显示面板及其制备方法和显示装置与流程

文档序号:17045300发布日期:2019-03-05 19:33阅读:125来源:国知局
显示面板及其制备方法和显示装置与流程

本发明涉及显示技术领域,特别涉及一种显示面板及其制备方法和显示装置。



背景技术:

立体显示技术即3d显示技术,主要是根据人类的视觉获得同一物体在不同角度上的两幅图像,并将这两幅图像分别投射至人的左眼和右眼中,从而使人左、右眼中图像具有一定的视差,大脑对具有视差的左眼图像和右眼图像进行合成,就会产生深度知觉,即形成立体图像的显示效果。

现有的3d显示技术主要分为眼镜式和裸眼式两大类。眼镜式3d显示技术需要佩戴专用的眼镜,因此不利于便携式设备使用。在可移动的电子产品中更注重裸眼式3d显示技术。

现有的裸眼式3d显示技术是在显示面板前方或后方设置一光栅,以使得左眼像素发出的光进入用户左眼,右眼像素发出的进入用户的右眼。现有的裸眼式3d显示装置仅包含两个可视视场,适用于一个观看,不适用多人观看,存在一定的局限性。



技术实现要素:

本发明旨在至少解决现有技术中存在的技术问题之一,提出了一种显示面板及其制备方法和显示装置。

为实现上述目的,本发明提供了一种显示面板,所述显示面板对应至少两个可视视场,所述显示面板包括:相对设置的第一基板和第二基板,所述第一基板朝向所述第二基板的一侧或背向所述第二基板的一侧设置有若干个反射结构组,所述反射结构组包括与所述可视视场一一对应的若干个反射结构,所述反射结构的反射面朝向所述第二基板;

所述反射结构用于将以沿预定方向从所述第二基板入射的光线进行反射且反射至对应的可视视场。

可选地,所述显示面板上划分有若干个视场显示区域组,所述视场显示区域组与所述反射结构组一一对应;

所述视场显示区域组中划分有沿与所述可视视场一一对应的若干个视场显示区域;

所述反射结构与所述视场显示区域一一对应。

可选地,所述反射结构包括:沿第一方向设置的若干个反射子结构,位于同一反射结构中的各所述反射子结构的反射面平行设置。

可选地,所述反射子结构的纵向截面形状为直角三角形,所述直角三角形的斜边作为反射面。

可选地,所述反射结构的材料为金属材料。

可选地,相邻的反射结构之间存在功能结构,所述功能结构朝向所述第二基板的一侧为与所述第二基板平行的功能面,所述功能面为反射面或吸光面。

可选地,当所述功能面为反射面时,所述功能结构与所述反射结构一体成型。

可选地,所述显示面板对应的可视视场的数量为2~4个。

可选地,所述显示面板为反射型液晶显示面板。

可选地,所述第一基板包括由金属材料构成的像素电极,所述像素电极复用作为所述反射结构;

和/或,所述第一基板包括:由金属材料构成的公共电极,所述公共电极复用作为所述反射结构。

为实现上述目的,本发明还提供了一种显示装置,包括:如上述的显示面板。

为实现上述目的,本发明还提供了一种显示面板的制备方法,该制备方法包括:

分别形成第一基板和第二基板;

形成反射结构组,所述反射结构组位于所述第一基板朝向所述第二基板的一侧或背向所述第二基板的一侧,所述反射结构组包括与可视视场一一对应的若干个反射结构,所述反射结构的反射面朝向所述第二基板,所述反射结构用于将以沿预定方向从所述第二基板入射的光线进行反射且反射至对应的可视视场。

可选地,所述形成反射结构组的步骤包括:

依次形成所述反射结构组中的各所述反射结构,所述反射结构包括:沿第一方向设置的若干个反射子结构,位于同一反射结构中的各所述反射子结构的反射面平行设置。

可选地,所述形成所述反射结构组中的各反射结构的步骤包括:

通过第一次构图工艺形成与待形成的反射子结构相对应的反射子结构初始图形,所述反射子结构初始图形的纵向截面形状为矩形;

通过第二次构图工艺对所述反射子结构初始图形进行斜面刻蚀,以形成纵向截面形状为直角三角形的反射子结构。

可选地,所述通过第一次构图工艺形成与待形成的反射子结构相对应的反射子结构初始图形形成所述反射子结构初始图形的步骤具体包括:

形成反射材料薄膜;

在反射材料薄膜的上方涂布整层的第一光刻胶,并进行曝光、显影工艺,位于垂直面刻蚀预留区域的光刻胶去除,位于反射子结构形成区域和斜面刻蚀预留区域的第一光刻胶保留,所述垂直面刻蚀预留区域为在第一方向上与所述反射子结构的垂直面底部的距离小于等于第一预定距离的所有点的集合,所述反射子结构形成区域为后续形成有反射子结构的区域,所述斜面刻蚀预留区域为在第一方向上与所述反射子结构的斜面底部的距离小于等于第二预定距离的所有点的集合;

对所述反射材料薄膜进行干法刻蚀,并在刻蚀结束后将第一光刻胶剥离,以得到反射子结构初始图形,所述反射子结构初始图形的纵向截面形状为矩形。

可选地,所述通过第二次构图工艺对所述反射子结构初始图形进行斜面刻蚀,以形成纵向截面形状为直角三角形的反射子结构对反射子结构初始图形进行斜面刻蚀的步骤具体包括:

在反射子结构初始图形的上方涂布整层铺设的第二光刻胶,并进行曝光、显影工艺,位于所述斜面刻蚀预留区域的光刻胶去除,位于反射子结构形成区域和垂直面刻蚀预留区域的第二光刻胶保留;

对所述反射子结构初始图形进行湿法刻蚀,并在刻蚀结束后将第二光刻胶剥离,以得到纵向截面形状为直角三角形的反射子结构。

可选地,所述形成所述反射结构组中的各反射结构的步骤包括:

形成光敏树脂材料薄膜;

采用灰阶掩膜板对所述光敏树脂材料薄膜进行曝光,并对曝光后的光敏树脂材料薄膜进行显影处理,以得到与待形成的反射子结构相对应的反射子结构衬底模型,所述反射子结构衬底模型具有一垂直面和一斜面,反射子结构衬底模型的纵向截面形状为直角三角形;

在所述反射子结构衬底模型的表面形成反射材料薄膜,所述反射子结构衬底模型与覆盖所述反射子结构衬底模型的垂直面和斜面的部分构成所述反射子结构。

可选地,所述形成反射结构组的步骤包括:

形成反射材料薄膜;

对所述反射材料薄膜进行构图,以形成所述反射结构和功能结构,所述功能结构位于相邻的反射结构之间,所述功能结构朝向所述第二基板的一侧为与所述第二基板平行的反射面。

可选地,所述反射材料薄膜的材料为金属材料。

本发明具有如下有益效果:

本发明提供了本发明提供了一种显示面板及其制备方法和显示装置,该显示面板包括:相对设置的第一基板和第二基板,第一基板和第二基板之间设置有液晶层,第一基板朝向第二基板的一侧若干个反射结构组,反射结构组包括与可视视场一一对应的若干个反射结构,反射结构的反射面朝向第二基板;反射结构用于将以沿预定方向从第二基板入射的光线进行反射且反射至对应的可视视场。本发明的技术方案可实现反射型液晶显示面板的多可视视场显示。

附图说明

图1为本发明实施例一提供的一种显示面板的结构示意图;

图2为本发明中反射结构组的结构示意图;

图3为图2所示反射结构组的俯视图;

图4为本发明中反射结构的结构示意图;

图5为本发明提供的显示面板实现多可视视场显示的原理示意图;

图6为显示面板上相邻的视场显示区域的显示画面出现串扰时的示意图;

图7为在相邻反射结构之间设置功能结构的示意图;

图8a为本发明中第一基板上设置有像素电极且像素电极复用为反射结构的示意图;

图8b为本发明中第一基板上设置有像素电极和公共电极且两者复用为反射结构的示意图;

图9为本发明实施例二提供的一种显示面板的结构示意图;

图10为本发明实施例四提供的一种显示面板的制备方法的流程图。

图11为图10中步骤s2对应的一种制备方法的流程图;

图12为采用图11所示流程图制备反射结构组的生产流程示意图;

图13为图10中步骤s2对应的又一种制备方法的流程图;

图14为采用图13所示流程图制备反射结构组的生产流程示意图。

具体实施方式

为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的一种显示面板及其制备方法和显示装置进行详细描述。

需要说明的是,本发明中的显示面板为基于反射原理进行显示的反射型液晶显示面板,即外部光源或自然光提供的平行光从入光侧射入至液晶显示面板内,并在反射层的作用下将光线从入光侧射出,从而使得用户观察到显示画面。

本发明中的“可视视场”是指光线沿预定方向(预先人为设定)指入射直至显示面板内时,用户可正常观察显示面板中的显示画面时对应的区域。其中,该“预定方向”一般可设计为垂直于显示面板的方向(外部光源或太阳正对显示面板,以使得平行光垂直射向显示面板),当然也可以为相对于显示面板倾斜一定角度的方向。在本发明中,入射至显示面板内光线所对应的“预定方向”、“可视视场”的数量以及各“可视视场”相对于显示面板的具体位置,可根据实际需要进行预先设定。

图1为本发明实施例一提供的一种显示面板的结构示意图,图2为本发明中反射结构组的结构示意图,图3为图2所示反射结构组的俯视图,图4为本发明中反射结构的结构示意图,如图1至图4所示,该显示面板对应至少两个可视视场,显示面板包括:相对设置的第一基板1和第二基板2,第一基板1和第二基板2之间设置有液晶层4,第一基板1朝向第二基板2的一侧若干个反射结构组3,反射结构组3包括与可视视场一一对应的若干个反射结构31,反射结构31的反射面朝向第二基板2;反射结构31用于将以沿预定方向从第二基板2入射的光线进行反射且反射至对应的可视视场。

可选地,反射结构31的材料为金属材料,例如金属银,由金属银构成的结构的表面可提高较佳的镜面反射效果。

需要说明的是,本实施例中的显示面板为扭曲向列(twistednematic,简称tn)型液晶显示面板、面内转换(in-planeswitching,简称ips)型液晶显示面板、边缘场开关(fringefieldswitching,简称ffs)型液晶显示面板、垂直配向(verticalalignment,简称va)型液晶显示面板、高级超维场转换(advancedsuperdimensionswitch,简称ads)型液晶显示面板中一种。对于上述各类型液晶显示面板中用于对液晶进行取向的取向层(未示出,取向层与液晶层4接触),以及用于驱动液晶进行偏转的电极(像素电极和公共电极)的具体内容,此处不再赘述。

本实施例中,以第一基板1为阵列基板,第二基板2可为对盒基板为例,进行示例型描述,此时第一基板1上设置有薄膜晶体管阵列,第二基板2上设置有用于进行彩色画面显示的彩膜层(彩色滤光图形阵列);当然,在本发明中也可以是第一基板1为对盒基板,第二基板2为阵列基板。

下面将结合附图来对本发明提供的显示面板实现多可视视场显示的原理进行详细描述。

图5为本发明提供的显示面板实现多可视视场显示的原理示意图,如图5所示,作为本发明中的一种可选方案,显示面板上划分有若干个视场显示区域组,视场显示区域组与反射结构组3一一对应,视场显示区域组中划分有沿第一方向x排列且与可视视场一一对应的若干个视场显示区域,反射结构31与视场显示区域一一对应。

以预定方向为垂直于显示面板的方向为例,假定可视视场的数量为四个为例,分别记为第一可视视场、第二可视视场、第三可视视场、第四可视视场;显示面板上与上述四个可视视场对应的四个视场显示区域分别记为第一视场显示区域、第二视场显示区域、第三视场显示区域、第四可视场显示区域;反射结构组3中与上述四个可视视场对应的四个反射结构31分别记为第一反射结构31a、第二反射结构31b、第三反射结构31c、第四反射结构31d。

在显示面板上的第一视场显示区域,平行光垂直于显示面板且从第一视场显示区域射入,经过液晶层4作用后,光线到达第一视场显示区域对应的第一反射结构31a的反射面时,第一反射结构31a将该光线进行反射,并使得反射光线从与入射时相同的第一视场显示区域射出,并射向第一可视视场。因此,用户可在可视视场观察到显示面板上第一视场显示区域所呈现的第一显示画面。

在显示面板上的第二视场显示区域,平行光垂直于显示面板且从第二视场显示区域射入,经过液晶层4作用后,光线到达第二视场显示区域对应的第二反射结构31b的反射面时,第二反射结构31b将该光线进行反射,并使得反射光线从与入射时相同的第二视场显示区域射出,并射向第二可视视场。因此,用户可在可视视场观察到显示面板上第二视场显示区域所呈现的第二显示画面。

在显示面板上的第三视场显示区域,平行光垂直于显示面板且从第三视场显示区域射入,经过液晶层4作用后,光线到达第三视场显示区域对应的第三反射结构31c的反射面时,第三反射结构31c将该光线进行反射,并使得反射光线从与入射时相同的第三视场显示区域射出,并射向第三可视视场。因此,用户可在可视视场观察到显示面板上第三视场显示区域所呈现的第三显示画面。

在显示面板上的第四视场显示区域,平行光垂直于显示面板且从第四视场显示区域射入,经过液晶层4作用后,光线到达第四视场显示区域对应的第四反射结构31d的反射面时,第四反射结构31d将该光线进行反射,并使得反射光线从与入射时相同的第四视场显示区域射出,并射向第四可视视场。因此,用户可在可视视场观察到显示面板上第四视场显示区域所呈现的第四显示画面。

由此可见,本发明提供的显示面板可实现多可视视场。当一个用户的两只眼睛分别处于不同可视视场时,即左眼和右眼能分别看到不同显示画面,从而达到裸眼3d的效果。

需要说明的是,对于各反射结构组3中各反射结构31的反射面的倾斜角度,可根据该反射结构31在显示面板中的位置以及该反射结构31对应的可视视场的位置进行相应设计。位于不同反射结构组3中对应相同可视视场的反射结构31,其反射面的倾斜角度可以不同。

此外,上述可视视场为四个、四个可视视场沿第一方向排列的情况仅起到示例性作用,其不会对本发明的技术方案产生限制。在本发明中,可根据需要来对可视视场的数量(例如两个、三个)、位置(例如全部可视视场呈阵列排布)进行相应设计。在实际应用中,当显示面板的物理分辨率一定且各可视视场对应的显示画面分辨率相同时,可视视场的数量越多,各可可视视场对应的显示画面分辨率越低,显示效果越差。为此,本实施例中优选地,显示面板对应的可视视场2~4个,可在实现多可可视视场的同时保证显示质量。

作为本发明的一种优选方案,反射结构31包括:沿第一方向x设置的若干个反射子结构311,位于同一反射结构31中的各反射子结构311的反射面平行设置。当平行光照射至同一反射结构31中的不同反射子结构311的反射面时,不同反射子结构311的反射面处的反射光线会发生增强干涉,从而能提升显示亮度,进而能提升该显示面板在弱光环境下的对比度。可选地,反射子结构311的纵向截面(垂直于显示面板且与第一方向x平行的截面)形状为直角三角形,直角三角形的斜边作为反射面。每个反射结构31中的反射子结构311的数目可以是一个,也可以是多个。

图6为显示面板上相邻的视场显示区域的显示画面出现串扰时的示意图,如图6所示,以可视视场的数量为两个为例,分别记为左眼可视视场和右眼第二可视视场;显示面板上与上述两个可视视场对应的视场显示区域为左眼视场显示区域和右眼视场显示区域,其中位于左眼视场显示区域内的像素为左眼像素61,位于右眼视场显示区域内的像素为右眼像素62;反射结构组3中与上述两个可视视场对应的反射结构31分别记为左眼反射结构和右眼反射结构,其中左眼反射结构具有左眼反射面32,右眼反射结构具有右眼反射面33。

在进行裸眼3d显示时,以预定方向射入左眼像素61的光线51a,在左眼反射面32发生反射后,反射光线51b再次经过左眼像素61,并射向左眼可视视场,以在用户的左眼形成左眼显示画面;以预定方向射入右眼像素62的光线52a,在右眼反射面33发生反射后,反射光线52b再次经过右眼像素62,并射向右眼可视视场以在用户的右眼形成右眼显示画面。然而,在实际使用过程中,不可避免的存在一些不处于预定角度的环境光射如至显示面板中,以图中环境光线53a为例,环境光线53a以非预定角度射入右眼像素62,并在左眼反射面32发生反射,且反射光线53b再次经过右眼像素62射向用户的左眼,此时出现画面串扰。

为解决上述技术问题,本发明在相邻的反射结构31之间设置一功能结构35,该功能结构35朝向第二基板2的一侧为与第二基板2平行的功能面,功能面为反射面或吸光面,从而能有效解决画面串扰的问题。图7为在相邻反射结构之间设置功能结构的示意图,如图7所示,以功能结构35中的功能面为反射面为例,图6中产生画面串扰的环境光线53a经过右眼像素后射向功能面34,并在在功能结构35上的功能面34发生反射,反射光线53b射向左眼像素。在彩色显示面板中,由于左眼像素和右眼像素的彩膜颜色(彩色滤光图形)不同,因此反射光线53b不能透过显示面板,从而有效防止左眼显示画面和右眼显示画面发生串扰。

当功能结构35中的功能面34为吸光面时,环境光线53a经过右眼像素后射向功能面,功能面34将光线53a吸收,从而有效防止左眼显示画面和右眼显示画面发生串扰。

在本实施例中,当功能结构35功能面为反射面时,功能结构35与反射结构31一体成型,即功能结构35和反射结构31可通过一次构图进行制备,具体制备过程可参见后续内容。

需要说明的是,上述可视视场包括左眼可视视场和右眼可视视场,功能结构35以防止左眼显示画面和右眼显示画面发生串扰的情况仅起到示例性作用。本领域技术人员应该知晓的是,当可视视场数量为多个时,通过在相邻反射结构31之间设置功能结构35,可有效防止任意相邻两个可视视场对应的显示画面出现串扰。

在本实施例,作为一种优选方案,当第一基板上设置有像素电极和/或公共电极时,可使得位于第一基板上的像素电极和/或公共电极采用金属材料进行制备,并将该像素电极和/或公共电极复用作反射结构。

图8a为本发明中第一基板上设置有像素电极且像素电极复用为反射结构的示意图,如图8a所示,作为一种可选方案,第一基板1上设置有像素电极17,第二基板2上设置有公共电极18,像素电极17与公共电极18之间产生垂直电场控制液晶偏转,公共电极18由透明材料制成,像素电极17由金属材料制成,该像素电极17可复用为反射结构。

当然,也可以是将像素电极17设置于第二基板2上,像素电极17由透明材料制成,将公共电极18设置于第一基板上,公共电极18由金属材料制成,该公共电极18可复用为反射结构。

图8b为本发明中第一基板上设置有像素电极和公共电极且两者复用为反射结构的示意图,如图8b所示,作为又一种可选方案,像素电极17和公共电极18均位于第一基板上,像素电极17与公共电极18之间产生边缘电场以控制液晶偏转,像素电极17和公共电极18均采用金属材料制成,两者均复用为反射结构。

通过上述内容可见,通过将公共电极18和/或像素电极17复用为反射结构,因而无需额外设计膜层来形成反射结构,有效减小显示面板的厚度,有利于显示面板的轻薄化。当然,通过在第一基板1朝向第二基板2的一侧额外设计膜层来形成反射结构的情况,其也属于本发明的保护范围,本实施例中对反射结构所处位置不作限定,仅需保证反射结构能对穿过液晶层的光线进行反射即可。

图9为本发明实施例二提供的一种显示面板的结构示意图,如图9所示,与上述实施例一种不同的是,本发明中的反射结构组3位于第一基板1背向第二基板2的一侧。对于本实施例中利用反射结构组3实现多可视视场显示的具体过程,此处不再赘述。

本发明实施例三提供了一种显示装置,该显示装置包括显示面板,该显示面板采用上述实施例一或实施例二中的显示面板,对于该显示面板的描述可参见前述实施例一和实施例二中的内容,此处不再赘述。

本发明实施例四提供了一种显示面板的制备方法,用于制备上述实施例一和实施例二中提供的显示面板。图10为本发明实施例四提供的一种显示面板的制备方法的流程图,如图10所示,该显示面板的制备方法包括:

步骤s1、分别形成第一基板和第二基板。

第一基板和第二基板中的一者为阵列基板,另一者为对盒基板。通过现有的阵列基板制备工艺和对盒基板基板,以制备第一基板和第二基板。

步骤s2、形成反射结构组。

反射结构组包括与可视视场一一对应的若干个反射结构,反射结构的反射面朝向第二基板,反射结构用于将以沿预定方向从第二基板入射的光线进行反射且反射至对应的可视视场。

图11为图10中步骤s2对应的一种制备方法的流程图,图12为采用图11所示流程图制备反射结构组的生产流程示意图,如图11和图12所示,当反射结构包括沿第一方向设置的若干个反射子结构,且反射子结构的纵向截面形状为直角三角形时,作为本实施例中的一种可选方案,步骤s2包括:依次形成反射结构组中的各反射结构。反射结构包括:沿第一方向设置的若干个反射子结构,位于同一反射结构中的各反射子结构的反射面平行设置。

形成反射结构的步骤包括:

步骤s21a、通过第一次构图工艺形成与待形成的反射子结构相对应的反射子结构初始图形,反射子结构初始图形的纵向截面形状为矩形。

步骤s21a具体包括:

步骤s211a、形成反射材料薄膜。

在步骤s211a中,通过蒸镀或气相沉积工艺在衬底7上形成反射材料薄膜8。可选地,反射材料薄膜8的材料为金属材料。

步骤s212a、在反射材料薄膜的上方涂布整层铺设的第一光刻胶,并进行曝光、显影工艺。

由于反射子结构的纵向截面形状为直角三角形,则最终成型的反射子结构必然包括一与显示面板垂直的垂直面以及一相对于显示面板倾斜一定角度的斜面。

在本发明中,针对各反射子结构,可预先设计出对应的反射子结构形成区域12、垂直面刻蚀预留区域10、斜面刻蚀预留区域11。其中,反射子结构形成区域12为后续形成有反射子结构的区域,垂直面刻蚀预留区域10为在第一方向x上与反射子结构的垂直面底部的距离小于等于第一预定距离a的所有点的集合,斜面刻蚀预留区域11为在第一方向上与反射子结构的斜面底部的距离小于等于第二预定距离b的所有点的集合。

其中,第一预定距离a和第二预定距离b可以根据实际需要进行设计和调整。

经过步骤s212a处理后,位于垂直面刻蚀预留区域10的第一光刻胶9去除,位于反射子结构形成区域12和斜面刻蚀预留区域11的第一光刻胶9保留。

步骤s213a、对反射材料薄膜进行干法刻蚀,并在刻蚀结束后将第一光刻胶剥离,以得到反射子结构初始图形。

由于干法刻蚀工艺仅对相应的膜层在垂直方向y上进行刻蚀,因此经干法刻蚀形成的反射子结构初始图形81的侧面必然与显示面板垂直(反射子结构初始图形81的纵向截面为矩形),此时可反射子结构初始图形81的一个侧面可作为最终成型的反射子结构的垂直面。

需要说明的是,在本实施例中,可采用一次构图工艺以同时制备出显示面板上各反射结构中的反射子结构初始图形,以缩短生产周期。

步骤s22a、通过第二次构图工艺对反射子结构初始图形进行斜面刻蚀,以形成纵向截面形状为直角三角形的反射子结构。

步骤s22a具体包括:

步骤s221a、在反射子结构初始图形的上方涂布整层铺设的第二光刻胶,并进行曝光、显影工艺。

经过步骤s221a处理后,位于斜面刻蚀预留区域11的第二光刻胶13去除,位于反射子结构形成区域12和垂直面刻蚀预留区域10的第二光刻胶13保留。

其中,位于垂直面刻蚀预留区域10的第二光刻胶13完全覆盖最终成型的反射子结构的垂直面(反射子结构初始图形81的一个侧面),以避免该垂直面在后续湿法刻蚀中被误刻蚀。

步骤s222a、对反射子结构初始图形进行湿法刻蚀,并在刻蚀结束后将第二光刻胶剥离,以得到纵向截面形状为直角三角形的反射子结构。

在进行湿法刻蚀时,刻蚀液不仅能在垂直方向y上进行刻蚀,还能在水平方向(第一方向x)上进行刻蚀,通过对工艺参数、反应时间等因子进行控制,最终可到具有一定倾斜角的斜面。

由上述内容可见,通过干法刻蚀可得到反射子结构311的垂直面,通过湿法刻蚀可得到反射子结构311的斜面,且能对斜面的倾斜角进行控制。

在步骤s22a中,通过一次斜面刻蚀工艺(步骤s221a和步骤s222a),仅能得到具有某一特定倾斜角的斜面。对应于不同倾斜角的斜面,需要进行多次斜面刻蚀工艺。在进行某一次斜面刻蚀工艺中,对于暂不需要进行刻蚀的反射子结构初始图形以及已经成型的反射子结构均需使用光刻胶进行覆盖、保护,以避免出现误刻蚀。

需要说明的是,当反射结构之间形成有功能结构且功能结构的表面为反射面时,可对步骤s212a中显影后保留的第一光刻胶的区域进行调整,以使得位于待形成功能结构的区域的第一光刻胶保留,经过步骤s213a的干法刻蚀后,可同时得到功能结构的图形。

图13为图10中步骤s2对应的又一种制备方法的流程图,图14为采用图13所示流程图制备反射结构组的生产流程示意图,如图13和图14所示,作为本实施例中的又一种制备纵向截面形状为直角三角形的反射子结构的可选方案,步骤s2包括:

步骤s21b、形成光敏树脂材料薄膜。

在步骤s21b中,在衬底7上涂布一层光敏树脂材料薄膜14。

步骤s22b、采用灰阶掩膜板对光敏树脂材料薄膜进行曝光,并对曝光后的光敏树脂材料薄膜进行显影处理,以得到与待形成的反射子结构相对应的反射子结构衬底模型,反射子结构衬底模型具有一垂直面和一斜面,反射子结构衬底模型的纵向截面形状为直角三角形。

在步骤s22b中,通过灰阶掩膜板对光敏树脂材料薄膜14进行曝光,灰阶掩膜板上具有透光率不同的透光区域,以对光敏树脂材料薄膜上不同区域进行不同程度的曝光。经过显影处理后,可得到截面形状为直角三角形的若干个反射子结构衬底模型15。反射子结构衬底模型15的斜面倾斜角与其对应的反射子结构的斜面倾斜角相同。

步骤s23b、在反射子结构衬底模型的表面形成反射材料薄膜,反射子结构衬底模型与覆盖反射子结构衬底模型的垂直面和斜面的部分构成反射子结构。

在步骤s23b中,在步骤s22b所得到的基板的表面形成一层均匀的反射材料薄膜16,可选地,反射材料薄膜16的材料为金属材料。反射子结构衬底模型15与反射材料薄膜16覆盖该反射子结构衬底模型15的垂直面和斜面的部分构成反射子结构311。由于反射子结构衬底模型15的纵向截面形状为直角三角形,则反射子结构311的纵向截面形状也为直角三角形。

需要说明的是,当反射结构之间形成有功能结构且功能结构的表面为反射面时,可在步骤s22b中使得对应待形成功能结构的区域的光敏树脂材料完全保留以作为功能结构衬底模型,经过步骤s23b后,功能结构衬底模型与位于其上表面的反射材料薄膜的部分构成功能结构。

在本实施例中,当反射结构位于第一基板朝向第二基板的一侧时,可以以第一基板作为衬底来形成反射结构组;当反射结构位于第一基板背向第二基板的一侧时,需先在其他衬底上先制备出反射结构组,然后将反射结构组置于第一基板背向第二基板的一侧,且反射结构组中各反射结构的反射面朝向第二基板。

可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1