阵列基板及显示装置的制作方法

文档序号:13280971阅读:139来源:国知局
阵列基板及显示装置的制作方法

本发明涉及显示领域,具体而言,本发明涉及一种阵列基板及显示装置。



背景技术:

随着显示技术的不断发展,显示装置(例如显示器)的功能越来越多。最早以前的显示装置只具有显示功能,且显示的是黑白图像,而现在的显示装置不仅可以显示出色彩斑斓的图像,而且变得更加智能。例如,目前的触屏手机,用户通过触摸屏幕便可实现手机的相关功能,给用户的操作提供了便利。

目前,三维成像及手势识别的功能受到广泛关注,例如,在vr(virtualreality,虚拟现实)游戏中,通过识别或追踪用户的手势变化,将用户的手模拟成三维图像显示在虚拟场景中,使得用户可以直接参与游戏,给用户带来了乐趣。但发明人发现:目前,三维成像及手势识别的功能并没有被应用在智能显示装置中,例如,大部分触屏手机只能接收用户通过触摸屏幕而发送的控制信号,却不能根据用户的手势变化而执行相应的功能。

因此,目前需要一种显示装置,不仅可以根据实物进行三维成像,而且可以根据用户的手势变化执行相应的功能。



技术实现要素:

针对上述问题,本发明提出了一种阵列基板及显示装置,使得显示装置在具有显示功能的同时,可以采集获取目标物体(例如用户的手)的三维图像,进而可以根据目标物体或其变化(例如用户的手势变化)的三维图像执行相应的功能。

本发明实施例提供了一种阵列基板,包括:

图像传感器、发光二极管和光电检测器,以及与发光二极管和光电检测器相电连接的处理电路。

本发明实施例还提供了一种显示装置,包括:

第一电极、液晶层、第二电极和本发明实施例提供的阵列基板;

第一电极设置在液晶层远离阵列基板的一侧;

第二电极设置于液晶层与阵列基板之间;

液晶层中的多组液晶分别与阵列基板中的图像传感器、发光二极管和光电检测器正对。

优选地,该显示装置还包括:

分别与图像传感器、发光二极管和光电检测器正对的液晶组之间设置有隔垫物;

或者,分别与图像传感器、发光二极管和光电检测器正对的液晶组与其它液晶组之间设置有隔垫物。

优选地,该显示装置还包括:上层取向膜和下层取向膜;

上层取向膜位于第一电极和液晶层之间;

下层取向膜位于第二电极和液晶层之间,或第二电极设置在下层取向膜中。

优选地,第一电极具体为面状电极或条状电极;

当第一电极为条状电极时,第一电极设置在上层取向膜中。

优选地,该显示装置还包括:彩膜;彩膜设置在第一电极远离液晶层的一侧;

当图像传感器、发光二极管和光电检测器及处理电路设置于显示区域时,图像传感器、发光二极管和光电检测器在阵列基板上的位置,与彩膜中的黑矩阵的位置相正对,且黑矩阵上开设有透光孔。

优选地,在平行于阵列基板的方向上,发光二极管设置在图像传感器和光电检测器之间。

优选地,发光二极管、图像传感器和光电检测器之间的距离在设定范围内。

优选地,发光二极管发射光线的波长为760纳米~1毫米。

应用本发明实施例的有益效果为:

在本发明实施中,在阵列基板中设置有图像传感器、发光二极管和光电检测器,以及与发光二极管和光电检测器相电连接的处理电路。其中,发光二极管发射光线,图像传感器接收该光线照射到目标物体反射回的光线,并输出该目标物体的二维图像信息,即:图像传感器测取目标物体的二维图像信息;光电检测器也接收该光线照射到目标物体反射回的光线,并在接收到该光线后输出电信号;处理电路根据发光二极管发射该光线的时刻、以及接收到该电信号的时刻,确定该目标物体深度信息;进而根据该深度信息和二维图像信息确定出该目标物体对应的三维图像信息。这样,通过在显示装置的阵列基板中设置图像传感器、发光二极管和光电检测器,测取目标物体的三维图像,进而显示该三维图像;使得显示装置在具有显示功能的同时,可以采集获取目标物体(例如用户的手)的三维图像,进而可以根据目标物体或其变化(例如用户的手势变化)的三维图像执行相应的功能。

本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:

图1为本发明实施例的提供一种将三维成像器件设置在显示区域的显示装置的结构示意图;

图2为本发明实施例测取目标物体的三维图像的原理示意图;

图3为本发明实施例提供的一种将三维成像器件设置在非显示区域的显示装置的结构示意图;

图4为图1中画圈部分的局部放大图;

图5为本发明实施例提供的一种显示装置中第一电极和第二电极的示意图;

图6为本发明实施例提供的一种图像传感器、发光二极管和光电检测器位于显示装置中黑矩阵区域的示意图;

图7为本发明实施例提供的一种显示装置测取用户手的三维图像的示意图;

附图标记介绍如下:

101-第一电极,102-液晶,103-第二电极,104-阵列基板,1041-图像传感器,1042-发光二极管,1043-光电检测器,105-隔垫物,106-上层取向膜,107-下层取向膜,108-彩膜,109-玻璃基板,110-偏光板,111-封框胶,112-保护层。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。

本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。

本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。

本发明实施例提供了一种显示装置,该显示装置的结构示意图如图1所示,该显示装置包括:第一电极101、液晶层102、第二电极103和下述本发明实施例提供的阵列基板104;第一电极101设置在液晶层102远离阵列基板104的一侧;第二电极103设置于液晶层102与阵列基板104之间;液晶层102中的多组液晶分别与阵列基板104中的图像传感器1041、发光二极管1042和光电检测器1043正对;第二电极103和第一电极101用于使得上述正对的多组液晶偏转导光。

本发明实施例提供了一种阵列基板,该阵列基板的结构示意图如图1所示,该阵列基板包括:图像传感器1041、发光二极管1042和光电检测器1043,以及与发光二极管和光电检测器相电连接的处理电路(图1未示出)。其中,发光二极管1042用于发射设定波长的光线照射目标物体;图像传感器1041用于测取目标物体反射回的光线并输出二维图像信息;光电检测器1043用于将接收的目标物体反射回的光线,并在接收到光线后输出电信号;处理电路用于根据光线的发射时刻与电信号的接收时刻确定出目标物体的深度信息,进而根据深度信息和二维图像信息确定出三维图像信息。

本发明实施例提供的阵列基板以及显示装置,目的之一是获取目标物体(例如,用户的手)的三维图像,在详细说明本发明实施例提供的显示装置的结构之前,先对本发明实施例中测取三维图像的原理进行说明,具体如图2所示。

在图2中,首先,处理电路向发光二极管1402输出第一电信号,发光二极管1402在接收到第一电信号后发射设定波长的光线;优选地,该光线具体为红外线,波长范围为760nm(纳米)~1mm(毫米);该光线照射到目标物体后反射回来,图像传感器1041接收反射回的光线,通过数据处理得到该目标物体的二维图像信息;光电检测器1043在接收反射回来的光线后,输出第二电信号至处理电路;处理电路根据发射第一电信号的时刻和接收到第二电信号的时刻确定目标物体的深度信息。这里发射第一电信号的处理电路与接收第二电信号的处理电路,可以是同一处理电路,也可以在不同的处理电路,本发明对此不作具体限定;为了清楚地说明本发明实施例,默认这两处理电路为同一处理电路。

具体地,获得深度信息的方法为:根据光速、发光二极管发射光线到光电检测器接收到光线的时间(光传播的时间),计算得到发光二极管到目标物体之间的距离和目标物体到光电检测器之间的距离之和,进而确定出目标物体的深度信息。

在实际应用中,发光二极管从接收到第一电信号到发射出设定波长的光线,以及光电检测器从接收到目标物体反射回的光线到输出第二电信号均需要时间;由于光速的数量级较大,如果在计算目标物体的深度信息时,直接将处理电路从输出第一电信号到接收到第二电信号的时间作为光传播的时间,这样,计算得到的发光二极管到目标物体之间的距离和目标物体到光电检测器之间的距离之和,可能存在较大的误差,进而导致获得的目标物体的深度信息的误差较大。

鉴于上述问题,为了减少误差,在计算光传播时间时,将处理电路从输出第一电信号到接收第二电信号的时间,减去发光二极管从接收到第一电信号到发射出设定波长的光线的时间,以及光电检测器从接收到目标物体反射回的光线到输出第二电信号的时间。如图2所示,假设处理电路从发射第一电信号到接收第二电信号的时间为t;发光二极管1402从接收到第一电信号到发射出设定波长的光线的时间为t1;光电检测器1403从接收到目标物体反射回的光线到输出第二电信号的时间为t2;光传播的时间为t-t1-t2。

对于本发明实施例,图像传感器、发光二极管和光电检测器设置在阵列基板上,彼此之间的距离通常为几十微米,因此,发光二极管向目标物体发射的光线,与遇到目标物体反射到光电检测器的光线之间的夹角可以忽略,可以理解为:光线遇到目标物体后原路返回至光电检测器,即:默认光电检测器与发光二极管的位置重合。另外,在实际应用中,考虑到显示装置获取目标物体的图像信息的可行性,目标物体与显示装置之间的距离不会太远,因此,可以忽略光线在空气传播时能量的损失。这样,直接将计算得到发光二极管到目标物体之间的距离,和目标物体到光电检测器之间的距离的和除以2,就是目标物体的深度信息。沿用上述例子,计算出的目标物体的深度信息为c(t-t1-t2)/2。

在获得二维图像信息和目标物体的深度信息后,通过数据处理获得目标物体的三维图像信息。

下面对本发明实施例提供的显示装置的结构进行扩展说明:

在实际应用中,本发明实施例提供的图像传感器、发光二极管和光电检测器(即:三维成像器件)可以设置在显示装置的显示区域,即发光区域;也可以设置在非显示区域,例如,显示装置的边框部分,具体可以设置在边框上摄像头、听筒或home键所在的位置。图1所示为将三维成像器件设置在显示区域的显示装置的结构示意图,图3所示为将三维成像器件设置在非显示区域的显示装置的结构示意图。下面对该显示装置进行详细说明:

在一种实施方式中,对于显示装置的显示区域,分别在图像传感器、发光二极管和光电检测器正对的液晶组与其它液晶组之间设置有隔垫物。如图1所示,图像传感器1041、发光二极管1042和光电检测器1043正对的液晶组之间均设有隔垫物105;图4为图1中画圈部分的局部放大图,具体为:发光二极管1042正对的液晶组102之间设置有隔垫物105。

在一种实施方式中,对于显示装置的非显示区域,分别在图像传感器、发光二极管和光电检测器正对的液晶组之间设置有隔垫物,具体如图3所示。

本发明实施例应用隔垫物的有益效果为:由上述本发明测取三维图像的原理可知,在测取目标物体的三维图像的过程中,在图像传感器、发光二极管和光电检测器正对的液晶组区域均进行光线传播。具体地,发光二极管要发射光线,图像传感器和光电检测器均要接收反射回来的光线,这些光线均要在这三个器件正对的液晶组区域中传播。由于这三个器件之间的距离较近,容易导致这三器件对应液晶组区域中光线之间的混杂,使得这三个器件测取的数据产生误差。本发明实施例在这三个器件正对的液晶组区域设置隔垫物,保证各个器件正对的液晶组区域的光线独立传播,彼此区域中的光线互不影响,使得测取的数据更加精确,进而使得测取的三维图像更加的精确。而且,使得图像传感器、发光二极管和光电检测器三种器件正对的液晶组,与用于显示图像的子像素正对的液晶组相隔离,保证获取三维图像和进行图像显示两大功能各自得以独立运行,互不干扰。

如图1或图2所示,在一种实施方式中,本发明实施例提供的显示装置还包括:上层取向膜106和下层取向膜107。上层取向膜106位于第一电极101和液晶层102之间。下层取向膜107位于第二电极103和液晶层102之间,或第二电极103设置在下层取向膜107中。

本发明实施例中的第一电极可以是面状电极或条状电极;优选地,当第一电极为线电极时,第一电极可设置在上层取向膜中。在实际应用中,为避免影响显示装置的显示效果,以及三维成像器件与目标物体之间光的传播,第一电极可以具体为透明电极。第二电极包含有多个电极组,每个电极组中包含有多个条形电极,如图1或图2中的第二电极103。如图5所示,第一电极101为面状电极,第一电极101和第二电极103重叠的部分为控制区,通过调节控制区的电压(即第一电极101和第二电极103之间的电压),调节液晶分子的偏转方向(偏转角度)。

具体地,由于图像传感器、发光二极管和光电检测器对应的液晶区域均进行光线的传播,因此,无论将图像传感器、发光二极管和光电检测器设置在显示区域还是非显示区域,均需要通过调节第一电极和第二电极之间的电压,实现调节这个三个器件正对液晶区域中的液晶分子的偏转方向,使得光线可以充分地透过液晶分子达到目标物体或器件。

具体需要调节的液晶偏转角度,以及第一电极和第二电极之间电压的大小,根据实际情况来决定,本发明实施例对此不作具体限定。优选地,第一电极采用条状结构,可以实现单点控制这个三个器件正对液晶区域中液晶分子的偏转角度。

如图1所示,对于显示装置中的显示区域,还包括彩膜108。彩膜108具体设置在第一电极101远离液晶层102的一侧;当图像传感器1041、发光二极管1042和光电检测器1043及处理电路设置于显示区域时,图像传感器1041、发光二极管1042和光电检测器1043在阵列基板上的位置,与彩膜108中的黑矩阵1081的位置相正对,且黑矩阵1081上开设有透光孔。

具体地,彩膜中包含有大量的子像素,在各个子像素之间设置有黑矩阵。在本发明实施例中,为了减少对显示装置的显示效果的影响,图像传感器、发光二极管和光电检测器在阵列基板上的位置,与彩膜中的黑矩阵的位置相正对,即:将这三个器件放置在子像素之间不发光的区域,以避免占用子像素的显示面积,保证不影响开口率,避免影响发光区域的显示效果。

如图6所示,在显示装置中各个像素之间的黑矩阵1081正对的阵列基板区域中放置图像传感器1041、发光二极管1042和光电检测器1043。另外,由于黑矩阵不透光,因此在这三个器件对应的黑矩阵上开设有透光孔,用于光线的传播(如图1所示)。

如图1所示和图3所示,本发明实施例提供的显示装置还包括:玻璃基板109、封框胶111和保护层112。具体地,对于显示装置中的显示区域,如图1所示,玻璃基板109设置在彩膜108远离液晶层102的一侧;对于显示装置中的非显示区域,如图3所示,玻璃基板109设置在第一电极远离液晶层102的一侧。封框胶111设置在液晶层的两侧,用于防止外界的空气进入液晶层102损害液晶分子。保护层112位于的第二电极与阵列基板104之间,用于保护阵列基板上的薄膜晶体管阵列,具体防止外界空气与薄膜晶体管接触对薄膜晶体管造成损害,以及防止外力挤压使得薄膜晶体管碎裂等。

如图1所示,对于显示装置中的显示区域,还包括:偏光板110,具体设置于玻璃基板109远离液晶层102的一侧。

为了图像传感器、发光二极管和光电检测器之间更好的协同工作,以及为了测取的三维图像信息更加的精确,本发明实施例将发光二极管、图像传感器和光电检测器之间的距离设置在设定范围内。例如,前述内容已经提到,在实际应用中,这三个器件之间的距离可以设置为几十微米。

由于图像传感器、发光二极管和光电检测器这三个器件之间的距离很小,因此,在实际应用中,对于这三个器件之间的相互位置关系通常没有限定。在一种优选的实施方式中,为了使得发光二极管发出的光线碰到目标物体后反射回的光线,可以充分地被图像传感器和光电检测器均接收到,可以在平行于阵列基板的方向上,将发光二极管设置在图像传感器和光电检测器之间。

在实际应用中,显示装置可以设置多组三维成像器件,每组三维成像器件包括图像传感器、发光二极管和光电检测器。如7所示,显示装置中的a点和b点,分别设置一组三维成像器件,分别用于测取目标物体(例如:手)的部分三维图像信息,通过将显示装置中多组三维成像器件测取的图像信息进行组合,最终在显示装置上呈现完整的目标物体的三维图像。

在实际应用中,应用本发明实施例提供的阵列基本或显示装置进行三维成像。例如,在虚拟现实游戏中,可以对用户进行三维成像,并显示在游戏界面中,使得用户可以身临其境地感受游戏场景;再例如,在智能显示装置中,根据本发明实施例中测取目标物体的三维图像的原理,可以实时地追踪目标物体的运行轨迹,并根据目标物体的运行轨迹执行相应的功能,例如,智能手机中的手势识别功能,等等。

考虑到图像传感器、发光二极管和光电检测器这三种器件完成可以由tft(薄膜晶体管)构成,因此在实际制备本发明实施例提供的阵列基板或显示装置的过程中,这三种器件可以作为tft阵列的一部分,与用以控制显示的tft同时进行制备,这三种器件的制备方法完全兼容于显示装置中用以驱动各像素发光的薄膜晶体管的制备方法。具体地,在制备显示装置时,同时制备这三个器件和驱动各像素发光的薄膜晶体管,具体的制备方法包括:溅射、化学沉积、和刻蚀,等等。

以上所述仅是本发明的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1