液晶显示元件(板)及其制造方法

文档序号:2767798阅读:105来源:国知局
专利名称:液晶显示元件(板)及其制造方法
技术领域
本发明是关于液晶显示元件及其制造方法,特别是关于通过在基片上层叠数个液晶层,能够显示清晰的全色图像的液晶显示元件的制造方法及液晶显示元件。
液晶显示元件一般是在留出一定间隔而贴合的两枚玻璃基片之间装入液晶而构成。
上述液晶使用根据液晶分子取向的各种类型的液晶。例如,最普及的是扭曲向列型液晶(以下简称TN液晶),除此之外,也使用垂直排列(垂直)取向,或者均匀(水平)取向的复折射型液晶以及宾主型液晶等。
使用上述TN液晶的单色的液晶显示元件,具体地如下述那样构成。在经过水平取向处理的、形成了像素电极或对置电极的一对玻璃基片之间封入介电常数各向异性的正TN液晶。上述的一对玻璃基片设置在起偏镜和检偏镜之间。上述起偏镜和检偏镜,各自的偏振面相互垂直配置。
这样的单色液晶显示元件的显示原理如下。上述TN液晶的取向方向,在上述电极间不加电压的场合,平行于玻璃基片,而且以90°扭曲状态稳定。因此,通过起偏镜入射的光,在通过TN液晶期间,随TN液晶取向的扭曲,其光的偏振面转动90°,因此能够通过检偏镜。而在上述电极间加上电压的状态,上述TN液晶的取向垂直于玻璃基片。因此,通过起偏镜入射的光,其光的偏振面不转动,通过TN液晶,因而被检偏镜吸收,不能通过检偏镜。这样,通过在上述电极之间施加或不施加电压来控制光的透过或阻断,显示白或黑。
另外,使用上述TN液晶的彩色液晶显示元件,与上述单色液晶显示元件同样构成,只是进一步将高清晰度的液晶板和包括邻接的3个像素电极组在内、具有与各像素电极对应的红、绿或青的区域的微滤色片组合在一起而构成。这样的彩色液晶显示元件,通过将透过微滤色片的各色区域的光的加法混色,显示全色。
可是,使用上述TN液晶的彩色液晶显示元件,具有难以提高辉度的问题。原因是上述微滤色片的光透过率低,而且入射到起偏镜上的光,只有其偏振面与起偏镜的偏振面一致的成分能透过起偏镜,因而全体的透过率为10%以下。
另外,使用上述双折射型液晶的液晶显示元件也具备起偏镜,因此也有同样的问题。
上述那样的构成,在使用利用外光的反射型液晶显示元件的场合,辉度很低,辨别颜色困难,因此上述问题特别显著。
因此,为了获得清晰的彩色显示,使用具有二色性色素的宾主型液晶的液晶显示元件,已由日本特开昭61-238024或特开平3-238424等提出。
使用这种宾主向列型液晶的液晶显示元件具有层叠的数枚液晶板,各液晶板是将包含各自相互不同颜色的二色性色素的液晶封入一对玻璃基片之间而构成。在上述玻璃基片上各自形成通常由氧化铟锡组成的透明像素电极或者透明对置电极。更具体地说,各自重叠具有包含黄色、深红色或者青色色素的液晶、根据施加的电压仅吸收青、绿或红光的3枚液晶板而构成。该液晶显示元件,在各个液晶板吸收上述颜色的光时,显示黑色,如果仅一部分液晶板吸收上述颜色的光,则显示彩色,如果任何液晶板都不吸收上述颜色的光,则显示白色。即,该液晶显示元件,通过减法混色,显示全色。该液晶显示元件既没有大量吸收光的微滤色片也没有起偏镜,因此可以显示比使用上述TN液晶的彩色液晶显示元件更清晰的图像。
但是,使用这种宾主型液晶的以往的液晶显示元件,无论是在其背面具备背照光的透射型液晶显示件,还是具备反射板的反射型液晶显示元件,都不能显示突出清晰的图像。这是因为在透射型液晶显示元件中,从背照光发出的光必须透过6层玻璃基片和6层透明电极,在反射型液晶显示元件中,从液晶显示元件的前面入射的光和由反射板反射的光必须透过总共12层玻璃基片和12层透明电极。
而且,像素间距远远小于玻璃基片厚度(通常1mm左右)的高清晰度液晶显示元件,由玻璃基片的厚度引起的视差的影响较大,因此在从斜方向看时,有产生色差的重大缺点。另外,使用较容易减小厚度的塑料基片代替上述玻璃基片,虽然也可以减低视差,但即使是薄膜状的塑料基片,考虑层叠工序等制造上的加工,需要至少0.05mm以上、通常0.1-0.3mm的厚度,仍然难以消除视差的影响。
另外,这样的液晶显示元件,基片上是重叠3枚液晶板构成,所以需要重复进行使用上述TN液晶的液晶显示元件的约3倍的制造工序,即贴合一对玻璃基片、在玻璃基片间装入液晶的工序要重复3次,制造成本随之提高。
为了消除由上述视差引起的色差和降低制造成本,在日本特开平6-337643中提出了图20所示的液晶显示元件。该液晶显示元件被称为高分子分散型,是由液晶层295-297和透明像素电极292-294层叠在1枚玻璃基片291上而构成。上述液晶层295……是聚合物298以闭合装填分散的液晶299微滴的状态固形化而制成。
该液晶显示元件,由于液晶29g被固形化的聚合物298所保持。因而每个液晶层295……不需要配备玻璃基片,从而消除了由视差影响而引起的色差,而且还实现了小型轻量化。另外,各液晶层295……是利用辊涂机和旋转涂布机等将流体状的聚合物298涂布在玻璃基片291上或已形成的其他液晶层295、296上,然后进行烧成、固化而形成,因此制造工序简便。
然而,这种液晶显示元件有如下的缺点。
近年来,在许多液晶显示元件中采用有源矩阵方式。这是为了提高可以显示动画的显示应答速度,对应各液晶层的各透明像素电极,设置控制是否向这些透明像素电极施加电压的开关元件(一般是TFTTin Film Transistor)。在这种有源矩阵方式应用于上述液晶显示元件的场合,如上所述,该液晶显示元件的第2层以上的液晶层296、297没有玻璃基片,所以对应于第2层以上的液晶层296、297的透明像素电极293、294的开关元件在与第1层液晶层295相同的玻璃基片291上形成,同时,这些开关元件和第2层以上的液晶层296、297的透明像素电极293、294需要用主体的接线连接。
为此,上述公报中提到的液晶显示元件。作为聚合物298使用经紫外线照射而固化的负型感光性聚合物。更详细地说,涂覆在玻璃基片291上的聚合物298,除去开关元件附近,其它区域部分被照射紫外线而固化,另一方面,上述区域部分用显像液等除去,在聚合物298上形成开口部。因此,透明像素电极293、294和上述开关元件能通过上述开口部连接。但是,如上所述,对包含液晶299的聚合物298照射紫外线,导致液晶299(尤其是其中所包含的色素)劣化。
另外,本发明人等在日本特开平8-146456中提出了透明像素电极与开关元件能容易连接的液晶显示元件。该液晶显示元件像下述那样制造。利用照相平版印刷术,通过以氢氟酸为主成分的溶液向下蚀刻玻璃基片上与各像素对应的部分,形成凹部。利用印刷等与上述液晶显示元件同样将包含液晶的聚合物转印到该凹部上,形成液晶层。这样一来,在该液晶层上形成的透明像素电极与玻璃基片的未蚀刻部分表面的垂直于基片方向距离变短,因此透明像素电极和开关元件能容易连接。然而,该液晶显示元件需要增加一道形成上述凹部的工序。
另外,如上所述,在玻璃基片291上涂覆聚合物298形成液晶层295…的液晶显示元件,在涂覆聚合物298时,由于涂覆不匀和残留气泡而产生针孔,或者在聚合物298进行烧成时,因聚合物298与液晶299的热膨胀率不同而引起液晶299的微滴破裂而流出,往往在液晶层295…的表面产生凹凸。上述针孔导致透明像素电极292…之间短路,上述凹凸导致透明像素电极292…的不连续(断线)。另外,即使不产生针孔,如果由于涂覆不匀而存在聚合物298的非常薄的部分,在对透明像素电极施加电压时,由于绝缘破坏而发生短路。这些都妨碍正常的显示。
另外,上述液晶显示元件的闭合装填液晶299的微滴的聚合物298的壁,必须形成不易破裂程度的膜厚(0.3-0.5μm)。因此,无液晶部分的比例,例如增加到30-60%的程度,有效开口率降低,不太提高对比度。
因此,本发明人等在上述日本特开平8-146456中还提出了消除由上述视差而引起的色差、提高对比度的其他液晶显示元件。该液晶显示元件如下述那样制造。在玻璃基片上形成已形成规定形状图案的抗蚀膜。再在上述抗蚀膜上形成绝缘膜和透明像素电极。用紫外线将上述抗蚀膜曝光,用显影液将其除去,在玻璃基片和绝缘膜之间形成空隙。在该空隙中封入宾主型液晶。另外,与上述空隙一样,容易形成关于上述高分子分散型液晶显示元件所说明的、用于连接透明像素电极和玻璃基片上的开关元件的开口部。
该液晶显示元件,为了包封住液晶,具有容易形成非常薄的绝缘膜代替厚的玻璃基片,因此消除由视差而引起的色差。进而,上述空隙用液晶填满,不含有像上述聚合物298那样的异物(作为分散相的高分子树脂),因而在一定程度上可以使开口率增大,提高对比度。然而,该液晶显示元件具有以下的问题。
即,溶出到显影液中的耐蚀层被绝缘膜遮掩住,难以扩散,因此若显影液的侵入口小,就不能均匀除去耐蚀层,使成品率降低,而若显影液的侵入口增大,则难以使开口率比上述高分子分散型的液晶显示元件大幅度增大。
另外,除了上述的问题外,以往的液晶显示元件,如下所述,在几种类型中都存在着显示性能低下的问题。
即,一般地说,除了高分子分散型之外,在一对玻璃基片或者密封膜之间填满液晶形成液晶层而构成的液晶显示元件,为了使上述液晶层保持一定的厚度,使用隔离层。作为这种隔离层,在使用透明隔离层的场合,隔离层必然形成亮点,在使用黑的隔离层的场合,必然形成黑点显示在画面上。在此情况下,在3层结构的液晶显示元件中,由于每一层都存在隔离片,所以相对于画面来说隔离层所占有的比例变大。因此,在以往型的3层结构的液晶显示元件中隔离层的影响极大。
另外,在青色、深红色和黄色的3层宾主型液晶层被层叠的同时,在背面配置反射膜的反射型彩色液晶显示元件中,测定各色的吸光光谱,设定色素浓度和液晶层的厚度,使得在接通状态或断开状态下成为黑白显示,若将液晶层重叠,则无论是白或黑,都稍微带点彩色,尤其是处于最前面的液晶层的色彩变强。
为了解决上述课题的本发明由第1发明系列和第2发明系列组成,各自具有以下的特征。
第1发明系列CI.1第1发明系列的第1形式,是在基片上配置液晶层的液晶显示元件,其特征是,上述液晶层包含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述粘结剂由感光性高分子材料组成。
CI.2第2形式是在基片上配置液晶层的液晶显示元件,其特征是,上述液晶层包含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述微胶囊的壁膜和上述粘结剂由感光性高分子材料组成。
CI.3第3形式是在具有像素电极和驱动元件的基片上层叠数层液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接的液晶显示元件,其特征是,上述液晶层包含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述粘结剂由感光性高分子材料细成。
CI.4
第4形式是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接的液晶显示元件,其特征是,上述液晶层包含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述微胶囊的壁膜和上述粘结剂由感光性高分子材料组成。
CI.5第5形式是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接的液晶显示元件,其特征是,上述液晶层包含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,在上述基片上的像素电极和液晶层之间,或者在配置在液晶层间的像素电极和液晶层之间设置绝缘层,并且上述粘结剂和上述绝缘层由感光性高分子材料组成。
CI.6第6形式是上述第5形式所述的液晶显示元件,其特征是,上述粘结剂和上述绝缘层是由相同的感光性高分子材料组成。
CI.7第7形式是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接而构成的液晶显示元件,其特征是,上述液晶层包含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,在上述基片上的像素电极和液晶层之间,或者在配置在液晶层间的像素电极和液晶层之间设置绝缘层,并且上述微胶囊的壁膜和上述粘结剂及上述绝缘层由光感应性高分子材料组成。
CI.8第8形式是上述第7形式的液晶显示元件,其特征是,上述微胶囊的壁膜和上述粘结剂及上述绝缘层由相同的光感应性高分子材料组成。
CI.9第9形式是上述第1至8的形式的液晶显示元件,其特征是,上述光感应性高分子材料是光分解性高分子材料。
CI.10第10形式是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接而构成的液晶显示元件,其特征是,上述液晶层是在由光分解性高分子材料组成的高分子树脂相中分散保持液晶滴而构成的高分子分散型液晶层。
CI.11第11形式是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接而构成的液晶显示元件,其特征是,上述液晶层是在由光分解性高分子材料组成的高分子树脂相中分散保持液晶滴而构成的高分子分散型液晶层,在上述基片上的像素电极和液晶层之间,或者在配置在液晶层间的像素电极与液晶层之间设置绝缘层。
CI.12第12形式是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部进行电连接而构成的液晶显示元件,其特征是,上述液晶层是由在用光分解性高分子材料形成的高分子树脂相中分散保持液晶滴而构成的高分子分散型液晶组成的层,在上述基片上的像素电极和液晶层之间,或者在配置在液晶层间的像素电极与液晶层之间设置由光分解性高分子材料形成的绝缘层。
CI.13第13形式是上述第5-9或者第11-12形式的液晶显示元件,其特征是,以上述液晶层的厚度作为1时,上述绝缘层的厚度是0.05以上、1以下。
CI.14第14形式是上述第1至第12形式的液晶显示元件,其特征是,上述液晶是含有二色性色素的液晶,或者是选择性反射可见光的手性向列型液晶。
CI.15第15形式是上述第1至第12形式的液晶显示元件,其特征是,上述液晶是含有二色性色素的液晶,或者是选择性反射可见光的手性向列型液晶,在上述基片或距上述基片最远的液晶层的外侧配置隔断紫外线但透过可见光的滤色片。
CI.16第16形式是上述第2至第12形式的液晶显示元件,其特征是,上述液晶显示元件在上述基片上层叠在液晶中含有青色或深红色的二色性色素的第1液晶层、在液晶中含有与上述第1液晶层中含有的色素不同的深红色或青色的任何种二色性色素的第2液晶层、在液晶中含有黄色的二色性色素的第3液晶层,将上述第3液晶层配置在距离具有驱动元件的上述基片最远的位置。
CI.17第17形式是上述第1至第12形式的液晶显示元件,其特征是,上述液晶显示元件在上述基片上层叠在液晶中含有青色或深红色的二色性色素的第1液晶层、在液晶中含有与第1液晶层中含有的色素不同的深红色或青色的任何种二色性色素的第2液晶层、在液晶中含有黄色的二色性色素的第3液晶层,将上述第3液晶层配置在距离具有驱动元件的上述基片最远的位置,同时在上述基片或者上述第3液晶层的外侧配置遮断紫外线但透过可见光的滤色片。
CI.18第18形式是在基片上层叠2层以上的液晶层的液晶显示元件的制造方法,其特征是,具有下列工序在形成控制像素电极电位的第1和第2驱动元件的基片上,形成与上述第1驱动元件连接的第1像素电极的第1像素电极形成工序;在形成上述第1像素电极的基片上,将混合内包液晶的微胶囊和光感应性高分子材料的混合物在上述形成第1象素电极的基片上展开,在上述基片上形成第1液晶层的第1液晶层形成工序;对上述第1液晶层进行掩蔽曝光和显像,除去上述驱动元件的输出端子上部的液晶层,形成开口部的开口部形成工序;在形成上述开口部的第1液晶层上,用导电性材料施加被膜,形成经由上述开口部、形成透明的第2像素电极以及将该第2像素电极和上述第2驱动元件的输出端子电连接的连接线的第2电极形成工序。
CI.19第19形式是在基片上层叠2层以上的液晶层的液晶显示元件的制造方法,其特征是,具备以下工序在形成控制像素电极电位的第1和第2驱动元件的基片上,形成与上述第1驱动元件连接的第1像素电极的第1像素电极形成工序;在形成上述第1像素电极的基片上,将混合内包液晶的微胶囊和光感应性高分子材料的混合物展开,在上述基片上形成第1液晶层的第1液晶层形成工序;在上述第1液晶层上将作为绝缘层形成材料的光感应性高分子材料展开后,进行掩蔽曝光和显像,除去上述驱动元件的输出端子上部的液晶层和绝缘层,形成开口部的开口部形成工序;在形成上述开口部的绝缘层上,使用导电性材料施加被膜,形成经由上述开口部、形成透明的第2像素电极以及将该第2像素电极和上述第2驱动元件的输出端子电连接的连接线的第2电极形成工序。
CI.20第20形式是在基片上层叠3层液晶层的液晶显示元件的制造方法,其特征是,具备以下工序在设置第1像素电极和第1、第2、第3驱动元件的基片上,将混合内包含有青色或或深红色的二色性色素的液晶的微胶囊和光感应性高分子材料的混合物展开,形成第1液晶层的工序;对上述第1液晶层进行掩蔽曝光和显像,除去上述第1液晶层中的上述第2驱动元件和第3驱动元件的输出端子上部的液晶层,形成第1、第2开口部的工序;在形成上述第1开口部的第1液晶层上,用导电性材料施加被膜,形成透明的第2像素电极以及经由上述第1开口部将上述第2像素电极与上述第2驱动元件输出端子电连接的连接线的工序;在形成上述第2像素电极和连接线的基片上,将混合内包含有与第1液晶层中的青色或深红色不同色的二色性色素的液晶的微胶囊和光感应性高分子材料的混合物展开,形成第2液晶层的工序;对上述第2液晶层进行掩蔽曝光和显像,除去上述第2液晶层中的上述第3驱动元件的输出端子上部的液晶层,形成第2开口部的工序;在形成上述第2开口部的第2液晶层上,用导电性材料施加被膜,形成透明的第3像素电极以及经由上述第2开口部将上述第3像素电极与上述第3驱动元件输出端子连接的连接线的工序;在上述第3像素电极上,配置具有含黄色的二色性色素的液晶的第3液晶层的工序。
CI.21第21形式是在基片上层叠3层液晶层的液晶显示元件的制造方法,其特征是,具备以下工序在设置第1像素电极和第1、第2、第3驱动元件的基片上,将混合内包含有青色深红色的二色性色素的液晶的微胶囊和光感应性高分子材料的混合物展开,形成第1液晶层的工序;在上述第1液晶层上展开作为绝缘层形成材料的光感应性高分子材料后,进行掩蔽曝光和显像,除去上述第2、第3驱动元件的输出端子上部的液晶层和绝缘层,形成第1、第2开口部的工序;在形成上述第1开口部的绝缘层上,用导电性材料施加被膜,形成透明的第2像素电极以及经由上述第1开口部将上述第2像素电极与上述第2驱动元件的输出端子连接的连接线的工序;在上述第2像素电极或者与上述第2像素电极连接线的上面,将混合内包含有与第1液晶层青色或深红色中与第1液晶层不同色的二色性色素的液晶的微胶囊和光感应性高分子材料的混合物展开,形成第2液晶层的工序;在上述第2液晶层上展开作为绝缘层形成材料的光感应性高分子材料,形成绝缘层后进行掩蔽曝光和显像,除去上述第2液晶层和第2绝缘层中的上述第3驱动元件的输出端子上部的液晶层和绝缘层,形成第2开口部的工序;在形成上述第2开口部的第2液晶层上,用导电性材料施加被膜,形成透明的第3像素电极以及经由上述第2开口部连接上述第3像素电极和上述第3驱动元件的输出端子的连接线的工序;在上述第3像素电极或者与上述第3像素电极的连接线上,配置具有含黄色的二色性色素的液晶的第3液晶层。
CI.22第22形式是上述第19或者第21形式的液晶显示元件的制造方法,其特征是,上述各个绝缘层,以接触各个绝缘层的液晶层厚度作为1时,形成0.05以上、1以下的厚度。
CI.23第23形式是上述第1 8至第22形式的液晶显示元件的制造方法,其特征是,上述光感应性高分子材料是光分解性高分子材料,开口部的形成方法是,在成为开口部形成对象的液晶层、或者成为开口部形成对象的液晶层和绝缘层中,仅使想要设置开口部的驱动元件的输出端子上部曝光,然后进行显像,除去上述输出端子上部的液晶层或者液晶层和绝缘层,形成开口部。
第2发明系列CI.24第2发明系列中的第24形式是,在基片和密封片之间填充液晶而构成液晶层、而且利用存在于上述基片和上述密封片之间的支持部件支持密封片构造的液晶显示元件,其特征是,上述支持部件和上述密封片由同一组成的高分子构成,同时两者形成一体,保持上述液晶层。
按照这样的结构,可以使由支持部件支持的密封片的厚度达到极小。因此,能够以低电压驱动液晶显示元件,而且,由于不需要玻璃基片,因而没有视差,可以实现高清晰的显示。另外,因为液晶显示元件中的液晶占有比例变大,可以提高有实际效果的开口率,能够提高对比度。
CI.27第2发明系列中的第27形式是上述的结构,其特征是,液晶层形成3层结构,而且这3层液晶层中的至少靠近基片的2层液晶层靠上述构造的显示层保持。
之所以做成这样的结构,是因为在靠近基片的2层液晶层中必须形成主体配线,如果没有与以上记载的显示层相同的结构,就不能发挥本发明的效果,相比之下,处于最外侧的液晶层中不需要主体配线,所以不一定采用与以上记载的显示层相同的构造,也能发挥本发明的效果。
CI.28、30第2发明系列中的第28、30形式,其特征是,在上述3层的液晶层中,含有各种不相同色的二色性色素,同时,各显示层中的支持部件的颜色与上述各液晶层中含有的二色性色素是相同颜色。
采用这样的结构,能使隔离片的影响极小,因此能格外提高液晶显示元件的显示性能。
CI.32第2发明系列的第32形式是,如上所述在形成3层结构的3层液晶层中含有各不相同色的二色性色素,同时,在基片表面或3层的液晶层中处于最外边位置的液晶层上形成反射膜的结构,其特征是,与将各个液晶层的吸光度复合时成为无彩色场合的比例相反,控制3层的液晶层的二色性色素的吸光度比例,使越靠近元件表面一侧的液晶层的上述比例越小。
按照这样的结构,能够抑制越是处于表面一侧的液晶层彩色越强的现象,可以抑制在黑白显示中的带色。
CI.33第2发明系列的第33形式是液晶显示元件的制造方法,其特征是,包括以下工序在基片的一面涂覆高分子前体和液晶的混合液,在基片上形成混合液的膜的膜形成工序;使上述高分子前体在上述膜表面聚合,制作密封片的密封片制作工序;在上述基片的规定部位进行紫外线曝光,使上述高分子前体在上述膜中聚合,制作支持部件的支持部件制作工序;以及在上述密封片上制作电极的电极制作工序。
按照这样的方法,不需要额外设置注入液晶的工序。因此,可使液晶显示元件的制造工序简化,并提高成品率,大幅度地降低液晶显示元件的制造成本。
CI.40第2发明系列的第40形式是在通过支持部件设置的基片和密封片之间封入液晶的液晶显示元件的制造方法,其特征是,具有以下的工序在上述基片的表面上形成支持部件的工序在板状部件的表面上形成上述密封膜的工序;将在上述板状部件的表面上形成的密封膜转印到在上述基片的表面上形成的支持部件上的转印工序;以及在上述基片和上述密封膜之间封入上述液晶的工序。
这样,与通过将在板状部件表面上形成的密封膜转印到基片侧、单独地加工作为密封膜的薄膜状塑料基片等进行层叠等的场合相比,密封膜的加工格外容易,因此能使密封膜非常薄,能够容易地降低液晶的驱动电压。另外,不需要设置微胶囊状地闭合装填液晶的壁,所以使有实际效果的开口率变大,能大幅度地提高对比度。
CI.46第2发明系列的第46形式,其特征是,在上述转印工序之前,在上述基片上的液晶封入区域的四周形成粘结上述基片和上述密封膜的密封剂层,在由上述密封剂层包围的区域中充填上述液晶后,通过转印在上述板状部件表面上形成的密封膜或者密封膜和支持部件,同时进行上述转印工序和上述封入工序。
这样,不需要额外设置封入液晶的工序,因此能使制造工序简化。
CI.47第2发明系列的第47形式,其特征是,重复进行同样的工序,形成数层液晶封入层。
这样,能够容易地层叠使用非常薄的密封膜的数层液晶封入层,所以能容易地减少对各液晶封入层的视差。
CI.49第2发明的第49形式,其特征是,上述密封膜由感光性材料构成,同时,还具有通过上述密封膜曝光和显像在上述密封膜上形成经过该密封膜进行导电的电极用的开口部的工序。
这样,例如能够容易形成开口部,该开口部用于形成连接设置在密封膜上的像素电极和设置在基片上的薄膜晶体管的电极。而且,在设置用于粘结支持部件和密封膜的能量线照射工序的场合,与此同时能进行上述开口部的形成,因而使制造工序简化。
CI.50第2发明系列的第50形式,其特征是,在上述转印工序中,通过阻止在上述板状部件表面上形成的密封膜中的规定部分的转印,在上述密封膜上形成经过该密封膜进行导电的电极用的开口部。
这样,在密封膜的转印工序中能同时进行上述开口部的形成,因而能使制造工序简化。
CI.52第2发明系列的第52形式是在基片和密封片之间封入液晶的液晶显示元件的制造方法,其特征是,具有以下的工序在上述基片表面上形成具有挥发性的固态膜的工序;在上述固态膜表面上形成上述密封膜的工序;使上述固态膜挥发而排出,在上述基片和上述密封膜之间形成空隙的空隙形成工序,以及在上述空隙中封入上述液晶的工序。
这样,通过在固态膜的表面形成密封膜,在层叠作为密封膜的薄膜状塑料基片的场合等,不需要单独加工密封膜进行层叠,因此能使密封膜达到非常薄,能够容易地降低液晶的驱动电压。另外,不需要设置微胶囊状地闭合装填液晶的壁等,所以能够大量保持有实效的开口率。
CI.54第2发明系列的第54形式,其特征是,上述空隙形成工序是通过使上述固态膜中的规定区域的部分挥发而排出、在上述基片和上述密封膜之间形成上述空隙的同时、利用上述固态膜中的残存部分形成支持上述密封膜的支持部件的工序。
这样,能够同时进行用于封入液晶的空隙的形成和支持密封膜的支持部件的形成,不需要另外设置形成支持部件的工序,因此能使制造工序简化。
CI.55第2发明系列的第55形式,更具体地说,上述固态膜是由通过能量线照射、或者能量线照射和加热可以挥发的材料构成,通过仅对上述固态膜中的规定区域的部分进行能量线照射、或者能量线照射和加热,使上述规定区域的固态膜上具有挥发性,因此固态膜的形成等固态膜的加工变得容易,同时可以容易地在所希望的区域形成精密的空隙和支持部件。
CI.56第2发明系列的第56形式,更具体地说,上述固态膜是利用紫外线照射从聚合物解聚成单体的正型光致抗蚀剂,因此能容易地使固态膜有选择性地具有挥发性。
CI.58第2发明系列的第58形式,其特征是,在形成上述固态膜的工序之前,具有在上述基片上形成支持上述密封膜的支持部件的工序。
这样,不需要使固态膜选择地残存,所以作为固态膜不限于具有感光性等的物质,可以使用具有挥发性的各种材料。
CI.59第2发明系列的第59形式,其特征是,重复进行同样的工序,形成数个液晶封入层。
这样,仍然能够容易层叠使用非常薄的密封膜的数个液晶封入层,因此能容易减少对各液晶封入层的视差。
CI.60第2发明系列的第60形式,其特征是,将设置在上述各液晶封入层上的上述支持部件各自配置在同一位置而形成。
这样,能容易地使已层叠的各液晶封入层中的液晶厚度保持一定,能提高显示的均匀性。
CI.61第2发明系列的第61形式,其特征是,在形成上述支持部件时,使平行于上述密封膜的断面形状大致成为长方形或椭圆形,同时要使在夹住各密封膜的支持部件上的上述断面形状的纵向互不相同地配置形成。
这样,对于支持部件的位置偏移的容许限度增大,因此使各液晶的厚度可靠地保持一定,另外,可提高制造时的合格率,降低制造成本。
CI.62第2发明系列的第62形式,其特征是,使上述支持部件在像素区域间形成遍及数个像素区域的长度,同时,夹持各密封膜的支持部件按照纵向互不相同地配置而形成。
这样,同样能容易地使已层叠的各液晶封入层中的液晶厚度保持一定,而且透过像素区域的光不被支持部件遮断,因此,能使有实效的开口率保持很大,同时,对于支持部件的位置偏移的容许限度增大,从而能使各液晶层的厚度可靠地保持一定,另外,可提高制造时的合格率,降低制造成本。
对附图的简要说明

图1是表示第1发明系列的实施例1-1的液晶显示元件的主要部分的断面图。
图2是表示发明系列的实施例1-1的液晶显示元件的主要部分的平面图。
图3是表示青色、深红色和黄色的二色性色素的光谱反射特性的特性图。
图4是表示第1发明系列的实施例1-2的液晶显示元件的主要部分的断面图。
图5是表示第1发明系列的实施例1-2中的绝缘层效果的说明图,其中,(a)表示涂覆在具有电极和驱动元件的下基片上的液晶层的状态,(b)表示上述液晶层上形成像素电极的状态,(c)表示在上述液晶层上形成绝缘层、在其上形成像素电极的状态。
图6是表示第1发明系列的实施1-2的其他形式的液晶显示元件的主要部分的断面图。
图7是表示第1发明系列的实施例1-3的液晶显示元件的主要部分的断面图。
图8是第2发明系列中的实施例2-1的液晶显示元件的平面图。
图9是表示第2发明系列的实施例2-1的图8所示液晶显示元件的A-A向断面图。
图10是表示第2发明系列中的实施例2-1的液晶显示元件制造工序的断面图。
图11是第2发明系列中的实施例2-1的3层结构的液晶显示元件的断面图。
图12是表示第2发明系列中的实施例2-3的液晶显示元件的每1个像素的结构的断面正面图。
图13是表示第2发明系列中的实施例2-3的液晶显示元件的每1个像素的结构的平面图。
图14是表示第2发明系列中的实施例2-3的液晶显示元件的整体结构的平面图。
图15是表示第2发明系列中的实施例2-3的液晶显示元件制造工序的说明图。
图16是表示第2发明系列中的实施例2-3的液晶显示元件的其他例子的平面图。
图17是表示第2发明系列中的实施例2-4的液晶显示元件的每1个像素的结构的断面正面图。
图18是表示第2发明系列中的实施例2-4的液晶显示元件的整体结构的平面图。
图19是表示第2发明系列中的实施例2-4的液晶显示元件制造工序的说明图。
图20是表示以往的液晶显示元件的结构的断面正面图。
以下,参照附图通过实施例说明本发明的液晶显示元件。
关于第1发明系列的实施例实施例1-1图1是表示实施例1-1中的液晶显示元件的断面图,图2是表示图1中所示液晶显示元件的各部分配置的平面图。另外,图1、图2是以中央的像素作为例子表示的,对于同样构成的周围像素有所省略。
在图1、图2中,1、2是由硼硅酸玻璃构成的基片,1是下基片,2是上基片。3、4、5是在下基片上形成的薄膜晶体管,6、7、8是薄膜晶体管的源极线。9是与第1薄膜晶体管3的漏电极一体形成的兼作反射板的第1像素电极。10是与第2像素电极12连接的第2薄膜晶体管4的漏电极,11是与第3像素电极13连接的第3薄膜晶体管5的漏电极。14、15、16是薄膜晶体管的栅极线,17是共电极。
另外,18是由微胶囊和固定微胶囊的粘结剂组成的第1液晶层。其中,18a是由含二色性色素的宾主型液晶组成的微胶囊的芯物质,18b是由光分解性高分子材料组成的微胶囊的壁膜,18c是由光分解性高分子材料组成的粘结剂。19、20是第2、第3液晶层,这些液晶层也是由内包液晶的微胶囊和由光分解性高分子材料构成的粘结剂组成。
而且,在第1液晶层18的宾主型液晶中含有的二色性色素是青色,在第2、第3液晶层19、20中含有的二色性色素分别是深红色、黄色的色素。
实施例1-1中的液晶显示元件是利用外光的反射型液晶显示元件,以第1像素电极9兼作反射板。但是,如果第1像素电极使用ITO等制成透明电极,也可以制成透射型液晶显示元件。
本说明书中所说的光感应性高分子材料,是指经光照射引起化学反应的高分子材料。这样的光感应性高分子材料,有经光照射而聚合的光聚合性高分子材料和经光照射切断聚合具有可溶化性质的光分解性高分子材料。而且,在光分解性高分子材料中,在进行干燥(在90℃、约2分钟)后,一照射紫外线,就溶化,可利用碱溶液显像液洗掉,另一方面,若不照射紫外线,在150℃的温度烧成1小时,可进行分子聚合,经光照射可溶化的性质消失而固定化,因此适合于光刻法。
下面说明上述液晶显示元件的制造方法。
首先,在由硼硅酸玻璃构成的下基片1上,制成半导体层由非晶硅组成的薄膜晶体管3、4、5。各薄膜晶体管3、4、5的源极线6、7、8和漏电极9、10、11由铝膜制作,薄膜晶体管3的漏电极9与像素电极形成一体。各源极线6、7、8处于同一平面上,所以不交叉,为了使第2、第3像素电极12、13和源极线6、7、8结合容量减小,应尽可能不交叉。
为此,如图2所示,使源极线6、7、8邻接、第3薄膜晶体管5的源极线7与第3像素电极1 3仅稍微交叉地配置,使开口率大,而且形成源极线6、7、8与像素电极12、13的结合容量小的结构。
另一方面,制成以液晶作为芯物质的微胶囊。具体地说,首先将约2%(重量)的是二色性色素的青色素溶解在向列型液晶中,制成宾主型液晶,将60g该宾主型液晶和40g光分解性高分子材料丙烯酸系正型保护剂溶解在适量的有机溶剂(甲基·乙基酮)中,制成各成分相溶的混合溶液。
接着,将上述混合溶液混入水中,用高速搅拌器以10000转/分的转数搅拌2分钟。经此搅拌形成混合溶液的液滴分散在水中的乳浊液,将该乳浊液在85℃保持10分钟。
经此操作,由混合溶液组成的液滴中的甲基·乙基酮气化,互相相溶的宾主型液晶和丙烯酸系正型保护剂相分离,形成宾主型液晶被包入丙烯酸系正型保护膜(壁膜)中的微胶囊。该微胶囊在水中形成、而且分散存在于水中,因此,将该溶液加入离心分离器中可除去水,再进行减压干燥,就得到内包宾主型液晶的微胶囊。该微胶囊的平均粒径是约1.5μm。
再者,上述加温温度85℃是作为比甲基·乙基酮的沸点(79.6℃)高、比水的沸点(100℃)低的温度而设定。在以甲基·乙基酮作为溶剂使用的场合,若是该温度,就能合适地进行相分离。但是,作为上述有机溶剂,不限定于甲基·乙基酮。可以使用使宾主型液晶和光感应性高分子材料双方都溶解、与水不相溶而且具有比水的沸点(100℃)低的沸点的各种溶剂。
另外,上述操作是在只用光分解性高分子材料会不感光的长波长区的光照明的屋子(黄色屋子)中进行。在微胶囊的制作等中,若光分解性高分子材料(光聚合性高分子材料的场合也一样)在光中进行反应,则不能达到所期望的目的。
另外,在含有以下所述的青色素以外的深红色、黄色的二色性色素的宾主型液晶和选择性反射可见光的手性向列型液晶中,也采用与上述相同的方法进行微胶囊化。
将上述制成的微胶囊(青色)和作为粘结剂的丙烯酸系正型保护剂混合,用辊涂机将该混合物涂敷在基片1上,涂敷厚度约5μm。在90℃的温度干燥约2分钟,在下基片1上形成用粘结剂将以含青色的液晶作为芯物质的微胶囊粘结而成的第1液晶层18。该微胶囊的壁膜和粘结剂由相同的光分解性高分子材料组成。
接着,遮蔽住开口部21、22以外的部分(参照图1),对已形成液晶层18的下基片1照射紫外线,然后将下基片1浸入由碱溶液组成的光分解性高分子材料的显像液中,使被曝光的开口部21、22部分的液晶层溶解在显像液中而被除去,从而形成开口部21、22。而且在此之中,发挥本发明构成的效果。
即,在本实施例1-1中,微胶囊的壁膜18b和分散并粘结该微胶囊的粘结剂18c由光分解性高分子材料组成。光分解性高分子材料经紫外线照射可溶化,因此掩蔽住开口部21、22以外的部分,照射紫外线时,不仅粘结剂18c,而且微胶囊的壁膜18b也溶化,形成微胶囊内部的液晶能流出到外部的状态。因此,紫外线照射后,用显像液洗净,能容易除去开口部附近的液晶层。
与此相反,微胶囊的壁膜例如由聚乙烯醇等材料(光分解性材料以外的材料)组成时,即使照射紫外线也不熔化,因此在用显像液洗净时,在开口部附近易残留微胶囊。即,不能形成良好的开口部。
开口部形成后,在150℃将下基片1烧成约1小时,利用热使组成微胶囊的壁膜18b和粘结剂18c的光分解性高分子材料聚合,将第1液晶层18固定。
然后,在形成开口部的第1液晶层18上,将导电材料ITO溅射成膜至120-150nm的厚度,利用光刻法形成图案,制成第2像素电极12的形状。另外,上述ITO的溅射成膜,也涉及开口部21,通过此操作,能形成导通像素电极12和第2薄膜晶体管4的输出端子即漏电极10的连接线51。
通过形成上述连接线51,可以借助于第2薄膜晶体管4控制像素电极12的电位。另一方面,通过将像素电极12制作成图2所示形状的图案,能使像素电极12和第3薄膜晶体管5的漏电极不导通。
再者,像上述那样,已被固定化的光分解性高分子材料,经紫外线照射时不再熔化。因此,用于形成第2像素电极12的光刻工序,不会损伤前述第1液晶层18。
在上述的各工序后,基本上与上述同样进行,在已将第1液晶层18和第2像素电极12成膜的下基片1上形成第2液晶层19和开口部22及第3像素电极13。
具体地说,制作含有作为二色性色素的深红色素的宾主型液晶,制作以该宾主型液晶作为芯物质的微胶囊,将该微胶囊分散在粘结剂(丙烯酸系正型保护剂)中形成混合物,用辊涂机将该混合物涂敷在已将第1液晶层18和第2像素电极12成膜的下基片1上,然后干燥,形成第2液晶层19。将该第2液晶层19的开口部22以外掩蔽,进行紫外线曝光后,用显像液洗掉,形成开口部22。然后烧成液晶层,在包括开口部的液晶层上将ITO进行溅射成膜,形成图案,成为图2所示的第3像素电极13的形状。
通过溅射ITO,在开口部22上也形成被膜,导通像素电极13、第3薄膜晶体管5的漏电极11。结果,可以利用第3薄膜晶体管5控制像素电极13的电位,这是与上述相同的。
进而,按照与上述相同的方法,制作以含有黄色色素的宾主型液晶作为芯物质的微胶囊,用辊涂机将该微胶囊和粘结剂的混合物涂敷在已形成第1和第2液晶层18、19及第2、第3像素电极12、13的下基片1上,进行烧成,形成第3液晶层20。
然后,将该下基片1和设有共电极17的上基片2贴合在一起。完成了液晶显示元件。
如上所述,在下基片1上形成第1液晶层20,将该下基片1与形成共电极17的上基片2贴合在一起,但是有关实施例1-1的本发明不限于这种形式。例如,也可以是在下基片1上形成第1和第2液晶层18和19、第2、第3像素电极12和13,另一方面,在上基片2上形成共电极17和第3液晶层,将该下基片1与上基片2贴合在一起,制成液晶显示元件。
另外,第3液晶层20不需要开口部,因此在第3液晶层20中,作为微胶囊的壁膜材料和粘结微胶囊的粘结剂材料,也可以使用不是光分解性高分子材料等光感应性高分子材料的高分子材料。这样的材料,例如可举出热聚合性高分子材料。
进而,作为使第3液晶层20夹在形成第1和第2液晶层及第2、第3像素电极12、13的下基片1与上基片2之间的方法,可以采用以下的方法。即,在下基片1(第3像素电极13)和上基片2(共电极17)之间散布能形成2-3μm间隙的隔离片,使用密封树脂,密封形成液晶注入口部分以外的像素部周围。然后,将该单元放入真空容器内,抽出上述间隙的空气,将液晶注入口浸入成为第3液晶层的宾主型液晶面。在此状态使容器内恢复到大气压。这样可以在上述间隙中注入液晶。
实施例1-2下面,参照图4至图6说明本发明实施例1-2的液晶显示元件。
该实施例1-2的液晶显示元件,是在已形成薄膜晶体管和兼作反射板的第1像素电极9的下基片1上,层叠具有青、深红、黄色的各色的二色性色素的3层液晶层18、19、20的结构,在这点上与实施例1-1相同,在各液晶层之间、以及在最远离下基片1的液晶层上设置绝缘层,在这一点上与实施例1-1不同。
因此,下面以绝缘层为中心进行说明,与上述实施例1-1相同的部件用相同的符号表示,省略其说明。
在图4中表示实施例1-2的液晶显示元件的断面图。另外,图4是将液晶显示元件的中央的一个像素作为例子,周围的像素也是同样的结构,但在周围的像素中有所省略。
如图4所示,实施例1-2的液晶显示元件由下列部分依次层叠而构成下基片1、兼作反射板的像素电极9、含有青色的二色性色素的第1液晶层18、第1绝缘层23、第2像素电极12、含有深红色的二色性色素的第2液晶层19、第2绝缘层24、第3像素电极13、含有黄色的二色性色素的第3液晶层20、第3绝缘层25、共电极17、上基片2。
而且,第1、2绝缘层23、24在标记为第1、2液晶层18、19的开口部21、22的位置设置开口,第2、3像素电极12、13经由该开口与下基片1上的第2、3薄膜晶体管的漏电极10、11连接。
下面,参照图5说明在实施例1-2中设置由光感应性高分子材料组成的绝缘层的理由。
图5(a)表示液晶显示元件的中央的一个像素部分的断面,该液晶显示元件是在下基片1上形成第1液晶层18、进行掩蔽曝光并显像而形成开口部21、22。在实施例1-1的液晶显示元件中,用辊涂机涂敷液晶层后,进行掩蔽曝光并显像,形成具有开口部21、22的液晶层18,对该液晶层18溅射ITO,形成像素电极12和连接线(连接像素电极和驱动元件的电极线)51、52。可是在液晶层上直接形成像素电极的方法中,往往产生下述问题。
即,如图5(a)所示,在基片上涂敷液晶层时,因涂敷不匀,在液晶层18上往往形成直径数μm的针孔26。另外,为了使作为粘结剂的光分解性高分子材料聚合,在150℃将液晶层烧成约1小时,由于此时微胶囊中的液晶与微胶囊的壁膜及其周围的粘结剂的热膨胀系数的差别,微胶囊的壁膜往往发生破坏,因此,微胶囊的芯物质即液晶流出到液晶层外,在液晶层上形成针孔,或者由于液晶的流出,液晶层的厚度往往变得局部非常薄。
像这样在形成针孔等的液晶层上形成ITO膜的场合,如图5(b)所示,第1像素电极9和第2像素电极12通过针孔26导通。因此,在两像素电极间加上电压时,像素电极彼此短路,在液晶显示元件的驱动电路中产生过电流,使驱动电路破坏,导致液晶显示元件的动作不良。另外,因为在已短路的像素电极间的液晶层上没有施加电压,所以成为像素缺陷。
进而,若由于涂敷不匀和液晶的流出。在液晶层上产生凹凸,则如图5(b)所示,ITO膜在凹凸27的部分成为不连续。因此,像素电极和驱动元件变成不导通,不能用基片上的驱动元件控制像素电极的电位。
在该实施例1-2中,为了消除上述问题,使液晶层18介于中间,在与具有驱动元件的下基片1相反的一侧、即在液晶层18上形成绝缘层23,在其上形成像素电极12和连接线。这种结构示于图5(c)中。如图5(c)所示,设置绝缘层23,利用绝缘层23堵塞液晶层上产生的针孔26。另外,利用绝缘层23使液晶层表面的凹凸27变得平滑,因此可以获得防止因像素电极间的导通和连接线的不连续引起的动作不良的效果。
可是,在液晶显示元件中,以电极间的绝缘和表面平滑化为目的而设置树脂层(相当于本发明的绝缘层)本身是公知的。但是,在本发明中,微胶囊的壁膜材料、粘结剂材料和绝缘层材料都是以光感应性高分子材料组成。这样的构成,不需付出大的劳力就能设置绝缘层,并且绝缘层不会成为在液晶层上形成开口部时的障碍。
另外,在本发明中,组成绝缘层23、24、25的光感应性高分子材料和微胶囊的壁膜18b、液晶层18、19、20的粘结剂18c、19c、20c全都由相同材料组成。采用这种构成,微胶囊的壁膜、粘结剂相、绝缘层之间形成相同的折射率,因此,能显著减少由各界面的光反射而引起的光损失。
另外,上述三者由同一光感应性高分子材料组成时,在原材料的加工方面可以提高操作性,同时,如在后述的实施例1-2的制造方法中说明的那样,能够同时实施在绝缘层23、24上形成开口部21、22的工序和在液晶层18、19上形成开口部的工序,因此有利于简化工艺。
总之,采用在各液晶层上形成由光感应性高分子材料组成的绝缘层的结构,有助于提高液晶显示元件的显示性能和提高生产率两方面。
下面,说明实施例1-2的液晶显示元件的制造方法。
按照与实施例1-1的液晶显示元件的制造方法相同的方法,用辊涂机在下基片1上涂敷第1液晶层18,在90℃干燥约2分钟,在下基片1上形成厚度5μm的液晶层。用显微镜观察该液晶层时,看到因涂敷不匀引起的直径数μm的针孔26(参照图4)。
紧接上述工序,在形成液晶层18的下基片1上滴下与粘结剂18c相同的光感应性高分子材料,用旋转涂布机以500转/分的转速旋转5秒后,以2000转/分的转速旋转30秒,在下基片1上均匀地涂敷光感应性高分子材料。然后,在90℃将已涂敷的光感应性高分子材料干燥约20分钟。该第1绝缘层23的厚度(平坦部分的厚度)是0.5μm。
这样,在第1液晶层18上形成由与液晶层的粘结剂相同的光感应性高分子材料组成的第1绝缘层23。利用该绝缘层23的形成工序,使光感应性高分子材料流入在第1液晶层18上产生的针孔26和液晶层表面的凹凸27中,堵塞针孔26和凹凸27,同时,使第1绝缘层形成无凹凸的表面。
另外,通过调整涂布量和旋转涂布机的转速及旋转时间,可以改变绝缘层的厚度,在本发明中,相对于液晶层的厚度,将绝缘层的厚度优选调节为0.05-1的范围。关于此如下所述。
进而,采用与实施例1-1的液晶显示元件的制造方法相同的方法,通过使在下基片1上形成的第1液晶层18和第1绝缘层23进行掩蔽曝光并显像,形成下基片1的驱动元件的端子部,即在薄膜晶体管的漏电极10、11上形成开口部21、22。
在150℃将下基片1烧成约1小时,使组成第1液晶层18的粘结剂18c和第1绝缘层23的光感应性高分子材料聚合。
在上述实施例1-1的液晶显示元件的制造方法中,在用于使组成微胶囊的壁膜和粘结剂的光分解性高分子材料聚合而固定化的烧成工序中,有时液晶层表面附近的微胶囊破裂,致使液晶流出。而在设置绝缘层的实施例1-2中,看不到微胶囊破裂和液晶流出。
另外,在实施例1-1中,之所以产生微胶囊破裂和液晶流出,是因为微胶囊内部的液晶与组成微胶囊的壁膜和粘结剂的光分解性高分子材料的热膨胀率不同。而在实施例1-2中,之所以不产生微胶囊的破裂等,是因为在实施例1-2中,绝缘层起到液晶层的保护膜的作用,提高了抑制由热膨胀引起的破坏等的机械强度。
用与实施例1-1相同的方法,再在绝缘层23上形成像素电极12、连接像素电极12和下基片1上的驱动元件端子的连接线51、52。
此后,按照与实施例1-1相同的方法,再依次进行第2液晶层19、第2绝缘层24的形成,第3像素电极13和连接线53的成膜,用与实施例1-1相同的方法,形成第3液晶层20、第3绝缘层25、共电极17、上基片2,完成液晶显示元件。
这里,在实施例1-2的上述制造方法中,绝缘层厚度与液晶层厚度的比例在0.05以上、1以下较为适宜。其理由如下。
在液晶层上形成开口部时,为了合适地保持光刻的加工精度,必须使形成开口部的液晶层和绝缘层的厚度合计到达10μm以下,但是为了得到合适的显示性能,需要达到约5μm以上厚的液晶层。另一方面,在对设置绝缘层的液晶层施加电压的场合,施加的电压被分压在液晶层和绝缘层上。因此,为了高效率地在液晶层上施加电压,应当使绝缘层的厚度尽量薄。但是,绝缘层的厚度若比0.5μm更薄,则不能期待堵塞针孔等效果,失去设置绝级层的意义。
由此可见,从光刻的加工精度观点看,液晶层和绝缘层的厚度合计应在10μm以下,从显示性能方面考虑,液晶层厚度应确保5μm以上,此时,绝缘层厚度必须在液晶层的厚度以下,另一方面,为了得到设置绝缘层的效果,必须使绝缘层的厚度达到约0.5μm以上。为此的必要条件是,绝缘层厚度与液晶层厚度的比例是0.05以上、1以下。
像以上那样进行,制成能全色显示的实施例1-2的液晶显示元件。在该制造方法中,作为组成绝缘层的材料,使用与微胶囊壁膜材料和粘结剂材料相同的光感应性高分子材料。另外,采用在开口部形成前的液晶层上形成绝缘层,然后进行掩蔽曝光并显像,设置开口部的方法,采用这种制造方法,可以使液晶层的掩蔽曝光和显像与绝缘层的掩蔽曝光和显像一起完成。
因此,按照该方法,虽然是连接隔离液晶层和绝缘层的像素电极与基片上的驱动元件的端子部的结构,但是在实施例1-1的制造方法中,仅追加绝缘层的涂敷和干燥工序,就能提供可以防止由液晶层上产生的针孔而引起的像素电极彼此短路和由液晶层上的凹凸引起的连接线不连续而导致的断线的液晶显示元件。
进而,在该制造方法中,微胶囊壁膜、粘结剂、绝缘层都是由共同的光分解性高分子材料组成,因此,液晶层和绝缘层的界面上的光的漫反射以及微胶囊壁膜和粘结剂相同的界面上的光的漫反射减少。从而能够实现光损失少的辉度优良的液晶显示元件。
在上述实施例1-2中,一次进行液晶层和绝缘层的掩蔽曝光和显像以及烧成。但是,也可以先进行对液晶层的掩蔽曝光和显像以及烧成,然后,在液晶层上形成绝缘层,最后进行对绝缘层的掩蔽曝光和显像以及烧成。用这种方法,也能够防止由液晶层上的针孔的凹凸引起的动作不良。
另外,如图6所示,像素部分的液晶层、像素电极、绝缘层的层叠顺序,也可以按照下基片1、兼作反射板的像素电极9、第1绝缘层23、含有青色的二色性色素的第1液晶层18、第2像素电极12、第2绝缘层24、含有深红色的二色性色素的第2液晶层19、第3像素电极13、第3绝缘层25、含有黄色的二色性色素的第3液晶层20、共电极17、上基片2的顺序,制成第1、2、3绝缘层23、24、25分别在第1、2、3液晶层18、19、20的下侧形成的结构。这种结构也可以得到防止由在液晶层上产生的针孔引起的像素电极间的短路的效果。这是因为,在图6中,虽然由于在第1液晶层18上产生针孔26而使第2像素电极12和第1像素电极9部分地接近,但是借助在第1像素电极9和第1液晶层18之间形成的绝缘层23,两电极被绝缘,从而两电极不导通。
但是,仅在液晶层的下侧配置绝缘层的上述结构中,在液晶层上存在凹凸的场合,得不到堵塞凹凸、防止凹凸部分的连接线的不连续的效果。因此,仅在液晶层的一侧面配置绝缘层的场合,最好是采用在液晶层的上侧(层叠方向)配置绝缘层的实施例1-2的结构。
另外,在液晶层的下侧配置绝缘层构成的液晶显示元件,可以按照以下工序制造,即在实施例1-2的液晶显示元件使形成第1液晶层的工序与形成第1绝缘层的工序颠倒,在形成第1像素电极9的下基片1上形成第1绝级层,干燥后涂敷第1液晶层,进行干燥,接着利用掩蔽曝光、显像工序形成开口部21、22。
在上述实施例1-2中,形成仅在液晶层的一面配置绝缘层的结构,但是也可以在液晶层的两面配置绝缘层。虽然在液晶层的两面配置绝缘层的结构要增加作业工序,但绝缘层的作用效果变得更可靠。
进而,在上述实施例1-2中,预先准备将共电极17成膜的上基片2,将该上基片2和顺次形成至第3液晶层20的下基片1贴合在一起,制成液晶显示元件,采用该制造方法,即使在第3液晶层20上产生针孔,也不会发生第3像素电极13和共电极17导通的危险。这是因为,在第3液晶层20上溅射ITO,不形成电极。因此,在实施例1-2中,虽然形成具有第3绝缘层25的结构,但是如果将绝缘层的任务限定于保持像素电极和共电极绝缘的目的,那末第3绝缘层25不一定是必需的。
但是,若在第3液晶层上形成绝缘层25,则有使第3液晶层的表面平坦化的效果,这样能使下基片1和上基片2(直接地,绝缘层25和共电极17)均匀地贴合在一起。
实施例1-3
下面,参照图7说明本发明实施例1-3的液晶显示元件。在图7的说明中,对于与上述实施例1-1相同的部件标以同一符号、省略其说明。
实施例1-1的液晶显示元件,是将用粘结剂保持内包液晶的微胶囊而构成的液晶层层叠的结构,而实施例1-3的液晶显示元件,如图7所示,是将液晶滴分散保持在光感应性高分子材料中的所谓高分子分散型液晶层层叠的结构。
在层叠高分子分散型液晶层这点上具有特征的实施例1-3,按以下所述制成。即,首先,与上述实施例1-1相同,在下基片1上形成第1至第3薄膜晶体管3-5和第1像素电极9。
另一方面,将溶解约2%的青色的二色性色素的向列型液晶溶解在正型保护剂中,制成含有液晶和光感应性高分子材料的混合液。这里,作为上述正型保护剂,使用光分解性高分子材料30%、溶剂70%的组成比的正型保护剂。另外,调整正型保护剂与液晶的混合比率,使混合溶液中的光分解性高分子材料与混合液中的液晶(含有青色色素的液晶)的重量比成为3∶7。这样调制成的混合溶液,形成含有二色性色素的液晶和光分解性高分子材料及溶剂相溶合的状态。
用旋转涂布机将上述混合液以约5μm的厚度涂敷在下基片1上,在约90℃的加热板上放置约2分钟进行干燥。经该干燥操作,涂敷在下基片1上的混合溶液中的溶剂挥发到系统外,因此混合溶液的溶质浓缩。而且,浓缩至某一阶段时,相溶的光感应性高分子材料与液晶材料相分离,形成在光感应性高分子材料的矩阵相中分散保持液晶滴的高分子分散型液晶层(第1液晶层38)。
再与实施例1-1相同,将上述第1液晶层38的开口的部分以外掩蔽,使第1液晶层38掩蔽曝光并显像,在规定区域形成开口部21、22。另外,关于该工序的后续的工序,除了液晶层使用高分子分散型液晶层以外,与上述实施例1-1是相同的。因而,省略说明后续的工序。
按照液晶层使用高分子分散型液晶层的实施例1-3,通过混合溶液涂敷后的相分离,能够形成在光分解性高分子材料中分散、保持液晶材料的形态。因此,不需要预先准备以液晶材料作为芯物质的微胶囊。
在该实施例1-3的液晶显示元件中,也可以按照与实施例1-2相同的形态设置在实施例1-2中说明的绝缘层。
其他事项在上述实施例1-1、1-2、1-3中说明的具体例子,清楚地说明了本发明的技术内容,但是,第1发明系列并不仅限于这些具体例子。即,在不脱离本发明的要点的范围内,可以进行各种变更而实施,例如可以像以下那样进行变更而实施。
(1)在实施例1-1、1-2、1-3中,说明了在2枚玻璃基片间夹持3层液晶层的结构,但是在1枚玻璃基片上层叠3层液晶层的结构也能得到同样的效果。在此场合,共电极是在形成第3液晶层的基片上将ITO溅射成膜形成。这样制作能抑制由玻璃基片引起的透射率的降低,进一步减轻液晶显示元件的重量。
在这种结构中,最好是在上述液晶层的上部(共电极上)设置用于保护液晶层的保护膜。保护膜可以使用紫外线固化型丙烯酸树脂等。
(2)在1枚玻璃基片上层叠3层液晶层的液晶显示元件中,在室外等使用时,日光中所含的紫外线照射到液晶层上,由于紫外线而使二色性色素劣化。
因此,最好是在离下基片最远的第3液晶层的外侧设置阻断紫外线但透过可见光的滤光片。这样一来,紫外线不照射二色性色素,可以解决上述问题。
(3)在光刻工序中,光感应性高分子材料被用来作为光致抗蚀剂,这种光致抗蚀剂有正型抗蚀剂和负型抗蚀剂。作为正型抗蚀剂,使用经光照射可熔化的酚醛清漆树脂等光分解性高分子材料,作为负型抗蚀剂,使用经光照射而聚合的环化聚异戊二烯等光聚合性高分子材料。
在本发明中,作为微胶囊的壁膜材料和粘结微胶囊的粘结剂材料,使用上述的光致抗蚀剂,但其中,在使用负型抗蚀剂(光聚合性高分子)作为上述壁膜和粘结剂材料以及绝缘层材料的场合,需要掩蔽设置开口部的部分,对具有更广大面积的其他部分照射紫外线。因此,在此场合,等于对组成液晶层的二色性色素也照射光,具体地照射紫外线,二色性色素可能会遭受紫外线损伤。
另一方面,作为上述壁膜和粘结剂材料、以及绝缘层材料,在使用正型抗蚀剂(光分解性高分子材料)的场合,将设置开口部的部分以外的部分(即,除了开口部的全液晶层)掩蔽,只对需要设置开口部的部分照射紫外线就足够了。因此,不会使液晶层中的二色性色素劣化,不导致彩色性能降低。
从以上可知,在本发明中,上述壁膜和粘结剂材料以及绝缘层材料,最好是使用正型抗蚀剂(光分解性高分子材料)。
(4)在上述实施例1-1、1-2中,作为微胶囊的壁膜材料和粘结剂材料以及绝缘层材料、使用了同一光分解性高分子材料,但是,并不限定于这种形式。作为上述壁膜材料、粘结剂材料以及绝缘层材料,可以使用光聚合性高分子材料,也可以用不同的光感应性材料组成各自的材料。
具体地说,在使用对紫外线等光线不易劣化的二色性色素的场合,在使用以比造成二色性色素劣化的能量少的光照射能量而引起聚合的光聚合性高分子材料的场合,或者在利用可见光引起聚合的光聚合性高分子材料的场合等,作为上述壁膜材料和粘结剂材料、或者作为绝缘层材料,也可以使用光聚合性高分子材料。这是因为,经过光照射不发生显示性能下降。另外,这也适合于实施例1-3。
(5)在实施例1-1、1-2、1-3中,调制内包宾主型液晶的微胶囊,该宾主型液晶含有青色、深红色或者黄色的各色的二色性色素,或者调制高分子分散型液晶,将用它们构成的液晶层层叠成3层的结构。在此结构中,在层叠液晶层时,最好以离开具有驱动元件的下基片最远的液晶层作为含有黄色的二色性色素的液晶层。理由如下。
在图3中示出青色、深红色、黄色的二色性色素的光谱透射特性。从图3可知,青色色素、深红色色素在波长500nm以下的短波长区具有高的透射率。而黄色色素在短波长区的透射率小,具有吸收短波长区的光的性质。
总之,在使用含有青色色素或者深红色色素的宾主型液晶的场合,这些二色性色素吸收紫外线少,因此对液晶层照射紫外线时,紫外线不仅到达表层,而且到达深部。与此相反,在含有黄色色素的宾主型液晶的场合,黄色色素吸收紫外线,所以紫外线不到达液晶层的深部。因此,在含有黄色色素的宾主型液晶的场合,难以形成开口部。
在此情况下,如果形成将含有黄色的二色性色素的液晶层配置在离下基片最远的位置上,由于在此位置的液晶层上不需要开口部,因此能够避免上述的问题。
另外,在以光聚合性高分子材料组成微胶囊的壁膜材料和粘结剂材料的场合,仅将设置口开部的部分掩蔽,照射紫外线,在此场合也会产生不合适的情况。原因是液晶层的深部聚合不充分,在显像时可能会洗掉打算开口的部分以外的液晶层。
(6)另外,在上述实施例1-1、1-2、1-3中,叙述了将各自含有不同的二色性色素的液晶层层叠3层构成的能全色显示的液晶显示元件的例子,但是,在本发明中,不限于3层层叠构成的液晶显示元件,也可以是2层结构的液晶显示元件。
另外,在上述实施例1-1、1-2、1-3中,使用了将二色性色素混入液晶中的宾主型液晶,但是,在本发明中,也可以采用使用选择性反射可见光的特定波长区的手性向列型液晶的方式。即,选定选择性反射各不相同波长区的可见光的手性向列型液晶,将这些液晶作为芯物质制成微胶囊,或者将这些液晶形成液晶滴,制成高分子分散型液晶,采用与上述实施形式相同的方法制成液晶显示元件,得到上述的本发明效果。
(7)再者,在上述实施例1-1、1-2、1-3中,微胶囊的壁膜材料和粘结剂材料、或者绝缘层材料是由光感应性高分子材料、具体地说是由光分解性高分子材料组成,但是,也可以考虑仅粘结剂材料用光感应性高分子材料,微胶囊的壁膜材料不是由光感应性高分子材料。例如由聚乙烯醇等组成。
但是,上述壁膜材料若是光感应性高分子材料以外的材料,借助使用紫外线等光的光刻法不能溶解去除壁膜材料。因此通过显像,难以充分去除该部分的微胶囊,为了充分去除,在洗净中需要大量劳力。而且,在开口部残留微胶囊的场合,连接驱动元件和像素电极的连接线的成膜不充分,在由于洗净不充分而在液晶层上残留微胶囊的场合,损害液晶显示元件的颜色外观性的均一性。
另外,微胶囊的壁膜若由与组成粘结剂和绝缘层的材料不同的材料组成,则在微胶囊的界面易产生漫反射,因此该部分产生光损失,亮度变暗。
由以上可知,若是由光感应性高分子材料以外的材料组成微胶囊壁膜材料,则导致在液晶显示元件的组装工序中的制造作业性降低,显示性能下降。
如以上所详细说明,按照本发明的液晶显示元件的结构及其制造方法,以液晶层介于其间的状态、通过开口部能够电连接玻璃基片上的驱动元件和像素电极。因而,像以往的彩色液晶显示元件那样在液晶层之间不需要设置玻璃基片,按照本发明,能够提供非常明亮的、并且从斜方向看时不产生色差的彩色液晶显示元件。
另外,按照本发明,由层叠基片引起的单元厚度增加和重量增加较少,可以得到重量轻的小型液晶显示元件。
进而,按照本发明,能够使制作液晶显示元件时的工序减少,同时,特别是按照设置绝缘层的构成,以液晶层介于其间的状态,既能够连接像素电极和基片上的驱动元件,又能防止由液晶层上产生的针孔而引起的像素电极的彼此短路,以及由液晶层上的凹凸引起的连接线的不连续。因此,能够实现动作不良的发生少、而且光损失少的亮度良好的液晶显示元件。
关于第2发明系列的实施例下面,根据实施例说明第2发明系列的液晶显示元件。与上述第1发明系列相同,下述实施例也使本发明的技术内容清楚明了,但是第2发明系列并不仅限于这些具体例子。
实施例2-1下面基于图8-图11说明本发明的实施例。图8是本发明的液晶显示元件的平面图,图9是图8的A-A向断面图,图10是表示本发明的液晶显示元件制造工序的断面图,图11是表示本发明的3层结构的液晶显示元件的断面图。
如图8和图9所示,在硼硅酸玻璃基片101上形成由a-Si(非晶硅)组成的薄膜晶体管(以下称为TFT元件)102、103、104。TFT元件103、104具有各自的主体部103a、104a和漏极端子(输出端子)103b、104b。另外,TFT元件102具有由铝构成、兼作反射电极102d的漏极端子。在该反射电极102d上形成第1液晶层114,该第1液晶层114由宾主型液晶构成,该宾主型液晶是在加入微量手性剂、扭曲间距调整到4.3μm的氟系向列液晶(Δn是0.065)中以2%(重量)比例溶解青色的二色性色素形成的。在上述第1液晶层114上设置密封板113(厚度约1μm),利用该密封板113密封上述第1液晶层114的液晶。另外,上述密封板113由与后述的隔离板108…,隔离壁109和主体配线用密封垫107同一组成的高分子(具体是丙烯酸高分子)组成,并且与它们形成一体。
在上述TFT元件103、104的主体部103a、104a的整个表面上和漏极端子103b、104b的一部分表面上形成主体配线用密封垫107…。在该主体配线用密封垫107…之间形成主体配线用的开口部110、111(直径4μm),在该开口部110、111的底部,上述TFT元件103、104的漏极端子103b、104b的一部分露出。另外,在基片101上形成包围像素的隔离壁109,在上述像素内以20μm间距无遗漏地形成柱状隔离板108…(直径3μm)。由这些隔离板108…、上述主体配线用密封垫107…、及上述隔离壁109构成支持上述密封板113的支持部件119。进而在密封板113、主体配线用密封垫107…、及开口部110、111上形成透明电极115、116,由该透明电极115、上述第1液晶层114、上述支持部件11g及上述密封板113构成第1显示层117。
另外,如图11所示,在上述第1显示层117上设置与第1显示层117大致相同结构的第2显示层122和第3显示层123。上述第2显示层122与第1显示层117的不同点是,第2液晶层126中的二色性色素设定成深红色,以及在TFT元件104上的主体配线用密封垫107和透明电极116的表面上设置主体配线用密封垫121,上述第3显示层123与第1显示层117的不同点是,第3液晶层127中的二色性色素设定成黄色,以及不形成主体配线用密封垫。
在本实施例中,密封板113的厚度为1μm,至于什么样的范围能提高液晶显示元件的性能,以第1显示层作为例子在下面进行考察。
密封板113越薄,施加在第1液晶层114上的电压越增加,所以能降低TFT元件的驱动电压。因此,从这点看,希望密封板113尽可能薄。但是,密封板113过薄时,形成透明电极115时变形,产生皱折和裂纹。具体地说,即使在常温进行透明电极115的成膜的场合,在密封板113的厚度是约0.5μm以下时,确认产生皱折。因此,希望密封板113的厚度限制在0.5μm以上。
另一方面,密封板113的厚度过大时,能使隔离板108…的密度降低,但是,施加到第1液晶层114上的电压降低,而且主体配线用的开口部110、111的直径变大,开口率(像素电极的占有比例)下降。这里,从TFT元件102、103、104的耐电压性看,施加10V以上的驱动电压是困难的,而且若考虑到液晶的接通电压必须是5V,因此施加在第1液晶层114上的电压需要达到TFT元件102、103、104的驱动电压的1/2以上。在此场合,由高分子组成的密封板113的介电常数与液晶的介电常数大致相同,因此若密封板113的厚度不是第1液晶层114的厚度以下,则不能在液晶上施加TFT元件102、103、104的驱动电压的1/2以上的电压。另外,第1液晶层114的厚度从应答速度的观点看达到10μm以下为佳。从这些可知,希望密封板113的厚度限制在10μm以下。再者,在此场合,即使在像素间距小到100μm程度的场合,开口率的下降也达到数个百分点以下,影响是小的。
从以上可知,希望密封板113的厚度限制在0.5-10μm。
下面说明上述结构的液晶显示元件的制造方法。
首先,如图10(a)所示,在由硼硅酸玻璃组成的基片101上形成由a-Si构成的TFT元件102、103、104。接着,如图10(b)所示,在上述基片101上,用辊涂机涂敷下述的混合液,形成混合液的膜(厚度4.0μm),所述的混合液是在加入微量手性剂、扭曲间距调整到4.3μm的氟系向列型液晶(Δn为0.065)中溶解2%(重量)的青色的二色性色素的宾主型液晶与住友スリ-エム株式会社制的感光性丙烯酸树脂(高分子前体)以2∶1的比例相溶的混合溶液。上述感光性丙烯酸树脂是透明的,并且利用紫外线、热和催化剂进行固化。
接着,如图10(C)所示,将已形成混合溶液膜105的基片在氮气氛中、利用逐次移动式曝光装置、通过掩膜106进行紫外线曝光,使曝光部的混合溶液膜中的丙烯酸树脂聚合,在该聚合过程中,形成主体配线用密封垫107…,处于该主体配线用密封垫107…之间的开口部110、111,隔离壁109及隔离板108。在图8中以点状的阴影表示在聚合过程中的聚合部分。另外,在聚合过程中,若利用紫外线使丙烯酸树脂聚合,则混合溶液中的丙烯酸树脂通过扩散在液中移动。因此,包围在上述主体配线用密封垫107…中的漏极端子103b、104b上的混合溶液中的丙烯酸树脂聚合而被消耗,而且主体配线用密封垫107阻碍树脂的供给(即,在箭头B方向无树脂移动)。因此,开口部110、111中的混合溶液形成向列液晶。
下面,如图10(d)所示,调制在纯水和异丙醇的容积比10∶1的混合溶剂中溶解5%(重量)的上述丙烯酸树脂的胺系活化剂的溶液,然后用玻璃吸移管将该溶液静滴在混合溶液膜105上,形成膜112。在此状态放置180秒,丙烯酸树脂在混合溶液的表面聚合,如图10(e)所示,形成由丙烯酸高分子膜组成的密封板113。该密封板113与在膜中聚合的上述隔离板108。上述隔离壁10g及上述主体配线用密封垫107是同一组成,而且形成一体。
再者,作为活化剂的溶剂,通过以与混合溶液不相溶的纯水为主的溶剂,保持2种溶液分离的状态。因此,活化剂从膜的表面供给,所以从表面进行聚合。另外,在水中混入少量异丙醇,是为了改善润湿性,溶剂只要是与混合溶液不易相容的溶剂即可,不限于纯水。
进而,在上述聚合过程中,在开口部110、111的表面上也形成极薄的被膜,但是用纯水进行洗净就破坏被膜。因此,如图10(f)所示,在开口部110、111内的漏极端子103b、104b上不残留被膜。另一方面,混合溶液中的丙烯酸树脂在密封板113形成时被消耗掉,因此在密封板113和反射电极102d之间大致上只有宾主型液晶存在。因而,在密封板113和反射电极102d之间形成以水平方向的扭曲向列取向的第1液晶层114。再者,取向方向虽然不一致,但第1液晶层114的厚度是3μm,认为发生约250度的扭曲,并且观察到深的青色。
然后,在105℃干燥基片后,利用溅射法、以将基片101加热到120℃的状态形成由氧化铟锡(ITO)组成的膜,再用光刻技术和利用氯化铁的蚀刻技术形成图案,制成以图8的点划线表示的透明电极115。该透明电极115成为与上述反射电极102d对置的第2像素电极,通过开口部110连接在TFT元件103的漏极端子103b上。再者,看到液晶对TFT元件102的TFT元件103的输出电位差应答,伴随施加电压,颜色变浅。
重复以上的工序,将含有青色、深红色、黄色3色的二色性色素的3层液晶层夹在电极和高分子膜之间而层叠。在图11中示出这样制成的本发明的液晶显示元件的断面图。
具体地说,将第2液晶层126中的二色性色素设定成深红色,而且在青色的第1液晶层114上形成的TFT元件104的漏极上的主体配线用密封垫107和透明电极116上设置主体配线用密封垫121,除此之外,按照与第1液晶层114的制作相同的工序形成含有深红色的宾主型液晶的深红色第2液晶层126,进而设置透明电极125。也以相同的工序形成含有将二色性色素制成黄色的宾主型液晶的第3液晶层127。但是,在形成第3液晶层127时,因为在ITO组成的共电极124和连接TFT元件104的透明电极125之间施加电压,所以不需要主体配线。因此,也可以以使用玻璃的对置基片的通常工序形成第3液晶层127。
由各个晶体管驱动液晶层114、126、127的结果,确认完成了无视差的明亮的反射彩色液晶显示元件。
如以上所述,本发明的液晶显示元件是在基片上涂敷含有液晶和高分子前体的混合液后,使用紫外线照射和活化剂进行聚合,在其上形成电极而制成,与以往相比,能以简单的工序制作,而且不使用对置的玻璃基片,可以在基片上形成液晶层,在基片和密封板之间密封液晶。
另外,对规定部分进行紫外线曝光,通过在膜中使高分子前体聚合的过程形成的隔离板,使表面的密封板薄到1.0μm,所以为了支持该密封板和对置电极而设置。但是,隔离板的间距是20μm,并且直径是3μm,液晶在像素电极上存在的比例(有实际效果的开口率)成为约98%。因此,与以往的用胶囊保持液晶的方法相比,有实际效果的开口率格外变高,另外,隔离板的间距若是50μm以上时,密封板就变形,因此希望隔离板的间距是50μm以下。
在本实施例中,为了要使在形成主体配线的开口部上不形成被膜,也可以先使膜中的丙烯酸树脂聚合,在先使膜表面聚合后,使规定部分曝光,进行膜中的聚合。然而,在此场合,在主体配线的开口部上形成厚的被膜,因此以后需要去除工序。
另外,为了在混合溶液的膜表面进行聚合,在本实施例中使用胺系活化剂,但是只要是在混合溶液中溶解于不相溶的溶剂的物质,都能发挥同样的作用。但是,像胺那样有两亲介质性者向液晶中扩散,能控制被膜的厚度,因此最好是使用有两亲介质性的物质。
作为在膜表面进行聚合的方法,可以采用沿表面流动热风的方法和使活化剂等聚合促进剂气化,使基片表面曝露于气体中的方法进行。另外,作为促进聚合的物质,不限定于上述活化剂,也可以使用聚合引发剂和在反应中形成反应生成物的单体等。
此外,在本实施例中,通过涂敷活化剂的溶液并放置,使表面聚合,但也不限于这种方法,例如,以图8(e)所示的状态,在混合溶液上涂敷聚合引发剂等反应促进物质,对整个基片或开口部以外的部分照射紫外线进行聚合,也能从表面进行聚合。此时,如果照射偏光的紫外线,则在偏光方向上高分子的聚合度具有各向异性,因此,能使高分子上的液晶取向。在本实施例中,以非晶状态扭曲取向,这样进行取向,能少许提高对比度。
另外,在本实施例中是在基片上设置反射膜,但也不限于这样的结构,例如也可以是以透明电极作为基片上的电极,而且在液晶层的最外侧表面上形成反射膜的结构。
可是,在上述本发明的液晶显示元件中,各色的二色性色素的浓度,青色为2%,其他色的色素浓度在施加电压时黑色最接近无色那样调整浓度。具体地说,首先制成填充各色的宾主型液晶的单元(单元间隙3μm),根据测定各个分光吸收光谱的数据,考虑吸光度与浓度成比例,弥补各吸收光谱并计算重叠3层时的色座标。其结果,成为最近似无色的浓度平衡的,是理论上以深红色为3.0%、黄色为2.4%的比例添加时。但是,实际上在3层重叠的单元中,处于上方的液晶层的色调变强,在上述例子中,从上依次存在黄色、深红色、青色,因此看到像黄绿色似的。因而,若制成使黄色和深红色的浓度从上述值以0.04%的倍数减少的16种板,则最近似无彩色的是以黄色为2.28%、深红色为2.96%的比例添加的场合。即,从成为基准的浓度,黄色应减少5%,深红色应减少1.3%。另外,改变液晶层的顺序进行与上述相同的实验时,也证实与处于表面侧的液晶层的色素浓度相比从基准浓度减少者近似无彩色。因此,为了提高液晶显示元件的显示性能,希望进行像上述那样的调整。再者,在白色的场合,带色稍微难以明显,但同样在处于表面的液晶层的颜色中仍然带色,在以白色作为基准调整浓度的场合也希望达到同样的吸光度平衡。
实施例2-2实施例2-1中制成的含有青色(C)、深红色(M)、黄色(Y)的各个二色性色素的液晶层3层叠合形成的本发明的液晶显示元件,利用透明的丙烯酸树脂形成隔离板,在不加电压的黑色显示时,隔离板作为亮点稍微明显。因此,使用在与液晶混合的丙烯酸树脂中分散与各液晶层的二色性色素的颜色相同色的颜料者,以与实施例2-1相同的制造方法层叠CMY3色的3层液晶层。
其结果证实黑显示时没有亮点。另外,在白显示时,看到某些CMY各色的隔离板,但是不易明显。在其他的颜色时,已证实施加电压小、吸收大的液晶层的隔离板几乎看不到。例如,在显示绿色时,深红色的液晶层吸收小,而青色和黄色的液晶层吸收大,因此仅看到深红色的隔离板,看不到其他的隔离板。
再者,为了减少黑显示时的亮点,以往的透射型液晶等往往使用黑隔离板,但是在使用这样的黑隔离板的场合,隔离板常常成为黑点。与此相反,使用如上述颜色的隔离板,明显的隔离板数一平均就相当减少。这就是说,即使是3枚玻璃基片的液晶板重叠结构的液晶显示元件,只要使隔离板的颜色与二色性色素的颜色一致,毫无疑问具有同样的效果。
另外,在使用滤色片的加法混色的场合,需要因地点不同改变隔离板的颜色,加工工艺十分困难,因此难以应用使用如上述颜色的隔离板的技术,但是在层叠型的液晶板的场合,如上所述是容易使用的,而且隔离板的总数多,因此得到的效果极大。
实施例2-3首先说明按照本发明的实施例2-3的制造方法制造的液晶显示元件的结构。
图12是表示液晶显示元件的每1个像素的构成的断面正面图。
图13是表示液晶显示元件的每1个像素的构成的平面图。
图14是表示液晶显示元件的整体的结构的平面图。
该液晶显示元件,例如形成对角线尺寸为5cm,像素间隔为0.3mm,但是在各图中根据需要放大、缩小或模式化进行描述。
该液晶显示元件,如图12所示,在玻璃基片211上设置分别填充青色、深红色或者黄色的宾主型液晶231、241、251的3层液晶层230、240、250而构成。
在上述玻璃基片211上,如图13所示,形成例如由铝组成的源极线212-214、控制极线215、兼作反射膜的像素电极232和中继电极216、217。在玻璃基片211上再设置连接这些源极线212…等的TFT(薄膜晶体管)218-220,如图14所示,在配置在像素显示区域226的周边部的源极线212…、控制极线215上设置施加驱动电压的驱动电路227、228。
另外,作为填充在上述液晶层230中的宾主型液晶231…,例如使用手性向列型液晶,该液晶是在分别作为宾的青色、深红色或黄色的减法混色的3原色二色性色素溶解在作为主的氟系P型向列型液晶中的混合物中,再使扭曲间距成为4.3μm那样添加手性剂而构成的。这些宾主型液晶231…,在非晶状态下显示约250°扭曲的水平取向,在不施加电压的状态,通过吸收红、绿或青的光,显示宾的颜色,而在施加电压的状态,光的吸收量减少,近似于透明,显示白色。
更详细地说,上述液晶层230是在上述玻璃基片211和靠支持部件233支持的密封膜237之间的空隙231’中封入青色的宾主型液晶231构成。上述支持部件233的高度,即宾主型液晶231的厚度设定成3μm,而密封膜237的厚度设定成1μm。
上述支持部件233由设置在像素电极232上的点状隔离板234、主要设置在各像素电极232间的线状隔离板235和设置在TFT219、220上的主体配线密封垫236构成。
更详细地说,点状隔离板234形成6×3μm的长方形的横断面形状,以30μm的间隔规则地配置在像素电极232上。即,借助这样的形状和配置,在能够防止由密封膜237的下垂而引起的宾主型液晶231的厚度不均,同时,确保98%程度的有实效的开口率。再者,该点状隔离板234的面积密度(大小和配置间隔),不限定于上述的情况,根据密封膜237的材质和厚度,只要能确保液晶层230…的层叠和有实效开口率地进行设定就可以。
另一方面,线状隔离板235,形成宽度30μm、跟随源极线212-214配置的同时,如图14所示,跟随在像素显示区域226中的驱动电路227侧的边缘部配置,借此封闭在宾主型液晶231的填充区的驱动电路227侧,而在相反侧形成宾主型液晶231的注入用开口部238,在注入宾主型液晶231后用树脂239密封。
另外,在密封膜237和主体配线密封垫236上,设置内面上形成中继电极221、222的、平均直径或中央部的直径为6μm的锥状开口部236a、236b。
在密封膜237上形成由透明的ITO(氧化铟锡)膜构成的像素电极242。该像素电极242通过上述中继电极221和玻璃基片211上的中继电极216与TFT219连接,被液晶层230、240兼用。即,对于液晶层240用来作为像素电极同时,对于液晶层230用来作为对置电极。
液晶层240、250与上述液晶层230同样地通过由点状隔离板244、254,线状隔离板245、255和主体配线密封垫246、256构成的支持部件243、253支持密封膜247、257,在密封膜237和密封膜247之间的空隙241’、密封膜247和密封膜257之间的空隙251’中分别封入深红色或黄色的宾主型液晶241、251而构成。
但是,这些液晶层240、250与上述液晶层230有以下的不同之处。
点状隔离板244,横断面形状的长边方向相对于液晶层230、250的点状隔离板234、254成垂直方向形成,由此相对于各点状隔离板234…的位置偏移的容许度变大。
线状隔离板245跟随控制极线215,即相对液晶层230、250的线状隔离板235、255在垂直方向配置,同时,跟随像素显示区域226中的驱动电路228侧的边缘部配置,借此封闭在宾主型液晶241的填充区中的驱动电路227侧,而在相反侧形成宾主型液晶241的注入用的开口部248,在注入宾主型液晶241后用树脂249密封。即,通过像上述那样的配置,与点状隔离板244相同,对位置偏移的容许度变大。
主体配线密封垫246堵塞密封膜237和主体配线密封垫236的开口部236b,同时,在密封膜247和主体配线密封垫246上设置平均直径或中央部的直径为14μm的开口部246a,在其内面形成中继电极223。上述开口部246a比主体配线密封垫236的开口部236a大的形成,借此中继电极222和中继电极223能可靠地连接在开口部236a、246a间的平坦部。
主体配线密封垫256堵塞密封膜247和主体配线密封垫246的开口部246a,而不设开口部。
在密封膜247上形成的像素电极252,通过中继电极223、中继电极222、以及玻璃基片211上的中继电极217与TFT 220连接。即,要想上述像素电极242和像素电极252通过中继电极221等与TFT219、220连接,可以仅在同一玻璃基片211上形成各个TFT219…,从而可以达到降低制造费用的目的。
在密封膜257上,形成在各像素中共同的共对向电极224,以及在丙烯酸树脂225a中分散二氧化硅组成的微粒225b的保护膜225。
下面说明上述液晶显示元件的制造方法。
(1)如图15(a)所示,在由厚0.3mm的PET(聚对苯二甲酸乙二醇酯)构成的板部件261上,在对应主体配线密封垫236的开口部236a、236b的部分上形成由铬组成的遮光膜262、263,然后作为脱模剂264,用旋转涂布机涂敷住友スリ-·エム(株)制的含氟树脂(RF2000),厚度约0.3μm,进行干燥。
(2)如图15(b)所示,用旋转涂布机将富士药品(株)制的丙烯酸系的负抗蚀剂FVR涂敷成1.0μm的厚度,然后在80℃使溶剂挥发而干燥,形成密封膜237。
(3)另一方面,如图15(c)所示,在预先形成TFT 218-220和像素电极232等的玻璃基片211上,利用光刻法形成与上述密封膜237相同的FVR构成的高3μm的支持部件233。
(4)利用O2引导分别对上述板部件261的密封膜237和玻璃基片211上的支持部件233进行1分钟的氧等离子体处理,提高两者的结合性。
(5)如图15(d)所示,在对密封膜237和支持部件233施加压力而使其贴紧的状态,用接触曝光机从板部件261侧照射紫外线,各自进行聚合、硬化的同时,彼此粘合,然后利用烘箱在150℃加热1小时,进一步硬化。但是,对应于密封膜237上的板部件261上的遮光膜262、263的部分,因为紫外线被遮光,不能聚合,保持不硬化状态。
(6)从开口部238,如图15(e)所示,通过真空注入在玻璃基片211和密封膜237之间的空隙231’中注入青色的宾主型液晶231,然后用树脂239将开口部238封口。再者,该宾主型液晶231的注入,可以在延展的密封膜237的转印后或像素电极242的形成后进行,或者也可以在密封膜247、257的转印后伴随宾主型液晶241、251的注入进行。
(7)如图15(f)所示,从端部将板部件261慢慢剥下,将密封膜237转印在基片侧后,漫到负抗蚀剂的显像液中,在密封膜237上的上述紫外线被遮光的部分上形成开口部236b、开口部236a。
(8)如图15(g)所示,用溅射法、在100℃的基片温度下,在密封膜237上形成ITO膜,利用光刻法和蚀刻法形成像素电极242和中继电极221、222。
像以上那样进行,形成液晶层230。
(9)将与上述(1)-(8)相同的工序重复2次,形成液晶层240、250。
这里,在(3)的光刻法的工序中,使用各种遮光图案不同的遮光层,形成上述那样的形状和配置的支持部件243、253。
(10)在共对置电极224上,利用丝网印刷将分散1%的粒径约3μm的二氧化硅微粒225b的丙烯酸树脂225a涂敷成20μm厚度,形成保护膜225,在防止共对置电极224的损伤和由水分透过共对置电极224及密封膜257而引起的宾主型液晶251等劣化,同时,增加散射性,使视野角扩大。即,宾主型液晶251用密封膜257密封,因此可以不像以往那样设置玻璃等的对置基片,容易实现液晶显示元件的轻量化和薄型化。
上述制成的液晶显示元件的显示,像以下那样进行。
以共对置电极224的电位作为基准,对像素电极252施加相应于对液晶层250的像素信号的电压V3,以像素电极252的电位作为基准,对像素电极242施加相应于对液晶层240的像素信号的电压V2,以像素电极242的电位作为基准,对像素电极232施加相应于对液晶层230的像素信号的电压V1。
即,若以共对置电极224的电位作为基准,对各像素电极252、242、232施加V3、V3+V2和V3+V2+V1的电压,则能对各宾主型液晶231…施加独立的电压。
另外,为了防止宾主型液晶231…的劣化,在进行交流驱动的场合,以V1-V3作为正,只要施加(±V3)、(±V3)+(±V2)和(±V3)+(±V2)+(±V1)的电压即可。
进而,为了减小施加电压的绝对值,抑制驱动电路227等的输出电压降低,只要在彼此相邻的液晶层230…上使施加的电压极性颠倒,施加(±V3)、(±V3)-(±V2)和(±V3)-(±V2)+(±V1)的电压即可。
再有,如上所述,在各液晶层230…上不兼用像素电极242…,通过绝缘膜在各密封膜237…上设置对置电极和像素电极的场合,可以仅在各个对置电极和像素电极之间施加V1、V2和V3的电压。
这里,利用减法混色进行彩色图像显示,因此在以RGB(红、绿、青)的图像数据提供图像信号的场合,进行补数演算变换成CMY(青、深红、黄)的图像数据,可以施加相应于该图像数据的电压。具体地说,例如在8色显色的场合,如果所给予的RGB数据是(1,0,0),则可以施加相应于其补数(0,1,1)的电压。
像这样做,作为V1-V3,通过施加0-5V的电压,能够显示反射率为43%、对比度为12、在明亮且高对比度下,无视差引起的色差而且明亮和对比度的均匀性高的全彩色图像。
在上述实施例2-3中,宾主型液晶231…,和密封膜237…的厚度分别设定为3μm和1μm,但并不限于此,例如可以像以下那样设定。
密封膜237…过薄时,在形成ITO的像素电极242…时等变形,容易产生皱折和裂纹,因此作为密封膜237…,在使用上述那样的材料时,最好是达到0.5μm程度以上。但是,在使用其他材料时,根据其物性,也可以比此薄些。
另一方面,密封膜237…过厚时,从与主体配线密封垫246的大小相关的开口率和要施加的驱动电压的观点看,也最好像以下那样设定。
即,液晶层230上的密封膜237和主体配线密封垫236的开口部236a、236b,为了在其内面可靠地形成中继电极221、222,最好是将其形状制成锥形状,同时,将平均直径或中央部的直径设定为主体配线密封垫236的高度+密封膜237的厚度以上,另外,在液晶层240上的密封膜247和主体配线密封垫246的开口部246a中,最好是设定为其2倍的直径。可是,该直径越大,主体配线密封垫236越变大,有实效的开口率减少,因此,设显示像素间距为100-300μm,上述直径最好是在30-50μm。因此,主体配线密封垫236的高度(即宾主型液晶231…的厚度)+密封膜237的厚度的合计,最好是设定在20μm为宜。
另外,驱动电压的施加,是对夹住宾主型液晶231…和密封膜237…两者的像素电极232…进行的,因此密封膜237一方若比宾主型液晶231厚,则实际上作用在宾主型液晶231上的电压是施加的驱动电压的1/2以下,这是不可取的。因此,密封膜237…的厚度应设定为与宾主型液晶231的厚度同等程度以下。
因此,归根到底,密封膜237…的厚度以设定在10μm以上为宜,另外,如实施例2-3在宾主型液晶231…的厚度设定为3μm的场合,最好设定在3μm以下。
另外,在上述实施例2-3中,作为密封膜237…,示出使用负保护层的例子,但是不限于此,也可以使用正保护层,另外,如果是透明材料,例如也可以将无机的电介质膜等蒸镀在板部件261上,将其转印在玻璃基片211侧,用粘结剂粘结在支持部件233…上。在此场合,开口部236b…的形成可以在向支持部件233…的粘结之前或者粘结之后,用光刻法和蚀刻法等形成。
另外,为了使密封膜237容易从板部件261上剥离,示出使用含氟树脂作为脱模剂264的例子,但是也可以例如用硅烷偶联剂之类的单分子膜对板部件261进行表面处理,或者也可以涂敷PVA(聚乙烯醇)等容易溶解于水等的膜,在剥离密封膜237时浸入水等中,使PVA等溶解。
另外,也可以不从板部件261上剥离密封膜237,将板部件261溶解到溶液中进行去除。即,作为板部件261,使用例如(株)林原制的茁霉多糖(プルラン),将密封膜237和支持部件233粘结后(图15(d))或注入宾主型液晶231后(图15(e)),将整个板浸入纯水中,数分钟内板部件261溶解,仅残留密封膜237,以此进行密封膜237向玻璃基片211侧的转印。在此场合,不需要脱模处理和剥离处理,而且即使密封膜237和支持部件233的结合力弱,也能容易地进行均匀的转印。
另外,虽然示出用遮光膜262、263将紫外线遮光,阻止聚合后,通过显像而形成密封膜237…的开口部236b…的例子,但是也可以在对应于板部件261上的开口部236b…的部分上不涂敷脱模剂那样进行,或者也可以该部分的密封膜237…不转印在玻璃基片211侧上那样进行。
即,更具体地说,在使用脱模剂264的场合,将脱模剂264涂敷在板部件261上后,利用光刻法等除去对应于开口部236b…的部分的脱模剂264,或者在用单分子膜对板部件261进行表面处理的场合,预先在对应于板部件261上的开口部236b…的部分上形成保护层,在用单分子膜进行表面处理后,除去上述保护层,如果想要涂敷密封膜237…,在将密封膜237…转印在基片侧时,对应于密封膜237…的开口部236b…的部分不是原封不动地附着在板部件261上被转印,因此不进行上述那样的显像处理,就能形成开口部236b…。
另外,由负型抗蚀剂组成的密封膜237和支持部件233的粘结,示出以对它们施加压力而贴紧的状态通过聚合而进行的例子,但是薄地涂敷由其他材料组成的粘结树脂,也可以进行粘结,特别是用溶剂稀释紫外线固化型的粘结剂,旋转薄涂敷0.1-0.3μm,进行紫外线照射,对于提高粘结性也是有效的。另外,使用粘结剂的场合就不用说了,即使在像本实施例2-3那样使同种材料聚合、粘结的情况下,若进行严密地分析,在密封膜和支持部件之间也形成分子量和组成等不同的粘结层。
另外,不限于如上述将密封膜237…贴合后注入宾主型液晶231…,也可以在将密封膜237…进行贴合时封入宾主型液晶231…。
即,如图16所示,为了使宾主型液晶231…能容易移动,作为支持部件233…仅设置点状隔离板234…和主体配线密封垫236…,通过印刷等将紫外线固化性密封树脂265涂敷在像素显示区域226的周边部上后,用分配器精确地秤量并滴下相当于空隙231’…的容积量的宾主型液晶231…,在真空中贴合密封膜237…所形成的板部件261…,同时,挤压板部件261,压碎密封树脂265后,返回到大气压,对密封树脂265照射紫外线,使之固化,将密封膜237…粘结,可以剥离板部件261。
在此场合,封入的宾主型液晶231…形成某种程度的减压状态,点状隔离板234…等和密封膜237…大体上成粘附状态,因此如上所述通过照射紫外线等,即使线状隔离板235…等和密封膜237不粘合,也不会使密封膜237…破损,从板部件261上剥离后能较容易地进行转印,尤其,如上所述,在水中溶解PVA进行脱模的场合等,能更容易进行转印。
另外,示出支持部件233…在玻璃基片211侧形成的例子,但是也可以与密封膜237…一起在板部件261侧形成后,转印在玻璃基片211侧上。
另外,代替上述密封膜257、共对置电极224和保护膜225,与以下说明的实施例2-4相同,也可以设置已形成共对置电极224的玻璃基片271。
实施例2-4
首先说明按照本发明的实施例2-4的制造方法制造的液晶显示元件的结构。
图17是表示液晶显示元件的每一个像素的结构的断面正面图。
图18是表示液晶显示元件的整体结构的平面图。
关于具有与上述实施例2-3的液晶显示元件相同的机能的构成部件,用同一符号表示,省略详细说明。
在该液晶显示元件中,如图17所示,代替实施例2-3的密封膜257、共对置电极224和保护膜225,设置已形成共对置电极224的玻璃基片271。另外,在液晶层250的支持部件253中,仅设置点状隔离板254和主体配线密封垫256,另一方面,如图18所示,在图像显示区域226的周边部,利用密封树脂272粘结液晶层240的密封膜247和上述玻璃基片271,封入宾主型液晶251。
另外,在该液晶显示元件的制造过程中,如下所述,设置已形成排出口273a、274a(图18)的固形膜去除部273、274。
下面说明上述液晶显示元件的制造方法。
实施例24的液晶显示元件的制造方法,与本发明人在特原页平6-286324中提出的制造方法相同,是在玻璃基片211上层叠固形膜233’…和密封膜237…,然后除去上述固形膜233’…,形成空隙231’…,在该空隙231’…中填充宾主型液晶231…,不同之处是不利用显像除去上述固形膜233’,而是利用气化将其除去。
(1)首先,如图19(a)所示,在预先形成TFT218-220和像素电极232等的玻璃基片211上,涂敷正型光致抗蚀剂,该光致抗蚀剂是在聚苯二醛(PPA)中添加1%(重量)的鎓盐即三苯锍六氟锑(Ph3S+-SbF6),溶解在环已酮中形成的,在80℃使溶剂挥发干燥,形成厚3μm的固形膜233’。
在其上涂敷日本合成橡胶(株)制的丙烯酸系的正型光致抗蚀剂(例如JSR-126),厚度为1.0μm,在85℃干燥,形成密封膜237。该密封膜237的厚度不限于上述厚度,如上述实施例2-3中说明的那样,以设定在10μm以下为佳,更希望设定在0.5-3μm。
构成上述固形膜233’的聚苯二醛,例如像在Hiroshi Ito and ReinholdSchwalm,J.Electrochem.Soc.,Vol.136,No1,PP.241-245,1989中所说明的那样,是使邻苯二醛聚合的聚苯二醛,具有下述(化学式1)的结构。该聚苯二醛,照射波长254nm、强度为5mJ/cm2的紫外线,在100℃加热时,就解聚,具有成为是单体的苯二醛的性质。
另外,构成密封膜237的丙烯酸系的正型光致抗蚀剂,经强度为100mJ/cm2的紫外线的i线照射,具有不容易溶解于显像液的性质。
(2)如图19(b)所示,除了密封膜237和主体配线密封垫236的开口部236a、236b,以及对应于固形膜除去部分273的排出口273a的部分之外,通过已形成遮光膜281a的光掩蔽物281,用超高压水银灯照射强度为100mJ/cm2的紫外线的i线。
(3)在固形膜233’和密封膜237上的已照射上述紫外线的部分溶解在显像液中,如图19(c)所示,在形成开口部236a、236b的同时,形成宽为100μm的排出口273a(图18)。另外,该排出口273a可以在图像显示区域226的周边形成数个,也可以更迅速地除去后述的固形膜233’。
(4)如图19(d)所示,通过在对应于支持部件233(点状隔离板234、线状隔离板235和主体配线密封垫236)的部分已形成遮光膜282a的光掩蔽物282,对成为固形膜233’上的支持部件233部分以外的部分,即形成填充宾主型液晶231的空隙231’的部分照射波长254nm、强度5mJ/cm2的紫外线。借此,已照射紫外线部分的固形膜233’进行解聚而单体化,成为液状。在此场合,密封膜237对于像上述强度较低的紫外线照射是稳定的,因此不发生变化,能够容易地仅使固形膜233’进行选择性地解聚。
(5)在真空干燥机中,在加热到80℃的同时,减压到0.4大气压,固形膜233’中的上述单体化的部分气化,不到1分钟从固形膜除去部273的排出口273a排出。因此,如图19(e)所示,固形膜233’中的气化的部分形成封入宾主型液晶231的空隙231’,而利用在固形膜233’中的残留部分形成支持密封膜237的支持部件233。
这里,作为上述单体化部分的固形膜233’,在设置进行通常的光刻法的开放的空间中的场合,也取决于鎓盐浓度,一般说来,在从常温至100℃的温度,在常压下比较迅速地进行气化,与化相反,如上述那样在被密封膜237覆盖的场合,在常压,为了进行气化例如需要花费1小时。因此,如上所述,通过进行减压处理,不到1分钟就能完全气化。
(6)在180℃对支持部件233和密封膜237加热处理1小时,进一步进行聚合,使之更高分子化。
(7)如图19(f)所示,利用溅射法,100℃的基片温度,在密封膜237上进行ITO膜成膜,利用光刻法和蚀刻法形成像素电极242和中继电极221、222。再者,该像素电极242等的形成,如果是在上述开口部236a、236b的形成后,则也可以从固形膜233’的去除等之前进行。
(8)通过反复进行与上述(1)-(7)相同的工序,如图1g(g)所示,形成具有空隙241’的液晶层240。
这里,在(2)和(4)曝光工序中,使用遮光图案不同的光刻法,如上所述在形成支持部件243和密封膜247的同时,在密封膜247上形成排出口274a(图18)。
(9)进而反复进行与(1)-(6)相同的工序,仅形成作为液晶层250的支持部件253的点状隔离板254和主体配线密封垫256。
(10)利用印刷等在图像显示区域226的周边部涂敷密封树脂272,将已形成共对置电极224的玻璃基片271贴合在一起,形成已设置具有开口部275的空隙251’的液晶层250。
(11)将固形膜除去部273划痕并切断,从断面部上的空隙231’的开口部273b,利用真空注入将与实施例2-3相同的青色的宾主型液晶231注入后,用树脂239封住开口部273b。
(12)同样地将固形膜除去部274划痕并切断,从断面部上的空隙241’的开口部274b,用真空注入将深红色的宾主型液晶241注入后,用树脂249封住开口部274b。
(13)用真空注入,从开口部275注入黄色的宾主型液晶251后,用树脂259封住开口部275。
对像上述那样制成的液晶显示元件,施加与实施例2-3相同的电压,能够显示反射率为40%、对比度为12,在明亮且高对比度下,无视差引起的色差而且明亮和对比度的均匀性高的全色图像。
但是,如上所述,在聚苯二醛(PPA)的正型光致抗蚀剂中使用鎓盐的场合,保持率有某些降低,看到闪烁,但是在实用上是不妨碍的。
再者,在上述实施例2-4中,作为固形膜233’,使用添加了化学增幅光致抗蚀剂的一种的鎓盐的PPA,但是并不限于此。
即,上述PPA是极高灵敏度,经紫外线照射从聚合物解聚成单体,在已开放的空间,即使常温、常压也容易气化,容易形成微细的图案,因此是适用于本发明材料之一,但是并不限于此种,只要是通过紫外线和电子束、X射线等能量线的照射,以及加热、减压或者伴随加热的能线照射等处理,容易分解和升华等气化的材料,而且在其上能容易涂敷密封膜237的固形物,各种材料都可以使用。
具体地说,除了上述PPA之外,PPA的氯和溴取代物,如同上述的HiroshiIto and Reinhold Schwalm,J.Electrochem.Soc.,Vol.136,Nol,PP.241-45,1989中记载的那样,也具有经紫外线照射分解成单体、经100℃加热发生气化的性质,另外,聚碳酸酯和聚甲基丙烯酸等也具有同样的性质,因此都能适用。
另外,支持部件233…不限于上述那样使光致抗蚀剂硬化而形成,也可以预先用稳定的材料形成。在此场合,作为固形膜233’…,不限于经紫外线照射等要保持气化性而进行变化的物质,例如也可以使用樟脑等升华性物质等。
另外,密封膜237…也不限于如上所述在照射紫外线后、通过显像形成开口部236a…,例如也可以是利用光刻法和蚀刻法等能形成开口部236a…。但是,必须是通过用于使固形膜233’气化的紫外线照射和加热等处理不发生液化和气化等变化的材料。
另外,代替已形成上述共对置电极224的玻璃基片271,与实施例2-3相同可以设置密封膜257、共对置电极224、保护膜225。
另外,在上述各实施例中,示出层叠3层液晶层230、240、250的例子,但是即使是2层和4层以上也可得到同样的效果,另外,仅设置1层也可以得到装置的薄型化和制造工序简化等效果。
另外,虽然说明了具备TFT 218…的有源矩阵液晶显示元件,但是,也能适用于无源矩阵液晶显示元件。
另外,作为液晶材料,也不限于像上述的宾主型液晶,各种液晶都能适用。
另外,反射型的液晶显示元件,因为需要高的光透射率,所以意义特别大,但也不限于此,也能适用于透射型(背照光型)的液晶显示元件。
权利要求
1.液晶显示元件,它是在基片上配置液晶层的液晶显示元件,其特征在于,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述粘结剂由光感应性高分子材料组成。
2.液晶显示元件,它是在基片上配置液晶层的液晶显示元件,其特征在于,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述微胶囊的壁膜和上述粘结剂由光感应性高分子材料组成。
3.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠数层液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接构造的液晶显示元件,其特征在于,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述粘结剂由光感应性高分子材料组成。
4.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接构造的液晶显示元件,其特征在于,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,上述微胶囊的壁膜及上述粘结剂由光感应性高分子材料组成。
5.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接构造的液晶显示元件,其特征在于,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,在上述基片上的像素电极和液晶层之间、或者在配置在液晶层间的像素电极和液晶层之间设置绝缘层,进而上述粘结剂和上述绝缘层由光感应性高分子材料组成。
6.权利要求5所述的液晶显示元件,其特征在于,上述粘结剂和上述绝缘层由相同的光感应性高分子材料组成。
7.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接的液晶显示元件,其特征在于,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,在上述基片上的像素电极和液晶层之间、或者在配置在液晶层间的像素电极和液晶层之间设置绝缘层,进而上述微胶囊的壁膜和上述粘结剂及上述绝缘层由光感应性高分子材料组成。
8.权利要求7所述的液晶显示元件,其特征在于,上述微胶囊的壁膜和上述粘结剂及上述绝缘层由同一光感应性高分子材料组成。
9.权利要求1-8中所述的液晶显示元件,其特征在于,上述光感应性高分子材料是光分解性高分子材料。
10.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接构造的液晶显示元件,其特征在于,上述液晶层是在由光分解性高分子材料组成的高分子树脂相中分散、保持液晶滴而构成的高分子分散型液晶层。
11.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接构造的液晶显示元件,其特征在于,上述液晶层是在由光分解性高分子材料组成的高分子树脂相中分散、保持液晶滴而构成的高分子分散型液晶层,在上述基片上的像素电极和液晶层之间,或者在配置在液晶层间的像素电极和液晶层之间设置绝缘层。
12.液晶显示元件,是在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域的开口部电连接构造的液晶显示元件,其特征在于,上述液晶层是在由光分解性高分子材料组成的高分子树脂相中分散、保持液晶滴而构成的高分子分散型液晶层,在上述基片上的像素电极和液晶层之间,或者在配置在液晶层间的像素电极和液晶层之间设置由光分解性高分子材料组成的绝缘层。
13.权利要求5-9或者11或者12所述的液晶显示元件,其特征在于,以上述液晶层的厚度作为1时,上述绝缘层的厚度是0.05以上、1以下。
14.权利要求1-12所述的液晶显示元件,其特征在于,上述液晶是含有二色性色素的液晶,或者选择性反射可见光的手征性向列液晶。
15.权利要求1-12所述的液晶显示元件,其特征在于,上述液晶是含有二色性色素的液晶,或者是选择性反射可见光的手征性向列液晶,在上述基片或者距上述基片最远的液晶层的外侧配置阻断紫外线但透过可见光的滤光片。
16.权利要求2-12所述的液晶显示元件,其特征在于,上述液晶显示元件是在上述基片上层叠在液晶中含有青色或深红色的二色性色素的第1液晶层、在液晶中含有与包含在上述第1液晶层中的色素不同的深红色或青色的任一种二色性色素的第2液晶层、在液晶中含有黄色的二色性色素的第3液晶层,上述第3液晶层配置在距离具有驱动元件的上述基片最远的位置。
17.权利要求1-12所述的液晶显示元件,其特征在于,上述液晶显示元件是在上述基片上层叠在液晶中含有青色或深红色的二色性色素的第1液晶层、在液晶中含有与包含在上述第1液晶层中的色素不同的深红色或青色的任一种二色性色素的第2液晶层、以及在液晶中含有黄色的二色性色素的第3液晶层,使上述第3液晶层距离具有驱动元件的上述基片最远配置,同时,在上述基片或者在上述第3液晶层的外侧配置阻断紫外线但透过可见光的滤色片。
18.液晶显示元件的制造方法,在基片上层叠2层以上的液晶层的液晶显示元件的制造方法中,其特征在于,具备以下工序在已形成控制像素电极的电位的第1和第2驱动元件的基片上形成与上述第1驱动元件连接的第1像素电极的第1电极形成工序;在已形成上述第1像素电极的基片上,展开混合内包液晶的微胶囊和光感应性高分子材料的混合物,在上述基片上形成第1液晶层的第1液晶层形成工序;对上述第1液晶层进行掩蔽曝光并显像,除去上述驱动元件的输出端子上部的液晶层,形成开口部的开口部形成工序;以及在已形成开口部的第1液晶层上用导电性材料进行被膜,形成透明的第2像素电极以及经由上述开口部电连接该第2像素电极和上述第2驱动元件的输出端子的连接线的第2电极形成工序。
19.液晶显示元件的制造方法,在基片上层叠2层以上的液晶层的液晶显示元件的制造方法中,其特征在于,具备以下工序在已形成控制像素电极的电位的第1和第2驱动元件的基片上形成与上述第1驱动元件连接的第1像素电极的第1电极形成工序;在已形成上述第1像素电极的基片上,展开混合内包液晶的微胶囊与光感应性高分子材料的混合物,在上述基片上形成第1液晶层的第1液晶层形成工序;在上述第1液晶层上展开作为绝缘层材料的光感应性高分子材料,形成绝缘层后,进行掩蔽曝光并显像,除去上述驱动元件输出端子上部的液晶层和绝缘层,形成开口部的开口部形成工序;在已形成上述开口部的绝缘层上,用导电性材料形成被膜,形成透明的第2像素电极以及经由上述开口部电连接第2像素电极和上述第2驱动元件的输出端子的连接线的第2电极形成工序。
20.液晶显示元件的制造方法,在基片上层叠3层液晶层的液晶显示元件的制造方法中,其特征在于,具备以下工序在已设置第1像素电极和第1、第2、第3驱动元件的基片上,展开混合内包含有青色或深红色的二色性色素的液晶的微胶囊与光感应性高分子材料的混合物,形成第1液晶层的工序;对上述第1液晶层进行掩蔽曝光并显像,除去上述第1液晶层中的上述第2驱动元件和第3驱动元件的输出端子上部的液晶层,形成第1、第2开口部的工序;在已形成上述第1开口部的第1液晶层上,用导电性材料进行被膜,形成透明的第2像素电极以及经由上述第1开口部连接该第2像素电极和上述第2驱动元件的输出端子的连接线的工序;在已形成上述第2像素电极和连接线的基片上,展开混合内包含有在青色或深红色中与第1液晶层不同的颜色的二色性色素的液晶的微胶囊和光感应性高分子材料的混合物,形成第2液晶层的工序;对上述第2液晶层进行掩蔽曝光并显像,除去上述第2液晶层中的上述第3驱动元件的输出端子上部的液晶层,形成第2开口部的工序;在已形成上述第2开口部的第2液晶层上,用导电性材料进行被膜,形成透明的第3像素电极以及经由上述第2开口部连接上述第3像素电极和上述第3驱动元件的输出端子的连接线的工序;以及在上述第3像素电极上配置具有包含黄色的二色性色素的液晶的第3液晶层的工序。
21.液晶显示元件的制造方法,在基片上层叠3层液晶层的液晶显示元件的制造方法中,其特征在于,具备以下工序在已设置第1像素电极和第1、第2、第3驱动元件的基片上,展开混合内包含有青色或深红色的二色性色素的液晶的微胶囊与光感应性高分子材料的混合物,形成第1液晶层的工序;在上述第1液晶层上,展开作为绝缘层形成材料的光感应性高分子材料,形成绝缘层后,进行掩蔽曝光并显像,除去上述第2、第3驱动元件的输出端子上部的液晶层和绝缘层,形成第1、第2开口部的工序;在已形成上述第1开口部的绝缘层上,用导电性材料进行被膜,形成透明的第2像素电极以及经由上述第1开口部连接上述第2像素电极和上述第2驱动元件的输出端子的连接线的工序;在上述第2像素电极、或者上述第2像素电极和连接线的上面,展开混合内包液晶的微胶囊和光感应性高分子材料的混合物,形成第2液晶层的工序,上述液晶含有与第1液晶层中的青色和深红色不同的二色性色素;在上述第2液晶层上,展开作为绝缘层形成材料的光感应性高分子材料,形成绝缘层后,进行掩蔽曝光并显像,除去上述第2液晶层和第2绝缘层中的上述第3驱动元件的输出端子上部的液晶层和绝缘层,形成第2开口部的工序;在已形成上述第2开口部的第2液晶层上,用导电性材料进行被膜,形成透明的第3像素电极以及经由上述第2开口部连接上述第3像素电极和上述第3驱动元件的输出端子的连接线的工序;以及在上述第3像素电极、或者上述第3像素电极和连接线的上面配置具有包含黄色的二色性色素的液晶的第3液晶层的工序。
22.权利要求1 9或21所述的液晶显示元件的制造方法,其特征在于,以与各个绝缘层接触的液晶层的厚度作为1时,上述各个绝缘层形成0.05以上、1以下的厚度。
23.权利要求18-22所述的液晶显示元件的制造方法,其特征在于,所述光感应性高分子材料是光分解性高分子材料,开口部的形成方法是,在成为开口部形成对象的液晶层、或者成为开口部形成对象的液晶层和绝缘层中,仅对要设置开口部的驱动元件的输出端子上部曝光,然后进行显像,除去上述输出端子上部的液晶层、或者液晶层和绝缘层,形成开口部。
24.液晶显示元件,它是在基片和密封板之间填充液晶构成液晶层、而且以存在于上述基片和上述密封板之间的支持部件支持密封板构造的液晶显示元件,其特征在于,上述支持部件和上述密封板由同一组成的高分子组成,同时,两者形成一体,以此保持上述液晶层,而且在与上述密封板的密封面不同的面上形成电极,再由该电极、上述支持部件、上述密封板和上述液晶层构成显示层。
25.权利要求24所述的液晶显示元件,其特征在于,上述密封板的厚度是0.5-10μm。
26.权利要求24所述的液晶显示元件,其特征在于,设置数层上述显示层,而且在各显示层的液晶层中含有各种不同颜色的二色性色素。
27.权利要求24所述的液晶显示元件,其特征在于,上述液晶层形成3层结构,而且这3层的液晶层中至少靠近基片的2层液晶层由上述结构的显示层保持。
28.权利要求27所述的液晶显示元件,其特征在于,在上述3层的液晶层中含有各种不同颜色的二色性色素,而且该二色性色素是青色、深红色或者黄色。
29.权利要求28所述的液晶显示元件,其特征在于,在上述基片的表面上或者在3层的液晶层中位于最外侧的液晶层上形成反射膜。
30.权利要求28所述的液晶显示元件,其特征在于,上述各显示层中的支持部件的颜色是与上述各液晶层中包含的二色性色素同色。
31.权利要求30所述的液晶显示元件,其特征在于,上述支持部件由分散有颜料的感光性高分子树脂制成。
32.权利要求29所述的液晶显示元件,其特征在于,限制3层液晶层的二色性色素的吸光度的比例使得与将各个液晶层的吸光度加在一起时成为无彩色的场合的比例相比,越是处于元件表面侧的液晶层越小。
33.液晶显示元件的制造方法,其特征在于,包括以下工序在基片的一面涂敷高分子前体与液晶的混合溶液,在基片上形成混合溶液的膜的膜形成工序;使上述高分子前体在上述膜表面聚合,制作密封板的密封板制作工序;对上述基片的规定部位进行紫外线曝光,使上述高分子前体在上述膜中聚合制作支持部件的支持部件制作工序;以及在上述密封板上制作电极的电极制作工序。
34.权利要求33所述的液晶显示元件的制造方法,其特征在于,在上述基片上形成具有输出端子的驱动元件、在上述膜形成工序中在上述驱动元件上也形成由高分子前体和液晶组成的混合溶液的膜的场合,在上述支持部件制作工序中的紫外线曝光时,至少对除了上述驱动元件的输出端子附近的区域和对应于遍及设置在基片上的像素配置的点状或线状图案的区域进行紫外线曝光,使上述高分子前体在上述膜中聚合。
35.权利要求33所述的液晶显示元件的制造方法,其特征在于,在上述密封板的制作工序中,在上述混合溶液的膜上涂敷在与该混合溶液不相溶的溶剂中溶解促进上述高分子前体聚合的物质形成的溶液,在膜表面使高分子前体聚合。
36.权利要求35所述的液晶显示元件的制造方法,其特征在于,在上述基片上形成具有输出端子的驱动元件、在上述膜形成工序中在上述驱动元件上也形成由高分子前体和液晶组成的混合溶液的膜的场合,涂敷在与上述混合溶液不相溶的溶剂中溶解促进上述高分子前体通过紫外线曝光而聚合的物质形成的溶液后,对除了上述输出端子附近的区域进行紫外线曝光,使上述高分子前体在上述膜中聚合,借此使除了上述输出端子附近的区域的高分子前体大体上完全聚合后,使膜表面的高分子前体聚合。
37.权利要求36所述的液晶显示元件的制造方法,其特征在于,对除了上述输出端子附近的区域照射紫外线,使膜表面的高分子前体聚合。
38.权利要求36所述的液晶显示元件的制造方法,其特征在于,照射偏振光紫外线,使膜表面的高分子前体聚合。
39.权利要求35所述的液晶显示元件的制造方法,其特征在于,上述高分子前体由丙烯酸分子组成,溶剂以纯水作为主成分,促进聚合的物质由胺组成。
40.液晶显示元件的制造方法,它是在通过支持部件设置的基片和密封膜之间封入液晶的液晶显示元件的制造方法,其特征在于,包括以下工序在上述基片上形成支持部件的工序;在上述板状部件上形成上述密封膜的工序;将上述板状部件上形成的密封膜转印在上述基片上形成的支持部件上的转印工序;以及在上述基片和上述密封膜之间封入上述液晶的液晶封入工序。
41.液晶显示元件的制造方法,它是在通过支持部件设置的基片和密封膜之间封入液晶的液晶显示元件的制造方法,其特征在于,包括以下工序在板状部件上形成密封膜的工序;在上述板状部件上形成的密封膜上形成上述支持部件的工序;将上述板状部件上形成的密封膜和上述支持部件转印在上述基片上的转印工序;以及在上述基片和上述密封膜之间封入上述液晶的液晶封入工序。
42.权利要求40或41所述的液晶显示元件的制造方法,其特征在于,在上述板状部件上形成密封膜之前,具有在上述板状部件上施行离膜处理的工序。
43.权利要求40所述的液晶显示元件的制造方法,其特征在于,在上述转印工序中,将在上述基片上形成的支持部件和上述被转印的密封膜粘结。
44.权利要求41所述的液晶显示元件的制造方法,其特征在于,在上述转印工序中,将上述基片和被转印的支持部件粘结。
45.权利要求43所述的液晶显示元件的制造方法,其特征在于,上述支持部件和上述密封膜由经能量线照射具有聚合性的材料构成,上述粘结是在使上述支持部件和上述密封膜粘附的状态、照射能量线发生聚合而进行的。
46.权利要求40或41所述的液晶显示元件的制造方法,其特征在于,在上述转印工序之前,在上述基片上的液晶封入区域的周边部,形成粘结上述基片和上述密封膜的密封剂层,在被上述密封剂包围的区域中填充上述液晶后,通过转印在上述板状部件上形成的密封膜、或者密封膜和支持部件,同时进行上述转印工序和上述封入工序。
47.权利要求40所述的液晶显示元件的制造方法,其特征在于,进而,通过将以下工序分别至少进行1次,形成数个液晶封入层,即,在已经转印的上述密封膜上形成新的支持部件的工序;在板状部件上形成新的密封膜的工序;将在上述板状部件上形成的新密封膜转印在在上述密封膜上形成的新支持部件上的工序;以及在上述两个密封膜之间封入液晶的工序。
48.权利要求41所述的液晶显示元件的制造方法,其特征在于,进而,通过将以下工序分别至少进行1次,形成数个液晶封入层,即,在板状部件上形成新的密封膜的工序;在上述板状部件上已形成的新的密封膜上形成新的支持部件的工序;将在上述板状部件上形成的新密封膜和支持部件转印在已被转印的密封膜上的转印工序;以及在上述两个密封膜之间封入液晶的封入工序。
49.权利要求40或41所述的液晶显示元件的制造方法,其特征在于,所述密封膜由感光性材料组成,同时,通过所述密封膜的曝光并显像,在上述密封膜上形成通过该密封膜进行导电的电极用的开口部。
50.权利要求40或41所述的液晶显示元件的制造方法,其特征在于,在上述转印工序中,通过阻止在上述板状部件上已形成的上述密封膜上的规定部分的转印,在上述密封膜上形成通过该密封膜进行导电的电极用的开口部。
51.权利要求50所述的液晶显示元件的制造方法,其特征在于,进而,在所述板状部件上形成所述密封膜的工序之前,具有仅对转印上述板状部件上的密封膜的部分进行离膜处理的工序。
52.液晶显示元件的制造方法,它是在基片和密封膜之间封入液晶的液晶显示元件的制造方法,其特征在于,包括以下工序在上述基片上形成具有气化性的固形膜的工序;在上述固形膜上形成密封膜的工序;将上述固形膜气化排出,在上述基片和上述密封膜之间形成空隙的空隙形成工序;以及在上述空隙中封入上述液晶的工序。
53.权利要求52所述的液晶显示元件的制造方法,其特征在于,上述固形膜由在进行加热或减压中的至少任何一种状态下具有气化性的材料组成。
54.权利要求52所述的液晶显示元件的制造方法,其特征在于,上述空隙形成工序是在使上述固形膜上的规定区域部分气化而排出、在上述基片和上述密封膜之间形成上述空隙的同时,利用上述固形膜上的残留部分,形成支持上述密封膜的支持部件的工序。
55.权利要求54所述的液晶显示元件的制造方法,其特征在于,上述固形膜由经能量线照射、或者能量线照射和加热而气化的材料组成,通过仅对上述固形膜上的规定区域部分进行能量线照射、或者能量线照射和加热,在上述规定区域的固形膜上保持气化性。
56.权利要求55所述的液晶显示元件的制造方法,其特征在于,上述固形膜是经紫外线照射从聚合物解聚成单体的正型光致抗蚀剂。
57.权利要求54所述的液晶显示元件的制造方法,其特征在于,进而,具有使上述已形成的支持部件稳定化的工序。
58.权利要求52所述的液晶显示元件的制造方法,其特征在于,进而,在形成上述固形膜之前,具有在上述基片上形成支持上述密封膜的支持部件的工序。
59.权利要求52所述的液晶显示元件的制造方法,其特征在于,进而,通过将以下工序分别至少进行1次,形成数个液晶封入层,即,在已形成的密封膜上形成具有气化性的新固形膜的工序;在上述固形膜上形成新的密封膜的工序;使上述固形膜气化而排出,在上述两个密封膜之间形成空隙的空隙形成工序;以及在上述空隙中封入液晶的工序。
60.权利要求47、48或59所述的液晶显示元件的制造方法,其特征在于,在各自的同一位置配置在上述各液晶封入层上的上述支持部件而形成。
61.权利要求60所述的液晶显示元件的制造方法,其特征在于,要使上述支持部件平行于上述密封膜的断面形状成为大致长方形或椭圆形那样形成,同时,在夹持各密封膜的支持部件上的上述断面形状的纵向互不相同地配置,形成上述支持部件。
62.权利要求47、48或59所述的液晶显示元件的制造方法,其特征在于,在使上述支持部件在像素区域间形成遍及数个像素区域的长度的同时,夹持各密封膜的支持部件的纵向互不相同的配置形成上述支持部件。
63.权利要求47、48或59所述的液晶显示元件的制造方法,其特征在于,上述液晶是包含各自互不相同颜色的二色性色素的宾主液晶。
64.权利要求40、41或52所述的液晶显示元件的制造方法,其特征在于,进而,具有形成反射透过上述液晶的光的反射膜的工序。
65.液晶显示元件,其特征在于,具备基片、设备在上述基片上的支持部件、在板状部件形成的被转印在上述支持部件上而形成的密封膜、以及在上述基片和密封面之间封入的液晶。
66.液晶显示元件,它是在基片和密封面之间封入液晶而构成的液晶显示元件,其特征在于,上述密封面在上述基片上形成的固形膜上形成,同时,上述液晶被封入使上述固形膜气化、排出后形成的空隙中。
全文摘要
目的在于提供能够消除因视差引起的色差、提高对比度、提高开口率的液晶显示元件。按照下述的构成能够实现此目的。在具有像素电极和驱动元件的基片上层叠液晶层、在上述层叠的液晶层之间配置透明的像素电极、而且该透明的像素电极和设置在上述基片上的驱动元件通过设置在上述液晶层的规定区域中的开口部进行电连接的液晶显示元件中,上述液晶层含有内包液晶的微胶囊和粘结上述微胶囊的粘结剂而构成,在上述基片上的像素电极和液晶层之间、或在配置在液晶层间的像素电极和液晶层之间设置绝缘层,进而上述微胶囊的壁膜和上述粘结剂以及上述绝缘层由光感应性高分子材料组成。
文档编号G02F1/13GK1178331SQ97118658
公开日1998年4月8日 申请日期1997年7月10日 优先权日1997年7月10日
发明者山中泰彦, 胁田尚英 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1