统100,仅当远心透镜27被反射镜代替时才是如此。在这种情况下,单反射镜光学器件100可以被转换成双反射镜光学器件。当重量和材料成本中的至少一个是考虑因素时,这可能是独特的优点。

参考图4,示出了针对图3的系统的全景场曲的图示400和f-θ畸变/图像压缩的图示402,其中图3的系统具有凸形反射体18(被构造为抛物面反射镜)、理想远心透镜27、和理想摄像机透镜29。全景场曲的图示400中示出了,当与诸如图像传感器32之类的平面图像传感器一起使用时,与理想的弯曲图像传感器33相反,场曲成为需要被校正以实现平面场的重要问题(例如,参见图6)。系统从反射镜的中心到边缘具有20.7%解压缩的益处。在其他实施例中,抛物面反射镜系统能够提供甚至更高的解压缩(范围从23%到25%)。这可能是期望的,因为反射镜的边缘覆盖最多像素,由此使得所产生的图像具有更高数字分辨率。

使用主抛物面镜实现具有场曲校正的系统,并且获得理想的场压缩特性,这样的做法已经存在了多年。然而,在提供分辨率非常高的并且同时小巧紧凑的系统方面仍然存在挑战。市场需求要求系统把小尺寸和高分辨率这两个矛盾进行结合。所实现的系统可以采用复杂方法来消除三阶和更高阶像差,包括像散、场曲和更温和的彗差。这可以通过以下步骤来实现:使用诸如构建共焦系统之类的技术来消除光瞳中的像散和球差,以及使用反射镜和透镜元件的二阶和更高阶非球面光学表面来抑制彗差和高阶场像差。然而,当系统的整体线性尺寸接近传感器线性尺寸时,更高阶像差开始产生更大的影响,并且在低于某些尺度比例的情况下,这些像差仍然未被校正并且可由传感器像素检测到,使得图像不可用,并且对系统和传感器尺寸之间的比率设置下限。可以使用双曲面和其他主反射镜形状来解决上述挑战。这个想法将在本文中更全面地进行讨论,并且图5-6中示出了使用双曲面主反射镜的场压缩的示例。

参考图5,示出了理想折反射光学系统100的具有理想摄像机透镜29的双曲面凸形反射体18。理想摄像机透镜29通过将由双曲面结构的凸形反射体18产生的、弯曲且压缩的虚像19(在图5中未示出)以某个缩小比投影到弯曲的图像传感器33上,来产生物方空间点的光线束34的、弯曲且解压缩的实像。它是与图1中示出的光学系统相同类型的光学系统,其中用理想摄像机透镜29替代解压缩透镜23。该示例实施例被示出以用于比较解压缩透镜23和理想摄像机透镜29之间的图像解压缩能力。

现在参考图6,示出了全景场曲的图示600和f-θ畸变/图像压缩的图示602,其中系统具有凸形反射体18(被构造为双曲面反射镜)和理想摄像机透镜29(在图5示出了该布局)。当这个反射镜轮廓与理想透镜29一起使用时,与鱼眼镜头相比的场压缩优势不能满足期望的性能特征。因此,为了用基于双曲面反射镜的光学系统(如图1和图5所示)来实现基于抛物面反射镜的光学系统的高性能特性,(图3和图5中的)理想透镜29被图1中本发明的解压缩透镜23替代,其将在本文中被更全面地描述。

现在参考图7,示出了针对图1的光学系统10的全景场曲的图示700和f-θ畸变/图像压缩的图示702。为了实现紧凑型高分辨率广角折反射光学系统,以下特征是期望的:紧凑型非球面主反射镜、平面场(即,低场曲)、抛物面场压缩。光学系统10使用与图5中被用来生成图6中的结果的紧凑型、非球面、非抛物面主反射镜相同的紧凑型、非球面、非抛物面主反射镜(即,双曲面结构的凸形反射体18)。然而,图5的理想透镜29和理想弯曲的图像传感器33被图1的解压缩透镜23和平面图像传感器32替代。新型解压缩透镜23修改场压缩功能以在所得到的图像中实现近抛物面场压缩(在不使用抛物面反射镜的情况下)。

从反射镜的中心到边缘的20.5%解压缩的场压缩特性比较接近于图4中示出的基于理想抛物面反射镜的系统的场压缩特性(20.7%解压缩)。这产生一种高分辨率系统,其模仿了基于抛物面反射镜的系统的行为,而不需要考虑前述小巧紧凑尺寸。为了实现该目的,可以分析由主非球面反射镜(凸形反射体18)生成的、弯曲且压缩的虚像19的形状,并且可以生成场曲校正器和解压缩轮廓以设计如图1中示出的解压缩透镜23。透镜的几何形状被配置来提供:场曲校正、非球面向抛物面压缩的转换、低光学f数(f-stop)、和紧凑的形状因子。coe14和透镜元件24、26、28的特定光学参数的组合、它们的放置位置和材料允许光学系统10针对可见光谱在像方空间以f数2.6在平面图像传感器32上实现高光学分辨率。在其它实施例中,上述特征可以变化,从而产生不同的f数(例如,2.7、2.8、2.9等等)。在各种实施例中,凸形反射体直径与图像直径的比率可以在大约6.5∶1到2.3∶1的范围内。

参考图8,示出了根据示例实施例的与衍射极限调制传递函数(mtf)(黑色曲线)相比的紧凑型全景摄像机光学系统10的十二个垂直视点的多色衍射mtf的图示。从图中可以看出,在从垂直光轴12算起从35度到105度的整个垂直视场,全景成像系统提供每毫米150线对的分辨率,其中图像对比度(mtf)在45.9%至61.0%的范围内,。

参考图9,示出了根据示例实施例的与多色光的衍射极限调制传递函数(mtf)(黑色曲线)相比的紧凑型全景摄像机光学系统10的水平点的mtf的子午和弧矢曲线图。从图中可以看出,全景成像系统提供每毫米150线对的分辨率,其中对比度(mtf)约为61.0%。水平方向的实际限制分辨率要高得多,具体而言,当可接受的最小图像对比度为30%时有300cy/mm。

参考图10,示出了根据示例实施例的与衍射极限衍射能量圈(dee)(顶部曲线)相比的紧凑型全景摄像机系统10的十二个垂直视点的dee集中度的图示。dee图示出了在整个视场上由像平面上2a乘以2a的正方形区域从单个物方点收集的总光能的相对数量,其中“a”是单位为微米的到正方形中心的距离,其沿着图的水平轴被标记。垂直轴表示能量圈的比例。通过点扩散函数(psf)描述了来自物点的光能在像平面上的分布。dee集中度是当正方形中心点与最大psf点(质心点)重合时,psf在整个正方形区域2a×2a上的积分。希望在像素区域中具有三分之二或大约70%的dee集中度以匹配光学和数字分辨率。

参考图11,示出了根据示例实施例的紧凑型全景摄像机系统10的十二个垂直视点的多色惠更斯mtf的图示。这里的图像对比度的范围略高于图8中的mtf数据,这可以通过使用快速傅立叶变换来以某种近似进行计算。

参考图12,示出了根据示例实施例的在紧凑型全景摄像机光学系统10的垂直视场中的相对照度的图示。该图示出了在紧凑型全景摄像机的垂直视场中在图像传感器32上的光分布的均匀性。整个视场的照度变化小于18%。

现在参考图13,示出了根据示例实施例的针对图1的布置的十二个垂直视点的图像斑图。如图所示,随着垂直角度增加到105度,图像传感器32上的畸变非常小。

图14示出了从0.455微米到0.644微米的波长范围的横向色差图示,以及它们在整个垂直视图中与主色波长0.546微米的偏差。可以看到,偏差小于2微米,并且不超过艾里极限(airylimits)。

参考图15,垂直(1550)方向和水平(1500)方向上的以每像素毫弧度为单位的瞬时视场的图示。它们表征了紧凑型全景摄像机使用具有1.5微米的像素间距的数字传感器在整个视场中在两个方向上的数字分辨率。例如,如果到光轴的垂直角度从35度变化到105度,则垂直分辨率从1.4mrad/pixel变化到0.8mrad/pixel。较小的数字表示较高的分辨率。

现在参考图16,示出了根据示例实施例的全景摄像机110的系统框图。全景摄像机110包括多个子部件。第一子部件是光学系统10(在图1中示出)。第二子部件包括数字图像传感器122,相对于光学系统10安装成使数字图像传感器122的传感器平面122b与光学系统10的图像传感器32重合。光学系统10在数字图像传感器122上产生图像125。在一些实施例中,图像是圆形的。例如,在一些实施例中,可以在环形内圆125a和环形外圆125b之间形成环形的圆形图像125,如由光学系统10确定的。

第三子系统包括控制器105,被配置为接收由数字图像传感器122捕捉的图像的电子表示形式。在一些实施例中,提供图像处理软件106用于处理捕捉的图像。经聚焦的图像的数字表示形式被渲染并且被显示给终端用户。例如,渲染的经聚焦的图像可以在用户接口108处被显示在视频显示器107上。用户接口108可以包括用户控件,允许用户操纵图像处理软件106从而执行自动地聚焦图像125的功能和手动地聚焦图像125的功能中的至少一个。在优选实施例中,弯曲且压缩的虚像19的压缩和解压缩都不是用数字图像处理执行的。

图17示出了根据第二示例实施例的替代光学系统布局。第二实施例是第一实施例的修改,其中使用圆筒形窗口39安装凸形反射体18。圆筒形窗口39的内部是凸形反射体18、尖峰35和挡板36。凸形反射体18可以是直径为20.1mm的双曲面结构,并且图像传感器32可以具有4.6mm的直径。因此,凸形反射体与图像传感器的比率可以是4.4∶1。尖峰35可以沿着垂直光轴12被配设并且至少部分地延伸到挡板36的内部。尖峰35改善了整个光学器件的稳定性,并且减少反射到摄像机的图像中的不利的眩光。挡板36是机械系统,其功能是屏蔽来自在紧凑型全景摄像机的视场(fov)之外的来源的光。

图18示出了根据第三示例实施例的替代光学系统布局。第三实施例是第一实施例的变型,其中通过使用中心支柱37、丙烯酸板38和壳体41来安装凸形反射体18。凸形反射体18具有21.2mm的直径,并且图像传感器32具有4.5mm直径。因此,凸形反射体与图像传感器的比率为4.7∶1。中心支柱37用作凸形反射体18的支撑。丙烯酸板38支撑中心支柱37,并且提供透明通道以用于光线穿过进入壳体41。

图19示出了根据第四示例实施例的替代光学系统布局。第四实施例是第一实施例的变型,其中通过使用中心支柱37、丙烯酸板38、丙烯酸锥形窗口40、壳体41和陷光光阑42来安装凸形反射体18。凸形反射体18具有21.2mm的直径,并且图像传感器32具有4.5mm的直径。因此,凸形反射体与图像传感器的比率为4.7∶1。中心支柱37用作凸形反射体18的支撑。丙烯酸板38支撑中心支柱37,并且提供透明通道以用于光线穿过进入壳体41。丙烯酸锥形窗口40在光线穿过它时作为折射表面,并且为凸形反射体18的安装增加支撑。壳体41被用来容纳陷光光阑42。陷光光阑42是逐渐变细的环形光阑(即,包括圆锥形切口),其阻挡除了穿过硬件光圈22的光之外的光。

图20示出了根据第五示例实施例的替代光学系统布局。第五实施例是第一实施例的修改,其中光学系统布局包括尖峰35、壳体41、陷光光阑和罩43。凸形反射体18具有24.2mm的直径,并且图像传感器32具有4.5mm的直径。因此,凸形反射体与图像传感器的比率为5.4∶1。尖峰35可以沿着垂直光轴12被配设并且至少部分地延伸到壳体41的内部。尖峰35改善了整个光学器件的稳定性,并且减少反射到摄像机的图像中的不利的眩光。壳体41被用来容纳陷光光阑42。陷光光阑42是逐渐变细的环形光阑(即,包括圆锥形切口),其阻挡除了穿过硬件光圈22的光之外的光。罩43用于减少镜头眩光并保护光学系统免受损坏。

图21示出了根据第六示例实施例的替代紧凑型全景摄像机。第六实施例是第一实施例的修改,其中该实施例包括具有80度(从水平线向上30度和向下50度)的evfov的光学系统。凸形反射体18具有24.2mm的直径,并且图像传感器32具有4.6mm的直径。因此,凸形反射体与图像传感器的比率为5.3∶1。根据示例实施例,图21的光学系统的总长度是51.2mm。在其他实施例中,图21的光学系统的总长度大于或小于51.2mm。

图22示出了根据第七示例实施例的替代紧凑型全景摄像机。第七实施例是第一实施例的修改,其中该实施例包括具有80度(从水平线向上40度和向下40度)的evfov的光学系统。凸形反射体18具有26.4mm的直径,并且图像传感器32具有4.6mm的直径。因此,凸形反射体与图像传感器的比率为5.7∶1。根据示例实施例,图22的光学系统的总长度是49.1mm。在其他实施例中,图22的光学系统的总长度大于或小于49.1mm。

图23示出了根据第八示例实施例的替代紧凑型全景摄像机。第八实施例是第一实施例的修改,其中该实施例包括具有85度(从水平线向上45度和向下40度)的evfov的光学系统。凸形反射体18具有25.3mm的直径,并且图像传感器32具有4.6mm的直径。因此,凸形反射体与图像传感器的比率为5.5∶1。根据示例实施例,图23的光学系统的总长度是47.2mm。在其他实施例中,图23的光学系统的总长度大于或小于47.2mm。

图24示出了根据第九示例实施例的替代紧凑型全景摄像机。第九实施例是第一实施例的修改,其中该实施例包括光学系统,该光学系统具有80度(从水平线向上40度和向下40度)的evfov、具有替代形状的coe14、尖峰35、壳体41和陷光光阑42。具有替代形状的coe14包括三个光学表面:可以是任意非球面形状(例如,双曲面、抛物面等等)的凸形反射体18、和可以连接至凸形反射体18的两个球面折射表面。在其他实施例中,两个折射表面可以是各种形状(例如,线性、抛物面、双曲面、非球面等等)。尖峰35可以沿着垂直光轴12被配设并且至少部分地延伸到壳体41的内部。尖峰35改善了整个光学器件的稳定性,并且减少反射到摄像机的图像中的不利的眩光。壳体41被用来容纳陷光光阑42。陷光光阑42是逐渐变细的环形光阑(即,包括圆锥形切口),其阻挡除了穿过硬件光圈22的光之外的光。凸形反射体18具有27.8mm的直径,并且图像传感器32具有4.5mm的直径。因此,凸形反射体与图像传感器的比例为6.2∶1。

图25示出了根据第十示例实施例的替代紧凑型全景摄像机。第十实施例是第一实施例的修改,其中该实施例包括光学系统,该光学系统具有80度(从水平线向上40度和向下40度)的evfov、尖峰35、丙烯酸锥形窗口40、壳体41和陷光光阑42。尖峰35可以沿着垂直光轴12被配设并且至少部分地延伸到壳体41的内部。尖峰35改善了整个光学器件的稳定性,并且减少反射到摄像机的图像中的不利的眩光。丙烯酸锥形窗口40在光线穿过它时作为折射表面,并且为凸形反射体18的安装增加支撑。壳体41被用来容纳陷光光阑42。陷光光阑42是逐渐变细的环形光阑(即,包括圆锥形切口),其阻挡除了穿过硬件光圈22的光之外的光。凸形反射体18具有27.0mm的直径,图像传感器32具有4.5mm的直径。因此,凸形反射体与图像传感器的比例为6∶1。

现在参考图26,示出了根据第十一示例实施例的紧凑型全景摄像机的光学系统布局。具有对称轴(垂直光轴12)的光学系统10本身包括两个主要光学组件:凸形反射体18(例如,双曲面反射镜)和解压缩透镜23,解压缩透镜23包括单个透镜元件。光学系统10还包括硬件光圈22和弯曲的图像传感器33(即,3d)。在其他实施例中,图像传感器可以是平面图像传感器,例如图像传感器32。双曲面凸形反射体18的直径为25.6mm,圆锥常数为负1.4,顶点处的曲率半径为9.346mm,这与第一实施例(图1)相同。解压缩透镜23的单透镜元件包括第一表面46和第二表面47,各自具有不同的非球面形状。一起工作时,第一表面46和第二表面47能够有效地校正除场曲之外的所有场像差,并且解压缩由双曲面反射镜(凸形反射体18)产生的虚像压缩。作为结果,光学系统10通过使用光圈f/4具有衍射极限图像质量,其通过衍射mtf(图27)、衍射能量圈集中度(图28)和光斑图(图29)被确认。解压缩透镜23的单透镜元件的解压缩能力通过f-θ畸变图示3002(图30)被确认,该f-θ畸变图示3002针对视场边缘105度(从水平线向上15度)示出了30.8%的解压缩。解压缩透镜23的第一表面46可以具有正屈光度和8.8mm的焦距。由此,校正其自身的场曲同时补偿由凸形反射体18引入的正场曲是不可能的。第二表面47具有负屈光度并且校正光学系统10的场曲。如果第二表面47的光学材料具有比透镜元件的第一表面46更高的色散,则第二表面47还可以校正色差。光学系统10(图26)可以是单色的并且具有546纳米的工作波长。

然而,在仅具有单个透镜元件作为解压缩透镜(例如,图31中的解压缩透镜23)的情况下,可以通过使得解压缩透镜的光学表面中的一个成为衍射光学表面来校正色差。在第十二示例实施例(图31)中,这通过使得第一表面46成为衍射表面来实现。光学系统10针对光圈f/4具有高光学分辨率,其通过多色衍射mtf(图32)、衍射能量圈集中度(图33)和光斑图(图34)被确认。抛物面型图像压缩通过f-θ畸变图示3502(图35)(其中针对fov边缘具有26.9%的解压缩)被确认。光学系统10(图31)具有80度(从水平线向上15度和向下65度)的有效垂直视场。凸形双曲面反射镜(凸形反射体18)具有高阶非球面,它的直径为24.5mm,并且顶点处的圆锥常数和曲率半径与第十一示例实施例(图26)相同。

图31的解压缩透镜23的第一表面46和第二表面47具有不同的非球面形状。第一表面46在它的非球面表面的顶部可以包括衍射光学结构。一起工作时,第一表面46和第二表面47能够有效地校正色差和除场曲之外的所有场像差,并且解压缩由凸形反射体18产生的虚像压缩。为了进一步改进颜色校正,解压缩透镜23的单透镜元件的第一表面46可以被薄膜ir截止滤光片涂覆,该截止滤光片阻挡大约680nm以上的光波长。ir滤光片涂层的另一个优点是减少光学元件:否则可能需要将附加平面滤光器元件放置在弯曲的图像传感器33前面。最锐利的图像位于弯曲的图像传感器33的凹形表面上。如果依靠焦深并且使用具有f数16或22的针孔光圈,则仍然可以在平面感测表面(例如图像传感器32)上获得锐利图像。另一种可能是使用光纤平面化器(fiberopticflattener)或史密斯透镜作为传感器表面覆盖件。这两种情况都将单个元件解压缩透镜概念转换成双透镜。

通过将图31中的光圈22的直径从2.20mm降低到0.55mm,光学系统10的f数从4变为16。图36-39表征重新聚焦之后平面表面(例如,图像传感器32)上的图像质量。对于0.3-0.4的对比度,最大光学分辨率为50cy/mm(图36),70%的光能量集中在平均16微米x16微米的区域上(图37)。作为结果,与3d感测表面(例如,弯曲的图像传感器33)相比,平面感测表面上的图像质量的降低减小了大约四倍。

在不偏离本公开的精神或基本特征的情况下,本公开可以以其它具体形式实施。所描述的实施例在所有方面仅被认为是示例性的而不是限制性的。因此,本公开的范围由所附权利要求而不是前面的描述来指示。属于权利要求的等同物的含义和范围内的所有变化将被包括在权利要求的范围内。

应当理解,本文所公开的发明不限于在说明书中详细阐述或在附图中示出的组件的构造和布置的细节。本发明能够具有其他实施例,或者以各种方式被实践或被执行。还应当理解,本文采用的措辞和术语是为了描述的目的,而不应被视为限制。

还应当注意到,虽然在本公开中仅详细描述了配件的几个实施例,但是本领域技术人员在阅读本公开内容时将容易地理解,在不偏离本公开实施例中所陈述的主题的新颖教导和优点的情况下,许多修改是可能的(例如,对大小、尺寸、结构、各种元件的形状和部分、参数值、安装布置、材料、颜色、方向等等做出修改)。因此,所有这些修改旨在被包括在如所公开的实施例中定义的本公开的范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1