集成光学偏振器件的制作方法

文档序号:2767689阅读:436来源:国知局
专利名称:集成光学偏振器件的制作方法
技术领域
本发明涉及集成光学偏振器件,更具体地说,它涉及偏振光分束器和偏振光耦合器,此偏振光分束器将横电波(TE)模分量和横磁波(TM)模分量分束,送入基于单模光波导的集成光路中输入偏振光的两个输出光波导中,该偏振光耦合器将TE模分量和TM模分量的输入光耦合在一起,送入到输出光波导。
在集成光学中,衬底一般是由诸如玻璃,铁电体,半导体,或聚合体各种材料形成的。LiNbO3是一铁电体,它被广泛地用于制作集成光学器件,因为其优点是低传输损耗和强电光效应等。LiNbO3是一强双折射性的光学晶体,对波长633nm的非常折射率为2.202和寻常折射率为2.286。钛的内扩散(TI)和质子交换(PE)是用LiNbO3衬底制成光波导的两个代表性方法。钛内扩散是将钛薄膜沉积到LiNbO3衬底上要形成光波导那部分衬底上的一种方法。按照此方法,光波导是由约几百埃的钛薄膜组成,而进入LiNbO3衬底内部的热扩散是在约1,000℃高温下数小时完成的,此热扩散增大了波导的折射率。在此情况中,非常折射率和寻常折射率都增大,从而形成引导TE模分量和TM模分量的波导。
质子交换是将质子源,如苯甲酸,中的质子(H+)替换LiNbO3衬底中锂离子(Li+)的一种方法。此外,例如用金属沉积到不是要形成光波导的那部分衬底上,且该衬底在温度约200℃下浸入质子源,因此增大了波导的折射率。在此情况中,只是非常折射率增大,而寻常折射率略微减小,因此形成只引导TE模分量和TM模分量中二者之一的波导。


图1画出普通的偏振光分束器。如图1所示,用上述两种制作光波导方法形成的普通偏振光分束器,是一种Y型分束器。此外,TE模输出光波导3是用质子交换制成的,而TM模输出波导2和输入波导4是用钛内扩散制成的。
然而,普通偏振光分束器中存在一个问题,这就是,TE模分量被诱导进入集成光学衬底1上的TM模输出波导2,由于TE模中Y型分束器的分叉角度,偏振光可能不是100%分束。因此,就要求一个很困难的工艺过程,即,精确地形成TE模输出波导3的折射率分布和一个尖锐的分叉角度。
本发明的一个目的是,利用衬底中的双折射和互相耦合的光波导,提供一种集成光学偏振器件,用于完全地将TE模分量和TM模分量分束或耦合而无损耗。
为了达到以上目的,这里提供了一种集成光学偏振器件,此偏振器件包含第一波导和第二波导,第一波导能使偏振方向互相垂直的两个模分量同时通过集成光学衬底,第二波导只允许集成光学衬底中自始至终形成的两个偏振光模分量之一通过,第二波导有一耦合区和一非耦合区,耦合区安排成预定长度,并与第一波导以预定距离分隔开,非耦合区这样安排,使得第一波导与第二波导在非预定长度部分,其分开的距离比预定距离宽。
在偏振光模分量能同时通过的第一波导和第二波导,这两个波导部分的折射率是完全相同的。
耦合区的长度等于耦合长度或等于耦合长度的奇数倍。
集成光学衬底可以由具有双折射的LiNbO3,光学聚合物或半导体材料形成。
通过详细描述本发明的一个优选实施例并参照附图,本发明的上述目的和优点会变得更加清楚,这些附图是图1画出一个普通的偏振光分束器;图2A和图2B分别是按照本发明的集成光学偏振器件平面图;图3A是图2A中所示相应波导TE模折射率增量曲线图;图3B是图2A中所示相应波导TM模折射率增量曲线图;图3C是图2B中所示相应波导TE模折射率增量曲线图;图3D是图2B中所示相应波导TM模折射率增量曲线图。
图2A至2B是按照本发明的集成光学偏振光分束器与耦合器的平面图。
本发明采用图2A和2B中所示耦合光波导结构以取代普通的Y型分束器结构。
在图2A中,光波导5是用钛内扩散形成的,而光波导6是用质子交换形成的。在这情况中,首先用高温处理的钛内扩散形成光波导5,然后用低温处理的质子交换形成光波导6。当采用X切或Y切LiNbO3衬底11时,由质子交换形成的波导6只引导TE模分量。
图2B中采用的是Z切LiNbO3衬底。图2B中所示质子交换形成的波导9只引导TM模分量。此外,耦合波导的两个波导部分相应的有效折射率做成与非常波模相同,且耦合光波导的长度lc做成与耦合长度或耦合长度的奇数倍相等,此耦合长度是非常波模100%传递的长度。在这种耦合光波导中,100%非常波模光功率在埋论上从输入光波导8传输到输出光波导9。所以,就输入偏振光经过两个输出光波导成为TE模分量和TM模分量而论,实现了100%偏振光分束。当TE模分量和TM模分量在这一结构中被传送进那两个输出光波导时,偏振光分束器可以作为将两个偏振模分量耦合进一个波导的偏振光耦合器。
按照图2A中所示本发明的集成光学偏振器件,其形成过程如下。两个相互垂直偏振光模分量能同时通过的波导5在集成光学衬底11上形成。此外,波导6在集成光学衬底11上形成,使波导6平行于波导5,且在耦合长度lc处两个波导分开的距离为几微米(μm),而在lc耦合长度lc之外部分,波导5与波导6分开的距离更宽些。波导6能够让两个偏振光模分量中的一个通过。此外,集成光学衬底11可以由具有双折射性的LiNbO3,晶体或聚合体构成。
图2A中所示分束器和耦合器的工作原理可以用图3A和3B中所示光波导耦合区域中TE模分量和TM模分量的有效折射率增量来解释。
图3A是关于图2A中所示波导5和波导6的TE模相应的折射率增量ΔNTE曲线图。
参照图3A,对于TE模的波导5和波导6折射率大于图2A中所示集成光学衬底4在A-A′剖面处相应的折射率。
图3B是图2A中与波导5和波导6的TM模相应的折射率量ΔNTM曲线图。
参照图3B,波导5对于TM模的折射率大于集成光学衬底11的折射率,然而,波导6对TM模的折射率小于图2A中所示集成光学衬底11在A-A′剖面处折射率。即,因为光波导6有效折射率的增量对于TM模是负的,因而光波导6折射率小于衬底折射率,所以在TM模中的光波导6效应可以忽略。因此,TM模分量进入光波导5。
图3C是图2B中所示波导8和波导9的TE模相应的折射率增量ΔNTE曲线图。
在图2B中所示B-B′剖面处,波导8对于TE模的折射率大于集成光学衬底21的折射率,然而,波导9对TE模的折射率小于集成光学衬底21的折射率。
图3D是图2B中所示波导8和波导9的TM模相应的折射率增量ΔNTM曲线图。
参照图3D,波导8和波导9对于TM模的折射率大于图2B中集成光学衬底21在B-B′剖面处相应的折射率。
即,TM模分量在耦合波导中100%耦合,并输出到波导9,而TE模分量继续在光波导8中传播,这是因为光波导9的有效折射率增量相对于TE模为一负值,波导9的折射率小于衬底21的折射率,因此光波导效应可以忽略。
当TE模和TM模的偏振光输入时,将输入方向与输出方向颠倒,图2B中所示的偏振光分束器就能作为偏振光耦合器运行,它将TE模和TM模耦合到输出光波导8且无光功率损耗。
当采用单模光纤实现光通讯时,由于单模光纤中不能保持偏振模式,倘若接收到的光信号要被与偏振有关的器件处理,此光信号往往被分解成相应的偏振模式。这种偏振光分束器对任意的输入偏振光是有用的,当光信号在信号处理之后必须通过单模光纤送到相应的偏振器件中时,这种偏振光分束器可以用作偏振光耦合器。
如上所述,按照本发明提供了一种诸如偏振光分束器和耦合器的偏振光器件,在此偏振光器件中,采用一个简单的加工过程使偏振光被分束和被耦合,而不要求在普通的Y型分束器中制成一个精确分叉角度的困难过程。
权利要求
1.一种集成光学偏振器件,它包括第一波导,它能使偏振方向互相垂直的两个模分量同时通过集成光学衬底;和第二波导,它只允许所述集成光学衬底中自始至终形成的所述两个偏振光模分量之一通过,第二波导有一耦合区和一非耦合区,耦合区安排成预定长度,使所述第二波导与所述第一波导以预定的距离分开,非耦合区这样安排,使得所述第一波导与所述第二波导在非所述预定长度部分,其分开的距离比所述预定距离宽。
2.根据权利要求1的集成光学偏振器件,其中偏振光模分量能同时通过的所述第一波导和所述第二波导有相同的折射率。
3.根据权利要求1的集成光学偏振器件,其中所述耦合区的长度等于所述耦合长度,或者是所述耦合长度的奇数倍。
4.根据权利要求1的集成光学偏振器件,其中所述集成光学衬底是由具有双折射的LiNbO3,光学聚合物或半导体材料构成。
全文摘要
一种偏振器件,它将横电波(TE)模分量和横磁波(TM)模分量分束,送入到两个输出波导中,也可将TE模分量和TM模分量两个输入光耦合,送入到一个输出光波导中。集成光学偏振器件包括第一波导和第二波导,第一波导能够同时让两个偏振方向互相垂直的模分量通过集成光学衬底,第二波导只允许自始至终形成在集成光学衬底中的两个偏振光膜分量之一通过。
文档编号G02F1/313GK1175001SQ9711546
公开日1998年3月4日 申请日期1997年7月22日 优先权日1996年7月23日
发明者李炯宰 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1