一种半透半反显示面板及其制作方法、显示装置与流程

文档序号:12593964阅读:239来源:国知局
一种半透半反显示面板及其制作方法、显示装置与流程

本发明涉及显示技术领域,尤其涉及一种半透半反显示面板及其制作方法、显示装置。



背景技术:

随着显示技术的不断发展,半透半反液晶显示面板因其具有功耗低、环境适应性强等优点,在手机、平板电脑等移动显示装置中得到了广泛应用。

目前,半透半反液晶显示面板的显示区域可划分为反射区域和透射区域,在户外的强光环境下,外部环境光线通过反射区域的反射,为半透半反液晶显示面板提供显示光源使其显示图像;而在外部无光或弱光的环境下,半透半反液晶显示面板中背光源的出射光线穿过透射区域,为半透半反液晶显示面板提供显示光源使其显示图像。

然而,为了确保半透半反液晶显示面板具备足够的出屏亮度,在其背光源出射光线受到反射区域遮挡的情况下,就必须要求透射区域保持有足够的开口率,这样将导致半透半反液晶显示面板中可留给反射区域的像素面积占比有限,使得半透半反液晶显示面板对外部光线的反射率较低,影响半透半反液晶显示面板应用终端在户外强光条件下的显示亮度;但是如果增大半透半反液晶显示面板中留给反射区域的像素面积占比,以提高半透半反液晶显示面板的反射率,则必然会导致透射区域的开口率减小,从而影响到半透半反液晶显示面板的出屏亮度。因此,通过半透半反液晶显示面板中透射区域开口率和反射区域反射率的相互制约,使得半透半反液晶显示面板,无法表现出优良的亮度显示性能。



技术实现要素:

本发明的目的在于提供一种半透半反显示面板及其制作方法、显示装置,用于提高半透半反显示面板的亮度显示性能。

为了实现上述目的,本发明提供如下技术方案:

本发明的第一方面提供一种半透半反显示面板,所述半透半反显示面板包括:具有透射区域和反射区域的显示基板,以及光学装置;

所述光学装置包括第一反射部和第二反射部;其中,第一反射部用于将背光源照射至显示基板的反射区域的光线反射至第二反射部;第二反射部用于使背光源照射至显示基板的透射区域的光线穿过,且将第一反射部反射的光线反射至显示基板的透射区域。

与现有技术相比,本发明提供的半透半反显示面板具有如下有益效果:

本发明提供的半透半反显示面板中,当背光源的出射光线照射显示基板时:背光源照射至显示基板的透射区域的第一光线能够穿过第二反射部,直接传播至显示基板的透射区域;而背光源照射至显示基板的反射区域的第二光线,能够通过第一反射部反射至第二反射部,再通过第二反射部反射至显示基板的透射区域,使得背光源照射至显示基板的反射区域的第二光线,也能够传播至显示基板的透射区域,提高了显示基板的透射区域的光线透射率。

由上可知,本发明提供的半透半反显示面板和现有的半透半反显示面板相比,二者显示基板的透射区域的开口率相同时,在相同背光源的照射下,本发明提供的半透半反显示面板因其光线透射率较高能够具备更高的出屏亮度;同理,如果二者的出屏亮度要求相同时,本发明提供的半透半反显示面板因其光线透射率较高,使得显示基板的透射区域的开口率则能够适度减小,而此时相对应的显示基板的反射区域的像素面积占比则能够适度增大,提高了半透半反显示面板的反射率。

因此,与现有的半透半反显示面板相比,本发明提供的半透半反显示面板,在满足足够出屏亮度的前提下,还能有效增加显示基板的反射区域的像素面积占比,提高显示基板的反射区域的反射率,进而提高半透半反显示面板的亮度显示性能。

基于上述半透半反显示面板的技术方案,本发明的第二方面提供一种半透半反显示面板的制作方法,所述制作方法包括:在显示基板的反射区域朝向背光源的一侧形成第一反射部,在显示基板的透射区域朝向背光源的一侧形成第二反射部,所述第一反射部和所述第二反射部共同构成光学装置;其中,第一反射部用于将背光源照射至显示基板的反射区域的光线反射至第二反射部;第二反射部用于使背光源照射至显示基板的透射区域的光线穿过,且将第一反射部反射的光线反射至显示基板的透射区域。

基于上述半透半反显示面板的技术方案,本发明的第三方面提供一种半透半反显示装置,所述显示装置包括上述显示面板。

与现有技术相比,本发明提供的半透半反显示面板的制作方法,以及其显示装置所能实现的有益效果,与上述技术方案提供的半透半反显示面板所能达到的有益效果相同,在此不做赘述。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例提供的半透半反显示面板的结构示意图一;

图2为本发明实施例提供的半透半反显示面板的结构示意图二;

图3为本发明实施例提供的光学装置的结构示意图;

图4为本发明实施例提供的单向透射膜层的光信号传播示意图;

图5为本发明实施例提供的光学装置的制作方法流程图一;

图6为本发明实施例提供的光学装置的制作方法流程图二。

附图标记:

1-显示基板, 10-衬底基板,

101-薄膜晶体管阵列, 102-绝缘层,

103-像素电极, 104-反射电极,

11-透射区域, 12-反射区域,

2-光学装置, 21-第一透光层,

22-第一反射部, 23-第二透光层,

24-第二反射部, 241-透射入光面,

242-反射面, 25-第三透光层,

3-背光源。

具体实施方式

为了进一步说明本发明实施例提供的半透半反显示面板及其制作方法、显示装置,下面结合说明书附图进行详细描述。

参阅图1和图3,本发明实施例提供的半透半反显示面板包括:具有透射区域11和反射区域12的显示基板1,以及光学装置2;光学装置2包括第一反射部22和第二反射部24,其中,第一反射部22用于将背光源3照射至显示基板1的反射区域12的光线反射至第二反射部24;第二反射部24用于使背光源3照射至显示基板1的透射区域11的光线穿过,且将第一反射部22反射的光线反射至显示基板1的透射区域11。

第一反射部22用于将背光源3照射至显示基板1的反射区域12的光线反射至第二反射部24;

示例性的,第一反射部22应位于显示基板1中反射电极与背光源3之间的区域,具体可以在反射电极朝向背光源3一侧的底面,也可以在像素电极反射区域朝向背光源3一侧的底面,或者在衬底基板朝向背光源一侧且对应像素电极反射区域所在位置的底面等;

第二反射部24用于使背光源3照射至显示基板1的透射区域11的光线穿过,且将第一反射部22反射的光线反射至显示基板1的透射区域11;

示例性的,第二反射部24应位于显示基板1未被反射电极遮盖的像素电极与背光源3之间的区域,具体可以在像素电极未被反射电极遮盖且朝向背光源3一侧的底面,也可以在像素电极透射区域朝向背光源3一侧的底面,或者在衬底基板朝向背光源3一侧且对应像素电极透射区域所在位置的底面等。

具体实施时,本发明实施例提供的半透半反显示面板中,背光源3的出射光线照射显示基板1时,背光源3照射至显示基板1的透射区域11的第一光线直接穿过第二反射部24,传播至显示基板1的透射区域11;而背光源3照射至显示基板1的反射区域12的第二光线,通过第一反射部22反射至第二反射部24,再通过第二反射部24反射至显示基板1的透射区域11,使得背光源3照射至显示基板1的反射区域12的第二光线,也能够传播至显示基板1的透射区域11。

通过上述具体实施过程可知,本发明实施例提供的半透半反显示面板,通过对背光源3照射至显示基板1的反射区域12的第二光线的反射利用,提高了显示基板1的透射区域11光线的透射率,使得本发明实施例提供的半透半反显示面板与现有的半透半反显示面板相比,二者显示基板1的透射区域11的开口率相同时,在相同背光源2的照射下,本发明实施例提供的半透半反显示面板因其光线透射率较高能够具备更高的出屏亮度;同理,如果二者的出屏亮度要求相同时,本发明实施例提供的半透半反显示面板中,显示基板1的透射区域11的开口率则能够适度减小,而此时对应的显示基板1的反射区域12的像素面积占比则能够适度增大,有效提高半透半反显示面板的反射率。因此,与现有技术相比,本发明实施例提供的半透半反显示面板,在满足足够出屏亮度的前提下,还能有效增加显示基板的反射区域的像素面积占比,提高显示基板的反射区域的反射率,进而提高半透半反显示面板的亮度显示性能。

需要说明的是,本实施例提供的半透半反显示面板中,显示基板1可以选择的种类比较多,例如:阵列基板或彩膜基板,而不管显示基板1的种类,显示基板1中的每个子像素均包括反射区域和透射区域,且每个子像素的反射区域和投射区域是利用反射电极覆盖对应子像素中像素电极的一部分形成的。

示例性的,参阅图2,当本实施例提供的半透半反显示面板中的显示基,1为阵列基板时,本实施例提供的半透半反显示面板包括衬底基板10以及形成在衬底基板10表面的薄膜晶体管阵列101,薄膜晶体管阵列101的表面形成有绝缘层102,绝缘层102的表面设有透明的像素电极103,像素电极103的一部分覆盖反射电极104,使得像素电极103没有被反射电极104覆盖的部分形成像素电极透射区域,像素电极透射区域至衬底基板10之间的区域为显示基板1的透射区域11,像素电极103被反射电极104覆盖的部分形成像素电极反射区域,像素电极反射区域至衬底基板10之间的区域为显示基板1的反射区域12。

另外,与本实施例提供的半透半反显示面板配合使用的背光源3可选用直下式背光源或侧入式背光源;具体的,背光源3包括光源、导光板以及光学膜片,光源、导光板以及光学膜片的结构位置关系由选择的背光源3的种类决定,在此不做限定。

具体的,继续参阅图1和图3,上述实施例中的第一反射部22包括设置在显示基板1的反射区域12与背光源3之间的反射膜层,用于将背光源3照射至显示基板1的反射区域12的第二光线反射至第二反射部24,反射膜层的具体形状和面积大小应根据显示基板1反射区域12的具体形状和面积大小选择确定。第二反射部24包括设置在显示基板1的透射区域11与背光源3之间的单向透射膜层,单向透射膜层的具体形状和面积大小应根据显示基板1的透射区域11的具体形状和面积大小选择确定。

需要补充的是,单向透射膜层的光信号传播如图4所示,单向透射膜层的透射入光面241可使背光源3照射至显示基板1的透射区域11的第一光线穿过;而单向透射膜层的反射面242朝向显示基板1的透射区域11且与反射膜层的反射面相对,用于将第一反射部22反射的第二光线反射至显示基板1的透射区域11。

为了确保光线反射传播的稳定,本发明实施例提供的半透半反显示面板中,反射膜层与显示基板1的反射区域12之间设有第一透光层21,单向透射膜层、显示基板1的透射区域11和反射膜层围成的空间内设有第二透光层23。具体的,第一透光层21设置在反射膜层与显示基板1的反射区域12朝向背光源一侧的表面之间,通过对第一透光层21结构的具体限定,能够对反射膜层的设置进行准确定位;而第二透光层23设置在单向透射膜层、显示基板1的透射区域11和反射膜层围成的空间内,也就是指第二透光层23填充在单向透射膜层、显示基板1的透射区域11、反射膜层三者围成的空间之内,即单向透射膜层的反射面、显示基板1的透射区域11朝向背光源3一侧的表面、反射膜层的反射面分别与第二透光层23的各对应表面相连接,使得反射膜层反射的第二光线,通过第二透光层传播至单向透射膜层反射面后,该第二光线还能够通过第二透光层反射至显示基板1的透射区域11,以确保第二光线的多次反射传播可在同一介质中稳定进行。

为了确保背光源3照射至显示基板1的反射区域12的第二光线能够最大量的准确反射至单向透射膜层,并通过单向透射膜层反射至显示基板1的透射区域11,反射膜层以及单向透射膜层的设置位置均存在一定要求,比如:第一透光层21呈直角三角状,反射膜层设置在第一透光层21的斜边上,第一透光层21的一直角面与显示基板1的反射区域12朝向背光源3一侧的表面相接,也就是使得反射膜层与显示基板1的反射区域12朝向背光源3一侧的表面之间具有一夹角α,这样在半透半反显示面板有限的结构空间内,对应不同的夹角α角度,反射膜层能够反射到单向透射膜层的第二光线含量是不同的,优选的,夹角α的角度介于30°到60°之间,以使反射膜层可反射尽可能多的第二光线到单向透射膜层;而且单向透射膜层与反射膜层平行设置,这样背光源3照射至显示基板1的反射区域12的第二光线在经过反射膜层和单向透射膜层的双重反射后,第二光线传播至显示基板1的透射区域11的入射方向,与背光源3照射至显示基板1的透射区域11的第一光线的入射方向相同,避免了第二光线和第一光线因其入射方向不同而导致的彼此干扰或削弱,有助于进一步提高显示基板1的透射区域11的光线透射率。

为了便于光学装置与半透半反显示面板内其他功能层的相互匹配放置,上述实施例中,可选的,在单向透射膜的透射入光面241设置第三透光层25,且使第三透光层25朝向背光源3一侧的表面与显示基板1的板面平行,以确保光学装置2的外表面平整,方便设置其他功能层。

需要说明的是,上述实施例中,第一透光层、第二透光层和第三透光层的组成材料存在多种选择,比如透光树脂或透光玻璃等,以能实现光线的稳定传播为准。在本实施例中,第一透光层、第二透光层和第三透光层均选用透光树脂层,选用高透光率的透光树脂,不仅方便制作第一透光层、第二透光层和第三透光层,还能够减少光线在第一透光层、第二透光层和第三透光层传播时产生的光能损耗。

本发明实施例还提供了一种半透半反显示面板的制作方法,用于制作上述实施例所述的半透半反显示面板,所述制作方法包括在显示基板1的反射区域12朝向背光源3的一侧形成第一反射部22,在显示基板1的透射区域11朝向背光源3的一侧形成第二反射部24,第一反射部22和第二反射部24共同构成光学装置2;其中,第一反射部22用于将背光源3照射至显示基板1的反射区域12的光线反射至第二反射部24;第二反射部24用于使背光源3照射至显示基板1的透射区域11的光线穿过,且将第一反射部22反射的光线反射至显示基板1的透射区域11。

与现有技术相比,本发明实施例提供的半透半反显示面板的制作方法所能实现的有益效果,与上述技术方案提供的半透半反显示面板所能达到的有益效果相同,在此不做赘述。

参阅图5和图6,光学装置2通过光刻工艺形成时,本发明实施例提供一种具体的实施方式,光学装置2的形成方法包括:

S10,在显示基板1的反射区域12朝向背光源3一侧的表面上形成第一透光层21。实际操作过程中,具体是在显示基板1的反射区域12朝向背光源3一侧的表面覆盖形成一矩形体透光树脂层,然后通过光掩膜曝光和显影剥离,获得需要结构和形状的第一透光层21,为第一反射部22的形成做准备。

S20,在第一透光层21上制作反射膜层,形成第一反射部22。当然,也可以在显示基板1的反射区域12朝向背光源3一侧的表面上制作反射膜层,使反射面层的结构和形状满足实际需要,直接形成第一反射部22,而无须形成第一透光层21。

S30,在反射膜层的表面形成第二透光层23,且第二透光层23覆盖显示基板1的透射区域11朝向背光源3一侧的表面。当然,也可以在显示基板1的透射区域11朝向背光源3一侧的表面上形成第二透光层23,使第二透光层23与反射膜层相接,也就是使第二透光层23的一侧表面覆盖反射膜层的反射面。实际操作过程中,具体是在反射膜层的表面和显示基板1的透射区域11朝向背光源3一侧的表面覆盖形成一倒直角梯形状的透光树脂层,该透光树脂层的下表面覆盖显示基板1的透射区域11朝向背光源3一侧的表面,该透光树脂层的上表面水平,该透光树脂层的一倾斜侧面覆盖反射膜层的表面,然后通过光掩膜曝光和显影剥离,获得需要结构和形状的第二透光层23,为第二反射部24的形成做准备。

S40,在第二透光层23对应显示基板1的透射区域11的表面制作单向透射膜层,且使单向透射膜层的反射面与反射膜层的反射面相对,形成第二反射部24。

S50,在单向透射膜的透射入光面形成第三透光层25,且使第三透光层25朝向背光源3一侧的表面与显示基板1的板面平行。实际操作过程中,具体是在单向透射膜的透射入光面覆盖形成一外表面平整的透光树脂层,以确保光学装置2的外表面平整,方便继续形成其他功能层。

为了确保背光源3照射至显示基板1的反射区域12的第二光线能够最大量的准确反射至单向透射膜层,并通过单向透射膜层反射至显示基板1的透射区域11,上述实施例的步骤S20和S40中,优选的,第一透光层21呈直角三角状形成在显示基板1的反射区域12朝向背光源3一侧的表面上,第一透光层21的一直角面与显示基板1的反射区域12朝向背光源3一侧的表面相接,反射膜层形成在第一透光层21的斜边上,单向透射膜层与反射膜层平行形成。作为一种具体的实施方式,反射膜层形成后,其与显示基板1的反射区域12朝向背光源3一侧的表面之间呈一定夹角α,该夹角α的角度存在多种选择,以反射膜层能够反射第二光线到单向透射膜层为准。本实施例中,夹角α的角度介于30°到60°之间,确保反射膜层可反射尽可能多的第二光线到单向透射膜层,以提高显示基板1的透射区域11的光线透射率。

本发明实施例还提供了一种半透半反显示装置,所述半透半反显示装置包括上述实施例提供的半透半反显示面板。所述半透半反显示装置中的半透半反显示面板与上述实施例中的半透半反显示面板具有的优势相同,此处不再赘述。

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1