表面处理设备和方法及用该设备进行接线的设备和方法

文档序号:3172169阅读:152来源:国知局
专利名称:表面处理设备和方法及用该设备进行接线的设备和方法
技术领域
本发明涉及到一种表面处理设备,它用于对诸如电路板和电子部件之类的物体的电极进行表面处理,本发明还涉及到一种接线设备,它用于使导电的电线与经上述表面处理设备作过表面处理的电路板的电极相连接。
就小型结构的电子设备而言,已经注意到了将电子部件安装到电路板上的技术,所说的电路板按较高的密度带有一电路图案。在一种上述技术中,将一裸露的半导体芯片直接安装或放置在电路板上,然后,用薄的导电线(直径约为25μm)使该半导体芯片与电路板的电极作电连接,再用树脂包覆所说的半导体芯片和导线以便密封。
在多数情况下,用于上述目的导线是由金制成的,并且,就与金导线的连接而言,在电路板的电极上镀有金。所说的电路图案通常是由铜构成的,并且,由于金不直接与铜相连,所以,应在铜电极上形成一层或多层金属层(称为屏障金属层),然后,在该金属层的表面上镀上金。通常把镍用作所说的屏障金属。
以往一直认为金镀层的厚度会对导线的连接强度产生较大影响,并且,一直认为,除非金镀层厚约0.3μm,否则无法令人满意地连接导线。
已知有电镀法和化学还原敷镀法,这些方法能形成较厚的金镀层。但是,这两种方法均具有成本高的问题,因为,必须要长时间地进行敷镀处理。
在上述情况下,本发明的发明者以前曾提交了一份有关这样一种方法的申请书,在该方法中,即使镀层的厚度较小,也可以按足够的强度来连接导线(未审查的日本专利文件第7-106363号)。在这种技术中,可将导线连接于厚度为0.05μm的金镀层,并且,可以获得这样的优点即能极大地节约镀金的成本。
在上述技术中,(1)用表面处理设备从电路板的电极的表面上除去镍化合物,(2)用连线设备将导线与所说的电极连接起来。
要求能按较高的效率进行上述步骤,以便不对上述减少成本的效果产生影响。但是,目前没有能满足前述要求的设施。具体地说,不存在小型并能装入生产线中的表面处理设备,这就阻碍了上述新方法的广泛应用。所以,本发明提供了用于上述新方法的最佳系统。
本发明的一个目的是提供一种表面处理设备,这种设备体积紧凑,具有较强的处理能力、结构简单并且成本低廉。
本发明的另一个目的是提供一种接线设备,这种设备与一表面处理设备成整体、体积紧凑,具有较强的处理能力,结构简单并且成本低廉。
依照本发明的一个方面,提供了一种表面处理设备,该设备包括一基体,它带有一用于传送物体的传送通路;一设置在前述基体上方处的罩盖,它可移动成与基体的上表面相接触和不相接触,该罩盖与基体相接触以形成一密封空间,此空间用于接收基体上表面上的物体;一接合和脱离装置,它用于使罩盖移动成与基体相接触和不相接触;一传送装置,它用于在罩盖不与基体相接触时使设置在所述传送通路上的物体移至和移离罩盖下方的位置处;以及处理装置,它用于对设置在上述密封空间内的物体的电极进行表面处理。
依照本发明的另一个方面,提供了一种接线设备,该设备包括一基体,它带有一用于传送物体的传送通路;一沿上述传送通路设置的表面处理设备;一沿上述传送通路与所说的表面处理设备相并列的接线装置,它可将导线连接于经过表面处理的物体的电极;
所说的表面处理设备包括-罩盖,它可移动成与基体的上表面相接触和不相接触,该罩盖与基体相接触以便形成一密封的空间,此空间用于接收物体,而所说的物体则放置在基体上表面上的传递通路上;一接合和脱离装置,它用于使罩盖移动成与基体相接触和不相接触;以及,处理装置,它用于对设置在前述密封空间内的物体的电极进行表面处理;以及一传送装置,它用于将经过表面处理的物体从所述表面处理设备传送至位于接线装置前面的位置处。
图1是显示本发明接线设备一个实施例的总体结构的透视图;图2和图3是本发明上述实施例中接合和脱离装置的透视图;图4和图5是显示本发明上述实施例中支架的透视图;图6是本发明上述实施例中罩盖从底部来看时的分解透视图;图7是上述罩盖从底部来看时的透视图;图8是本发明上述实施例中基体的分解透视图;图9是本发明上述实施例中基体的平面图;图10和图11是本发明表面处理设备的一个实施例的剖面图;图12是显示本发明上述实施例中电极和相关部件的透视图;图13是沿图2中XIII-XIII线的剖面图;图14是显示本发明上述实施例中传送通路的概略平面图;图15A至图15C是显示本发明上述实施例中传送操作的概略平面图。
以下参照


本发明的一个最佳实施例。
图1是显示本发明接线设备的一个最佳实施例的透视图。
在图1中,基座8具有基本上为水平的上表面,并且,一直立部分8a相对基座8的后部向上延伸。监视器8b安装在直立部分8a的前表面上,从而,操作者可通过监视器8b了解表面处理设备的操作状态。
基体12安装在基座8的上表面上,传送通路L在基体12的上表面上以图1的左侧以完全倾斜的方式延伸至图1的右侧。一供给箱9设置在传送通路的上游侧并以层叠的方式盛放或存放着要作表面处理的电路板6。存贮箱10设置在传送通路L的下游侧并接收经过表面处理的电路6。在这一实施例中,利用化学置换敷镀法敷镀有金的电极形成在电路板6的表面上。
一推进缸11把要进行表面处理的电路板6从供给箱9推进或提供给传送通路L。
下侧带有凹进部的罩盖13支承在基体13的上方并可移动成与基体12相接触和不相接触。
基体12和所说的罩盖具有这样的结构即当罩盖13与带有传送通路L的基体12相接触时,罩盖13上的凹进部会在传送通路L上限定一个以下将予以详细说明的密封空间。具体地说,基体12与罩盖13会彼此配合以形成所说的密封空间。
接线装置14设置在基体12与存贮箱10之间并相对传送通路L偏向所述设备的后侧。接线装置14夹持着沿传送通路L从上游侧供给的经过表面处理的电路板6并用导线将电路板6的电极电连接于一半导体芯片(未示出)。
本实施例中,在罩盖13和基体12所限定的密封空间内对电路板6进行等离子清洁(等离子清洁是表面处理的一个实例)以便从电路板6的镀金电极和其它部件上除去沉积的物质或镍化合物,因此,可以很容易地使导线与电极相连。然后,在相邻的接线装置14内,将导线连接于经过等离子清洁的电路板,之后,将电路板6存放在存贮箱10内。
第一支臂15带有一梢端部分,它延伸至传送通路L,第二支臂16设置在第一支臂15的下游并沿传送通路L距第一支臂15有预定的距离,第二支臂16与第一支臂15相平行。一细长的覆盖件17设置在底座8上表面的前侧部分上并以平行于传送通路L的方式延伸。覆盖件17内安装有一支臂移动装置(以下将予以详细说明),此支臂移动装置用于使第一和第二支臂15和16以平行于传送通路L的方式移动同时将第一和第二支臂15和16保持在这样的状态即支臂15和16彼此平行并按上述预定的距离相间隔。用第一和第二支臂15和16来传送位于传送通路L上的电路板。
一对导向件18安装在基体12上以形成传送通路L并将电路板6从位于接线装置前面的部分处引导至存贮箱10。
以下参照图2至图5说明一接合和脱离装置,该装置用于使罩盖13上下移动并使罩盖13在水平状态与垂直状态之间移动。
这里将限定罩盖13的姿态。当罩盖13的下表面位于图2和图3所示的水平平面内时,罩盖13处于水平状态。当罩盖13的下表面处于图5所示的垂直平面内时,罩盖13处于垂直状态。
当罩盖13的下表面保持与基体12紧密接触时,罩盖13处于下降的位置或状态。当罩盖13的下表面与基体12相间隔从而在罩盖13与基体12之间形成一空间时,罩盖13处于上升的位置或状态。
举例来说,当罩盖13处于水平状态并处于下降状态时,就将这种状态称为“水平下降状态”。
一支承装置(以下予以说明)支承着罩盖13,因此,罩盖13可以处于三种状态,这三种状态是水平下降状态,水平上升状态,以及垂直上升状态。图2示出了处于水平下降状态的罩盖13,图3示出了处于水平上升状态的罩盖13。
在图2中,框架20包括一水平部分20a,它以固定方式安装在底座8上;以及,一对直立部分20b和20c,它们分别相对水平部分20a的相反两端向上延伸。
直立部分部分20b和20c的上端部分上分别形成有一对导向件21和22,每个导向件均具有L形的横剖面,导向件21和22的梢端朝外即朝向彼此离开的方向。
构成前述接合和脱离装置的缸体23按下列方式固定地安装在水平部分20a的中心部分上缸体23的连杆23a朝上。连杆23a的上端与U形支臂24的水平部分24a的中心部分相连。
分别相对U形支臂24的水平部分24a的相反两端向上延伸的直立部分24b和24c以可滑动的方式分别与导向件21和22相接合从而能向上和向下作滑动运动。轴26分别安装在直立部分24b和24c的上端部分上,支架25分别由轴26以可枢轴运动的方式所支承,从而能以枢轴运动的方式移动成垂直状态。
如图4以放大的形式所示,支架25有两个部分成直角地弯曲从而呈通常的Z形。支架25带有一第一部分25a和一第二部分25b,第二部分25b相对第一部分25a呈直角地延伸,第一和第二部分25a和25b具有同样的长度。支架25的一部分以可枢轴运动的方式支承在U形支臂24上,而第一和第二部分25a和25b的中心线则在该部分处彼此相交会。
支架25还带有-第三部分25c,此部分比第二部分25b长并相对第二部分25b的一侧朝离开第一部分25a的方向成直角地延伸。
第一销孔27和第二销孔28沿第一和第二部分25a和25b的厚度方向分别贯穿该第一和第二部分并且距轴26的轴线有相等的距离。
轴29安装在各支架25的第三部分25c的梢端部分上并支承着罩盖13的侧表面13a,因此,罩盖13可沿箭头N2所示方向绕轴29作枢轴运动。
如图4所示,插入孔24d贯穿U形支臂24的各个直立部分24b和24c。当第三部分25c置于水平时,插入孔24d会与第二销孔28相对齐,当第三部分25c置于垂直时,插入孔24d会与第一销孔27相对齐。
所以,如图4所示,第二销孔28会与相关的插入孔24d相对齐,销子30穿过上述对齐的开孔28和24d,并且,通过作这项工作,可将第三部分25c保持在水平状态,从而能阻止支架25旋转,因此,安装在支架25上的罩盖也会保持在水平状态。
另一方面,当第三部分25c置于垂直状态时,贯穿第一部分25a的第一销孔27会与插入孔24d相对齐,如图5所示。
在这种状态下,销钉30会穿过对齐的第一销孔27和插入孔24d,因此,第三部分25c和罩盖13会处于垂直的直立状态。
当罩盖13变成垂直状态时,形成在罩盖13的下侧内的凹进部60会沿水平方向露出。因此,可以很容易地更换或清扫安装在罩盖13内的部件。当罩盖13置于直立状态时,会在基体12的上方获得一较大的空间,所以,能够对基体12和安装在基体12上的部件作相类似的维护工作。
因此,在本实施例的表面处理设备中,罩盖13可以移动成垂直状态,因此,可在罩盖13与基体12之间形成一较大的空间,从而能相当容易地进行所说的推护工作。
以下参照图2和图3说明罩盖13从水平下降状态到水平上升状态的运动。
当罩盖13处于图2所示的水平下降状态时,连杆23a会处于回缩状态,销钉30会穿过第二销孔28和插入孔24d,并且,罩盖13会处于水平状态,因而罩盖13的下表面会与基体12作紧密的接触。
在罩盖13的水平下降状态下,罩盖13和基体12会形成密封的空间,当在此密封空间内进行表面处理时,该密封空间会保持有比大气压低的压力。所以,即使未用缸体23所提供的很大的力将罩盖13压到基体13上,也足以使罩盖13与基体12作紧密的接触。
为了使罩盖13移至水平的上升状态,缸23进行操作以使连杆23a延伸。结果,U形支臂24在被导向件21和22所引导的同时向上移动,并且,支架25会随着这种向上的运动而向上运动,而第三部分25c则保持于水平状态。因此,罩盖13会在保持水平的同时向上移离基体12。
所以,会如图3所示那样在罩盖13与基体12之间形成一空间,因此,填加电路板6的第一和第二支臂15和16会如箭头N1所示那样穿过上述空间。
以下参照图6和图7详细说明罩盖13的结构。图6是本发明罩盖从底部来看时的透视图。
罩盖13包括一通常为矩形的罩盖主体13b,其内部形成有一凹进部60。罩盖主体13b带有一第一凹进部13c一第二凹进部13d,第二凹进部13d在尺寸上要小于第一凹进部13c并相对第一凹进部13c的一侧延伸。第一凹进部13c中可以完全包含电路板6,从而,可在该第一凹进部13c中对电路板6进行等离子清洁(表面处理)。以下将第一凹进部13c称为“处理箱”,将第二凹进部称为“排出箱”。
设置一窗口13e以便能从外部观察处理箱13c的内部,并且,有四个螺纹孔13f贯穿处理箱13c的上部壁面。
有多个内部覆盖件31安装在罩盖主体13b限定处理箱13c和排出箱13d的外壁的内表面上。内部覆盖件31朝向处理箱13c和排出箱13d的内表面S是起伏不平的即带有多个微小的凹坑和凸缘,因此,能增加内部覆盖件31的表面面积。
在处理箱13c内对电路板6进行等离子清洁时,从电路板6上切削下来的颗粒物质会散布开来。这些颗粒物质会沉积在粗糙表面S上,从而能防止从电路板6上切削下来的颗粒物质重新沉积到电路板6上。内部覆盖件31通过螺钉或类似的装置(未示出)以可拆卸的方式安装在凹进部60的内缘表面上。
用于产生等离子体的上部电极32通过螺钉33以固定的方式安装在处理箱13c的上部壁面上,而螺钉33则经由相应的螺纹孔32a旋拧进相应的螺纹孔13f内。上部电极32以电学的方式接地。
以下参照图8和图9说明基体12以及与该基体有关的部件。图8是本发明的基体的分解透视图。
如图8所示,基体12包括一厚板,它在尺寸上略大于图7所示的罩盖13。一矩形开口12a形成在基体12的中心部,一加载有高频电压的下部电极34嵌在开口12a内。电缆35使一高频电源与下部电极34作电连接。
基体12朝向罩盖13的处理箱13c的那部分是一处理区A,该处理区处对电路板6进行等离子清洁。基体12与处理区A相邻并朝向排出箱13d的那一部分是一排出区B。
凹槽12e形成在基体12的边缘部分内,罩盖13的下部边缘可与所说的边缘部分相连。一起密封件作用的O形环39装嵌在凹槽12e内并相对凹槽12e的宽度居中。当罩盖13与O形环39作紧密接触时,处理箱13c和排出箱13d就会在基体12上形成一密封空间K(见图11)。
O形环39的上表面位于一定高度处,该高度略低于基体12的上表面,如图11所示。
利用上述结构,当电路板6沿箭头N2(图9)方向在基体12上移动时,电路板6、第一支臂15和第二支臂16可在不与O形环39相接触的情况下平滑地移动。因此,电路板6和第一及第二支臂15和16会在不与O形环39相接触的情况下移动,所以,能防止O形环39损坏并将密封空间K内的气密性保持在较高的程度,以防其真空度下降。
在图8中,处理区A的角落部分内形成有一供气口12b,它用于将氩气(工作气体)从一气瓶(以下予以说明)中提供给处理区A(即处理箱13c)。
一系列螺纹孔12c形成在基体12的处理区A的端部处并沿垂直于传送通路L的方向排列。从上述螺纹孔12c系列中选出对应于电路板6宽度的那些螺纹孔,并通过分别旋拧进所选定的螺纹孔12c内的螺钉42将用于引导电路板6的导向件40和41以固定的方式安装到基体12上。导向件40和41与设置在接线装置14上的导向件18相配合,从而构成了单个的传送通路L。在使用不同宽度的电路板6时,可选择相应的螺纹孔12c。每个导向件40和41均由诸如陶瓷之类的电绝缘材料制成。
抽吸口12d形成在基体12的排出区B的中心部分,处理箱13c和排出箱13d内的空气经由抽吸口12d排出,以便减小密封空间K内的压力,并且,还可将空气经由抽吸口12d引入处理箱13c和排出箱13d,以便使密封空间K达到大气压。抽吸口12d上覆盖有以电学方式接地的金属网38。当随等离子的产生而充了电的颗粒穿过抽吸口12d时,金属网38会从这些颗粒上除掉电荷。
散热片36以热学的方式与下部电极34的下表面相连,从而,蚀刻过程中产生的热量会散射到外部。
在通常的表面处理设备中,对应于下部电极34的部件安装在一低压空间内,因此,很难使该部件的热量散射到外部,所以,要用水冷法来冷却这个部件。
在这种结构中,需要有用于使工作用水循环的管道,用于填加工作用水的水泵、换热器等等,所以,增加了上述设备的体积。但是,在本实施例中,下部电极34的下部通向外部,因而可用散热片36通过气冷法来进行冷却,所以,能以紧凑的方式有效地进行冷却。
在图8中,下部电极34带有一边缘凸缘34a,该凸缘形成在下部电极的下部。与凸缘34a有着同样形状的绝缘板37设置在基体12的下表面与凸缘34a之间,用螺栓43将基体12的下表面与凸缘34a连在一起。基体12和下部电极34因绝缘板37而彼此电绝缘。
图10是本发明表面处理设备的一个实施例的剖面图。图10中,罩盖13处于水平上升状态,因而在罩盖13与基体12形成有一空间,并且,由第一支臂15来填加电路6。
以下参照图10说明用于使第一支臂15和第二支臂16移动的移动装置。
一细长的线状导向件44设置在图1所示的覆盖件17内并以平行于传送通路L的方式延伸。以固定方式安装在可移动框架46上的滑动件45以可滑动的方式与线状导向件44相接合,可移动框架46能以平行于传送通路L的方式(即沿垂直于图10纸面的方向)移动。
可移动框架46的下端以固定的方式与同步传动带49相连,传动带49以平行于传送通路L的方式延伸,电机47的驱力会经由引带轮48传递给同步传动带49。
轴50安装在移动框架46的上端,轴50以可作枢轴运动的方式支承着第一支臂15的基端,第一支臂15带有一朝下的钩状梢端。缸51以固定的方式安装在移动框架46上,缸51的连杆52与第一支臂15的基端相连。
所以,通过启动电机47,可以使第一支臂15以平行于传送通路L的方式往复运动,当缸51工作以使连杆52延伸和回缩时,第一支臂15会在一不起作用的位置(图10中点划线所示)与一起作用的位置(实线所示)之间移动,在所说的不起作用的位置处,第一支臂15不与电路板6相接合,而在所说的起作用的位置处,第一支臂15与电路板6的端部相接合。
当在第一支臂15与电路板6相接合的情况下启动电机47时,就会沿传送通路L提供电路板6或使电路板6沿传送通路L移动。正如对第一支臂15所作的说明那样,第二支臂16也以固定的方式与同步传动带49相连。所以,当启动电机47时,第一支臂15和第二支臂16就会沿水平方向同时移动。在本实施例中,尽管第一支臂和第二支臂16以这两个支臂15和16彼此相隔预定距离的方式与共用的同步传动带49相连,但是,第一支臂15和第二支臂16也可通过相应的独立移动装置彼此独立地以平行于传送通路L的方式移动。
在图10中,风扇53向散热片36供风。在本实施例中,风扇53以远离接线装置14的方式朝向供给箱9,通过这种结构,从风扇53中吹出的空气不会影响接线装置14。
当罩盖13移动成水平下降状态时,罩盖13的下部边缘会与凹槽12e内的O形环39紧密地接触,因此,处理箱13c和排出箱13d会形成密封空间K,如图11所示。在处理箱13c内,以电学方式接地的上部电极32朝向下部电极34,而高频电压则可供给下部电极34,由导向件40和41所支承的电路板6设置在电极32与34之间。排出箱13d通过金属网38与抽吸口12d相通连。
以下参照图12说明本发明表面处理设备的电极以及相关结构。
正如以上参照图6至图9所说明的那样,在本实施例的表面处理设备中,以电学方式接地的上部电极32安装在罩盖13上,可向其提供高频电压的下部电极34则安装在朝向罩盖13的基体12上。
如图12所示,高频电压供给部分61通过电缆35与下部电极34相连。高频电压供给部分61包括一高频电源62,它用于产生高频电压;以及,一调频器63,它用于调整高频电源62所产生的高频电压的频率并用于将该电压经由电缆35输出给下部电极34。
所以,电路板6可定位于罩盖13与基体12之间,并且,罩盖13会保持在水平下降的位置处,因此,上部电极32会与下部电极34间隔预定的距离,在这种状态下,当高频电压供给部分61操作时,就会在密封空间K内产生等离子体。
当高频电压供给部分61操作时,下部电极34会被加热,所以,这时风扇53会转动以便冷却以热学方式与该下部电极相连的散热片36,以防下部电极34上升至过高的温度。
以下参照图12和图13说明供气部分64和压力控制部分68,供气部分64用于将氩气经由形成在基体12上的供气口12b提供给密封空间K,而压力控制部分68则用于通过形成在排出区B上的抽吸口12d来测定和控制密封空间K内的压力。
供气部分64包括一气瓶65,它用于存放起工作气体作用的氩气;一气体控制部分66,它用于控制从气瓶65中排出的氩气的流速、压力等等;以及,一排气管67,它用于将气体控制部分66与供气口12b连接起来。
当供气部分64工作时,就会将流速等受控的氩气经由供气口12b提供进密封空间K。供气口12b设置在处理区A内远离抽气口12d的部分处,而抽气口12d则设置在与处理区A相邻的排出区B内。所以,氩气在到达抽气口12d之前不会无法通过处理区A,因此,氩气会充分地分布到处理区A上,从而,可将氩气浓度的变化保持在较低的水平。
正如以后将要详细说明的那样,排放至抽吸口12d的氩气不仅仅呈气体的形式。当把氩气供给处理区A时,密封空间K处于接近真空的低压状态,并且,将高频电压提供给下部电极34。所以,氩气会变成等离子体并对电路板6进行蚀刻(等离子清洁)。在本实施例中,虽然将氩气用于产生等离子体,但也可以使用其它适当的气体。
压力控制部分68包括下列四个管线或系统。
第一个系统是一真空系统。具体地说,一真空泵19的排气口通过真空管69与抽吸口12d相连。真空阀70设置在真空管69相反两端的中间。所以,当真空泵19工作并且真空阀70打开时,密封空间K内的压力就会基本上减少为真空。
第二个系统是一大气输入系统。具体地说,一大气输入管71与抽吸口12d相连,并且,大气输入管71通过大气输入阀72与大气输入口73相通。所以,当大气输入阀72打开以便通过大气输入口73和大气输入管71将大气或外部气体输入保持在上述真空系统所形成的真空状态的密封空间K内时,密封空间K就会恢复到大气压力。
第三个系统是一用于压力转换器74的系统。当大气输入系统使密封空间K恢复到大气压力时,压力转换器74就会判断密封空间K是否已恢复到了大气压力。第四个系统是用于真空仪75的系统。真空仪75在通过所说的真空系统减小密封空间K内的压力时测定该密封空间K内的压力。可以省去设置真空转换器74。
如图13所示,图13是沿图2中XIII-XIII线的剖面图,上述四个系统分别与形成在连接装置76内的第一端口76a、第二端口76b、第三端口76c以及第四端口76d相连,所说的这四个端口76a至76d均朝下开放。在连接装置76内,上述四个端口76a至76d与一共用的端口76e相连,而共用端口76e朝下开放并直接与基体12上的抽吸口12d相连。
以下说明在罩盖13的水平上升状态下将电路板6装进罩盖13与基体12之间的空间然后对电路板6进行等离子清洁的操作。
首先,在把电路板6装进罩盖13与基体12之间的空间内时,构成传送通路L一部分的导向件40和41将电路板6支承在传送通路L上。由于罩盖13仍处于上升状态,所以,电路板6周围的空气处于大气压。
然后,缸23受驱从而使罩盖13的下部边缘如图11所示那样与O形环39紧密接触,从而,罩盖13和基体12会形成密封空间K。此后,驱动真空泵19并打开真空阈70以减小密封空间K内的压力。这时,可用真空仪75来监控密封空间K内的真空压力。
在充分地减小了密封空间K内的压力时,供气部分64会工作以便将氩气经由供气口12b供给密封空间K的处理箱13c。然后,高频电压供给部分61进行工作从而将高频电压提供给下部电极34,以便在处理箱13c内形成等离子体。这种等离子体中的带电粒子可以进行所说的清洁工作。
这时,上述带电粒子会向抽吸口12d散射。但是,由于在抽吸口12d处设置有接地的金属网,所以,当带电粒子沉积到金属网38上时,就会消除掉这些带电粒子的电荷,因而,带电粒子不会到达前述真空系统等。这种状态会持续一段时间。这段时间是预定的并且对进行充分的清洁来说是必要的。
一旦这段时间过去以后,就停止提供高频电压并且停止从供气部分64中提供氩气。真空阀70也关闭。然后,大气输入阀72打开以将大气(外部空气)经由大气输入口73输入进密封空间K。结果,密封空间K内的压力会增加,这时,由压力转换器74来判断密封空间K内的压力是否恢复到了大气压。
然后,当密封空间K内的压力恢复到了大气压时,大气输入阀72就会关闭,并且,缸23受驱从而使罩盖13移动成水平上升状态。此后,经过表面处理的电路板6会移出罩盖13与基体12之间的空间,再把要进行表面处理的电路板6移进罩盖13与基体12之间的空间。
以下参照图14和图15说明在本实施例的表面处理设备内传送电路板6的操作。图14是显示本发明实施例中的传送通路的平面图。
如前所述,电路板6主要由构成传送装置的第一支臂15和第二支臂16来加以传送。第一和第二支臂15和16以固定的方式与单一的同步传动带49相连并彼此相隔预定的距离t且可沿平行于传送通路L的方向同时移动。
设置有缸51(见图10),它们分别用于使第一和第二支臂15和16上下移动,所以,第一和第二支臂15和16可彼此独立地上下移动。
在以下的说明中,就始于下游侧的顺序而言,第一电路板6x已经过了表面处理并由接线装置14进行接线,第二电路板6y在密封空间K内进行表面处理,第三电路板6z则还未进行表面处理并接收在供给箱9内。
在图14所示的位置关系中,当完成第一电路板6x的接线和第二电路板6y的表面处理时,罩盖13就移动成水平上升状态。
然后,第二支臂16与第一电路板6x相接合,第一支臂15与第二电路板6y相接合,如图15A所示,并且,电机47启动以便(沿箭头M1方向)将第一电路板6x填加进接收箱10并使第二电路板6y(沿箭头M1方向)移至接线装置14前面的位置。同时,推进缸11会运动以便将第三电路板6z从供给箱9中填加至罩盖13与基体12之间的空间内。
此后,如图15B所示,第一支臂15和第二支臂16会上升,并且,第一支臂15会(沿箭头M2方向)移至位于第三电路板6z后端的后部位置处,而第二支臂16则会(沿箭头M2方向)移至第二电路板6y后端的后部位置处。再后,如图15c所示,第一和第二支臂15和16下降并分别与第三电路板6z和第二电路板6y相接合,第一支臂15使第三电路板6z(沿箭头M3方向)移至对应于图14中第二电路板6y位置的位置处,而第二支臂16则使第二电路板6y(沿箭头M3方向)移至对应于图14中第一电路板6x位置的位置处。
此后,第一和第二支臂15和16会返回至如图14所示的各自位置,罩盖13移动成水平下降状态。然后,以并行的方式对第三电路板6z进行表面处理以及对第二电路板2y进行接线。通过重复上述操作,可在对电路板进行了表面处理之后马上顺序地对这些电路板进行接线。
因此,在本发明的接线设备中,沿着传送通路L以彼此成直线的方式设置表面处理设备和接线装置,并且,在传送通路L的下游侧将经过表面处理的电路板6填加至接线装置14,而且,基本上与此同时地把要进行表面处理的电路板6从传送通路L的上游侧填加进表面处理设备。所以,可以几乎在没有时间损耗的情况下连续地进行电路板的表面处理、传送和接线,因此,可以极大地提高生产率。
权利要求
1.一种表面处理方法,包括下述步骤将一物体传送到以一电绝缘状态安装在基体中间部分的电极上方封闭地将一罩盖连接于所述基体的上表面,从而形成一密封空间,用于接收设置在所述电极上的物体;使所述密封空间从一大气压力进行减压;将等离子体产生气体提供进入所述的减压的密封空间;对所述电极提供高频电压,从而产生等离子体而清洁物体表面;使所述密封空间恢复大气压力;使所述罩盖移离所述基体的上表面;从所述电极的上方传送所述物体。
全文摘要
公开了小型、具有较高处理能力、结构简单且成本低廉的表面处理设备和接线设备。表面处理设备包括一基体,它带有用于传送物体的传送通路;一设置在上述基体上方的罩盖,它可移动成与前述基体相接触和不相接触;一接合和脱离装置,它用于使前述罩盖移动成与前述基体相接触和不相接触;一传送装置,它用于在罩盖不与前述基体接触时使所述物体移至和移出罩盖下方的位置;以及,一处理部分,它用于对前述物体的电极进行表面处理。
文档编号B23K20/00GK1515362SQ0310662
公开日2004年7月28日 申请日期1996年7月26日 优先权日1995年7月28日
发明者土师宏 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1