轧钢机及轧制方法

文档序号:3176725阅读:334来源:国知局
专利名称:轧钢机及轧制方法
技术领域
本发明涉及轧钢机及轧制方法。
背景技术
作为将轧制后的钢板形状形成为所希望的钢板形状的形状控制方法,用形状检测器测定轧制后的形状,利用轧辊弯曲机、移动等机械控制装置,校正轧制材料的卷边或中间伸长等简单的形状,为了校正难于校正的局部伸长或复合伸长,改变对工作轧辊的冷却剂的流量分布,进行使与目标形状的偏差最小的自动控制。作为被公众所知的改变冷却剂流量分布的技术,在特开平2-229612号、特开平4-127909号公报上有所记载。
一方面,在轧制钢板厚度非常薄的箔时,有向大约板宽外侧的工作轧辊区域上供给高温的冷却剂、校正钢板形状的方法。这样的技术在特开昭60-180611号、特开平3-297507号上有所记载。
但是在上述的现有的技术中具有以下课题,即,由于形状变化反应迟缓造成的成品率低、由于增加冷却剂总量而扩大改造范围及增大引进成本、由于赋予冷却剂的温度差增大而造成的操作成本增大等。

发明内容
本发明的目的是提供通过高反应得到所希望的钢板形状,并且以小型设备可以降低成本的轧钢机及轧制方法。
使工作辊的直径在所希望的范围内,根据检测出的钢板形状进行机械控制装置及冷却剂控制。


图1是表示根据本发明一实施例的6重轧钢机的构成图。
图2是表示冷却剂喷嘴流量·温度调整装置及冷却剂头部列的构成图。
图3是表示轧辊平均温度变化的图。
图4是表示轧辊热膨胀量变化的图。
图5是表示轧辊热膨胀变化倾斜度的图。
图6是表示工作轧辊直径Dw与最大钢板宽度Bmax的比与形状反应速度的关系的图。
图7是表示波及轮廓的轧辊直径的影响的图。
图8是表示2系统的冷却剂供给系统的流量·温度调整实施方式及其结果的图。
图9是表示中间轧辊直径对6重轧钢机的形状控制能力的影响的图。
图10是表示3系统的冷却剂供给系统的流量·温度调整实施方式及其结果的图。
图11是表示影响轧制后的钢板形状的各种因素的宽度方向曲线。
图12是表示冷却剂喷嘴流量·温度调整装置及冷却剂头部列的变形例。
图13是表示冷却剂头部列的布局图。
图14是表示2系统的冷却剂供给系统的流量·温度调整实施方式及其结果的图。
图15是表示2系统的冷却剂供给系统的流量·温度调整实施方式及其结果的图。
图16是表示2系统的冷却剂供给系统的流量·温度调整实施方式及其结果的图。
具体实施例方式
图1表示的是本发明的轧钢机的一个构成例。在图1中,轧钢机具有直接接触轧制材料14进行轧制的工作轧辊11、在垂直方向支持该工作轧辊的中间轧辊12、在垂直方向支持该中间轧辊12的加强轧辊13及检测轧制材料形状的形状检测器15。
分别设有使弯曲力作用于工作轧辊11及中间轧辊12上的工作轧辊弯曲装置33、中间轧辊弯曲装置34、在中间轧辊12上将轧辊向轴方向移动的中间轧辊移动装置35。该工作轧辊弯曲装置33、中间轧辊弯曲装置34、中间轧辊移动装置35的动作受弯曲·移动控制装置32的控制。并且,弯曲·移动控制装置32受来自弯曲·移动控制量演算装置31的信号控制。
另外,本设备中设有向工作轧辊11喷射冷却剂的冷却剂头部列45a、45b,对构成冷却剂头部列45a、45b的各个喷嘴,通过独立地调整流量及温度的调整装置43,供给冷却剂。流量温度调整装置43受冷却剂控制装置42的控制。并且,冷却剂控制装置42受来自冷却剂控制量演算装置41的信号控制。
另外,弯曲·移动控制量演算装置31根据形状校正演算装置21的信号,演算弯曲·移动的控制量。并且,冷却剂控制量演算装置41受形状校正演算装置21的信号控制。
图2表示的是流量温度调整装置43及冷却剂头部列45a、45b的一个构成例,是通过从冷却剂罐到泵,在冷却剂流量调整器432a、432b上控制冷却剂的流量,冷却剂温度调整器433a、433b上控制冷却剂的温度,由流量与温度不同的两个冷却剂供给系统、与从两个供给系统选择性地供给冷却剂的装置434构成。另外,在冷却剂选择供给装置434上,也可以停止两系统的冷却剂供给。
就以上构成的本实施方式的操作及作用在以下(1)至(5)中进行说明。
(1)就形状控制效果的高反应性进行说明。利用流体进行固体的加热或冷却时,外部流体的流量及温度一定的情况下,如果该固体的热容量大,加热或冷却效果从表面层到内部渗透需要的时间长,相反,如果物体的热容量小,可以迅速渗透到内部。在利用冷却剂加热或冷却轧制轧辊时也同样,如果轧辊直径大,热容量大,体现加热或冷却效果需要时间,相反如果直径小,热容量小,加热或冷却效果可以在短时间内体现。但是,无论加热、冷却,变化轧辊的热膨胀量(温度)的分布来控制轧制后的钢板形状时,不同的轧辊直径其效果不同。本发明者们着眼于以下的认识,即存在有为了得到所希望的钢板形状控制效果的适用的轧辊直径。由于上述现有的技术中,对于形状控制,没有考虑任何关于适用的轧辊直径,将现有的技术应用在不同形式的轧钢机或不同的轧辊直径上时,不能高反应地校正钢板形状,使钢板的纵向形状不稳定,不但不能确保所希望的钢板形状,而且造成成品率下降。
就本发明实施方式中的高反应进行说明。图3表示的是,轧制时的轧制率及冷却条件(冷却剂总流量)相同时,由于轧辊直径的不同而发生的轧辊平均温度的变化。另外,横向的冷却是相同的,经过一定时间后,将冷却剂总流量变成2倍。加热·放热平衡到达平衡状态的时间,轧辊直径大则时间长,轧辊直径小则时间短,平衡状态下的轧辊温度几乎是相同值。由于其后的冷却条件的变化(流量为2倍),从轧辊直径小的一方开始按顺序到达下一个平衡状态的时间短。因此,可以看出由于工作轧辊的大小不同,体现冷却效果的时间不同。
以下图4是将图3所示的轧辊的平均温度变换成热膨胀量。平衡状态下,轧辊的平均温度相同,因此可以看出与轧辊直径成比例的值,轧辊直径大时,热膨胀量大,轧辊直径小时,热膨胀量小。随着其后的冷却条件变化(流量为2倍)的热膨胀量的变化倾斜度(绝对值)是,因直径不同而不同,轧辊直径大时倾斜度平缓,轧辊直径小时倾斜度大。到达平衡状态时的热膨胀量的变化与轧辊直径成比例,但冷却条件刚一变化后的变化倾斜度(绝对值)是轧辊直径越小倾斜度越大,可以得到高反应。
图5表示的是每个轧辊直径的轧辊热膨胀变化倾斜度,可以看出随着轧辊直径变小,热膨胀变化倾斜度逐渐增大,轧辊直径在不到400mm的领域中明显增大。但是利用轧辊的热膨胀变化的钢板形状控制方法中,不同的轧辊直径,形状反应速度(单位时间的形状变化量[I-unit/sec])不同,一般来说,轧辊直径越小,形状反应速度越大,对脱离目标形状的钢板形状具有快速的校正能力,可以提高纵向钢板形状的成品率。
图6是将工作轧辊的直径Dw与该轧钢机轧制可能的最大钢板宽度Bmax的比作为横轴,将形状反应速度(单位时间的形状变化量[I-unit/sec])作为纵轴。各种轧钢机(4重、6重等)的设计上,增大轧制可能的最大钢板宽度Bmax时,为了确保轧钢机的刚性,也加大工作轧辊的直径Dw,上述比是在大致保持同程度的值的情况下,选定轧辊直径。此时,即使上述比大致上一定,有可能由于工作轧辊自身的变化,在图5所示的轧辊热膨胀变化倾斜度上产生差异,随着轧制可能的最大钢板宽度的改变,轧辊冷却装置的规格也被改变(增强),因此,图6所示的形状反应速度与(轧辊直径Dw/最大钢板宽度Bmax)比的关系没有图示的那样影响大。从上述整理出的形状反应速度与(轧辊直径Dw/最大钢板宽度Bmax)比的关系图中,工作轧辊直径Dw与最大钢板宽度Bmax的比不到0.3时,可以确保形状反应速度为0.1[I-unit/sec],与上述比更大的状态相比较,可以确保更高的反应性,得到形状控制效果。
一方面,随着将(轧辊直径Dw/最大钢板宽度Bmax)比缩小,在工作轧辊上产生水平方向的弯曲,成为钢板形状控制上的外力干扰。为了抑制该水平弯曲,设置在水平方向支持工作轧辊的支持轧辊是必不可少的,但是由于设置支持轧辊,冷却剂对轧辊面的冲撞被阻碍,利用轧辊冷却难于高精度地控制钢板形状。不需要这样的支持轧辊、可以忽略不计的水平方向弯曲的下限值是从构造条件中导出的(轧辊直径Dw/最大钢板宽度Bmax)比的下限值,该值为0.16以上。
在上述实施方式中,调查了将轧辊冷却剂的流量变化为2倍时的形状反应速度与(轧辊直径Dw/最大钢板宽度Bmax)比的关系,限定了能够得到更好效果的(轧辊直径Dw/最大钢板宽度Bmax)比的范围。当然,如果流量增加三倍、四倍,图3至图6所示纵轴的值发生变化,可以得到更高的反应性,利用轧辊冷却剂的钢板形状控制能力也有所增加,但图6所示曲线的趋势几乎没有变化,(轧辊直径Dw/最大钢板宽度Bmax)比的限定范围不变。
该基本原理在牛顿的冷却法则(森北出版、传热工学P31)中所示,对固体壁面的流体的传热用Q=h·S·Δθ(公式1)表示。在此,Q是单位时间内移动的热量、h是传热系数、S是表面积、Δθ是固体壁面与流体的温度差。如果将该原理用于轧制轧辊与轧辊冷却剂,可以看出传热系数h与冷却剂流量的阶乘(0.5~0.6)大致成比例,通过增加流体的流量,可以增加该冷却能力,从轧辊面移动的热量也与传热系数h成比例增加。
同样,由于轧辊冷却剂的温度降低,上述公式的温度差Δθ增大,从轧辊面移动的热量也与传热系数h成比例增加,利用轧辊冷却剂的钢板形状控制能力也增加,但与轧辊冷却剂的流量增加时相同,图6所示曲线的趋势大致不变,(轧辊直径Dw/最大钢板宽度Bmax)比的限定范围不变。
另外,通过提高轧辊冷却剂的温度,与冷却时相反,可以从冷却剂向轧辊面移动热量。此时也同样地提高轧辊冷却剂的温度,通过增大温度差Δθ的绝对值,可以增加向轧辊面移动的热量。即使在这种情况下,由于基本原理不变,图6所示曲线的趋势大致不变,(轧辊直径Dw/最大钢板宽度Bmax)比的限定范围不变。
通过以上的内容,利用轧辊冷却剂的流量或温度控制工作轧辊的热膨胀量时,确保更高的反应性,可以得到形状控制效果的(轧辊直径Dw/最大钢板宽度Bmax)比在0.16≤Dw/Bmax<0.3(公式2)的范围。
(2)就减少引进·操作成本进行说明。利用改变冷却剂的流量分布的特开平2-229612号、特开平4-127909号公报上所记载的众所周知的技术,解决由于形状变化反应迟缓而造成的成品率低下的课题时,可以容易地推测出增加轧辊冷却剂的总流量,从而提高轧辊宽度方向及局部的冷却能力。但是伴随着冷却剂总流量增加的改造,不仅是供给系统,而且包括附带在初期设计的冷却剂的回收系统的过滤器、回收管道等设备,导致成本增大。另外,即使重新设置的情况下,由于适用的轧辊直径不同冷却效果不同,轧辊直径大时,为了得到所希望的钢板形状控制效果,需要非常多的流量。另外轧辊直径小时,由于设置了控制轧辊水平方向弯曲的支持轧辊,轧辊冷却剂对轧辊面的冲撞被阻碍,产生得不到所希望的冷却效果的问题。
本实施方式中,公式2中规定的(轧辊直径Dw/最大钢板宽度Bmax)比范围的形状反应速度大体上是范围外的形状反应速度的两倍以上。因此,如果要提高范围外的形状反应速度,传热系数需要确保大约两倍的程度。如前所述,由于传热系数h与流量的阶乘(0.5~0.6)大致成比例,因此作为流量,需要三倍到四倍的流量。如果必要流量是三倍到四倍,随之需要将冷却剂供给泵、供给·回收管道直径、热交换器、过滤器、罐大型化,引进时的成本非常大,不是好办法。
公式2中规定的(轧辊直径Dw/最大钢板宽度Bmax)比范围与范围外相比较,同样的钢板宽度,工作轧辊直径小,也有助于轧钢机整体的小型化,并且有降低轧钢机本体成本的效果。
另外,即使赋予温度差Δθ进行工作轧辊的冷却·加热时,如果从公式(1)进行类推,公式2中限定的(轧辊直径Dw/最大钢板宽度Bmax)比范围与范围外的必要的温度差Δθ相差两倍,将关系到进行冷却剂的加热、冷却的热交换器的传热面积的大型化及作为增强能力的引进及操作成本的增加。并且,由于冷却剂种类的不同,具有高·低温区域润滑性的磨损损耗及在高温区域起火的危险性,可能不利于操作。根据本发明,使温度差Δθ是现有的1/2左右,就可以充分发挥形状控制效果,因此可以降低操作成本。
另外,由于现有的技术中,没有考虑工作轧辊直径、轧钢机形式及轧辊直径比,存在着以下课题,即与钢板宽度比,工作轧辊直径比较大,对于不能控制M型及W型等复合形状的4段轧钢机,为了得到所希望的形状控制效果,需要非常多的流量,与利用冷却剂进行形状控制效果的组合达不到所希望的能力,但本实施方式中,以恰当的流量可以得到恰当的控制能力。
另外,利用改变冷却剂温度分布的特开昭60-180611号公报、特开平3-297507号公报所记载的众所周知的技术时,容易推测出使轧辊冷却剂的温度差增大来增大加热能力。但是,增大冷却剂的温度差造成操作时消费能量成本的增大。使用油的原液作为冷却剂时,出于防止由于油的温度上升引起火灾的观点,不能随便升高油温。并且,使用将百分之几的油乳化在水中的乳化液时,虽然与原液相比火灾的危险性降低了,但是一旦脱离乳化液的乳化稳定区域,油水分离被加速,产生冷却性能及润滑性能不稳定,轧制不稳定的问题,本实施例中可以解决该问题。
(3)就利用与机械控制装置的组合提高形状控制能力进行说明。如上所述,为了确保更高的反应性,明确了得到形状控制效果的(轧辊直径Dw/最大钢板宽度Bmax)比范围,但在实际的钢板轧制中,如果是4重轧钢机,利用与工作轧辊弯曲力,如果是6重轧钢机,利用与工作轧辊及中间轧辊弯曲力这样的机械控制装置的组合进行钢板形状的控制。在此,首先对轧制时的轧辊热膨胀曲线由于不同的轧辊直径具有什么样的不同进行了调查。
图7表示的是图4所示的轧辊热膨胀量变化曲线中,经过60分钟后的轧辊曲线。随着轧辊直径缩小,从钢板中心部到钢板端部,轧辊曲线倾斜度趋势变化的横向位置向钢板端部移动。利用轧辊冷却或加热使形状反应性高的轧辊直径范围内,象这样由于轧辊曲线有在钢板端部附近急剧变化的倾向,有必要对与机械控制装置的组合进行再研究。
一般来说,作为对轧制后的钢板形状有大影响的工作轧辊的变形,有热膨胀曲线、轧制负荷产生的弯曲、表面扁平,向冷轧那样薄钢板的情况下,大的控制因素是热膨胀曲线和弯曲。表面扁平与热膨胀曲线相比,由于钢板宽度内的偏差小,因此即使忽略不计也没有关系。图11(a)是摘选了图7所示的工作轧辊直径为Φ340mm的轧辊热膨胀,只在钢板宽度内的热膨胀曲线,横轴是钢板宽度方向位置h,以钢板宽度1250mm的情况为例。图11(b)表示的是轧制负荷P产生的轧辊弯曲Pδ。因此,有必要通过机械控制装置及利用轧辊冷却剂的热膨胀曲线变化,控制重叠图11(a)及(b)曲线的曲线。
考虑4重轧钢机(称为4Hi轧钢机)时,作为机械控制装置,有代表性的是工作轧辊弯曲装置,工作轧辊弯曲装置对轧辊弯曲WRδ的影响如图11(c)所示,其控制范围限定在钢板端部附近(钢板宽度2/3以外)。因此,利用工作轧辊弯曲控制如图11(b)所示的、象轧制负荷产生的轧辊弯曲Pδ那样的、从钢板宽度中心附近平滑地变化的弯曲是困难的,必须利用轧辊冷却剂控制该弯曲。但是,轧制负荷产生的轧辊弯曲Pδ是非常大的,为了利用轧辊冷却剂的热膨胀量变化对其进行控制,必须引进具备非现实加热冷却能力的冷却剂设备。
一方面,使用兼备有中间轧辊弯曲装置的6重轧钢机(称为6HiUC轧钢机)时,中间轧辊弯曲产生的轧辊弯曲WRδ如图11(d)所示,中间轧辊弯曲装置的控制特性是,可以控制从钢板宽度中心附近平滑地变化的弯曲,图11(b)所示的轧制负荷产生的轧辊弯曲Pδ。因此,与4Hi轧钢机相比较,不但减轻了施加给轧辊冷却剂的设备的负担,还可以按照各种形状控制装置的控制特性分担功能。即工作轧辊弯曲装置控制钢板端部附近的钢板形状,中间轧辊弯曲装置控制大致是钢板宽度中心附近的钢板形状,轧辊冷却剂用来校正用工作轧辊及中间轧辊弯曲装置控制困难的局部形状。
下面,设工作轧辊与轧辊冷却剂的喷射条件相同,比较4Hi轧钢机与6HiUC轧钢机的控制能力。
图8是比较喷射同样的冷却剂的情况下,钢板形状的校正效果。
图中的虚线是开始控制前的初期状态,钢板形状的伸长侧与支撑侧的偏差大约是160[I-unit](-100[I-unit]到+60[I-unit])。4Hi轧钢机在110[I-unit](-70[I-unit]到+40[I-unit])以内,6HiUC轧钢机在60[I-unit](-40[I-unit]到+20[I-unit])以内,可以使钢板形状平坦化。如前所述可以看出4Hi轧钢机由于缺乏机械控制能力,不能得到充分的控制能力。实际操作中要求的偏差大约是20[I-unit](-10[I-unit]到+10[I-unit]),所以即使是6HiUC轧钢机也是不充分的。
以下图14是表示将产生钢板形状伸长部位的轧辊冷却剂增加到2倍后的结果。4Hi轧钢机在80[I-unit](-50[I-unit]到+30[I-unit])以内,6HiUC轧钢机在20[I-unit](-10[I-unit]到+10[I-unit])以内,可以缩小宽度方向钢板形状的偏差。
图15表示的是将产生钢板形状伸长部位的轧辊冷却剂比周围降低10℃的结果。4Hi轧钢机在70[I-unit](-45[I-unit]到+25[I-unit])以内,6HiUC轧钢机在15[I-unit](-10[I-unit]到+5[I-unit])以内,可以缩小宽度方向钢板形状的偏差。
图16表示的是将产生钢板形状支撑的钢板端部外侧的轧辊冷却剂比钢板宽度内升高20℃的结果。4Hi轧钢机在50[I-unit](-20[I-unit]到+30[I-unit])以内,6HiUC轧钢机在15[I-unit](-5[I-unit]到+10[I-unit])以内,可以缩小宽度方向钢板形状的偏差。
任何一种情况下,6HiUC轧钢机可以通过最小限度地使用利用轧辊冷却剂的热膨胀量变化,达到实际操作上所要求的偏差,大约是20[I-unit](-10[I-unit]到+10[I-unit]),通过与工作轧辊弯曲装置、中间轧辊弯曲装置这样的机械控制装置相组合,得到充分的效果,能达到大致是4Hi轧钢机4倍的效果。
一般来说,使用6HiUC轧钢机时,为了控制从钢板中心附近平滑地变化的弯曲,有必要使中间轧辊直径大于工作轧辊直径,区别弯曲力形成的弯曲特性与工作轧辊的弯曲特性。工作轧辊与中间轧辊的直径几乎相等时,弯曲特性几乎没有差别,得到的效果主要是除去中间轧辊移动产生的有害接触部。因此,为了控制直到钢板宽度中心附近的弯曲,有必要研究中间轧辊直径与工作轧辊直径的比。
图9(a)表示的是工作轧辊直径为Φ340、中间轧辊直径分别为Φ340、Φ380、Φ440时的钢板形状控制效果。随着中间轧辊直径Di与工作轧辊直径Dw的比接近1,该控制范围变窄,控制钢板宽度中心附近很困难,钢板形状的校正效果也小。图9(b)是设(中间轧辊直径Di与工作轧辊直径Dw)比为横轴,对4Hi轧钢机的形状控制能力的相对值为纵轴,调查各种轧辊直径比。可以看出轧辊直径比超过1.2的范围,该能力提高明显,具有4倍以上的能力。因此,具有工作轧辊弯曲装置、中间轧辊弯曲装置、中间轧辊移动功能的6重轧钢机与利用轧辊冷却的形状控制装置相组合,控制钢板形状时,最好是适用中间轧辊直径Di超过工作轧辊直径Dw1.2倍的范围。
(4)就利用从3系统温度的选择供给提高形状控制能力进行说明。另外,通过组合图15、图16的实施,可以得到更加理想的形状控制效果。图10是以下情况下的实施例,向钢板端部的外侧供给高于轧辊面温度的60℃的冷却剂,向钢板宽度内产生伸长的部位供给低温的冷却剂。此时,通过利用冷却剂选择供给装置434,从3系统温度中选择供给冷却剂,冷却剂的总量不变,不需要改造泵、回收系统、过滤器、罐等,只将供给系统改变成图2或图10所示的构造即可。
这样,通过利用工作轧辊弯曲装置与供给高温冷却剂校正钢板端部附近的支撑形状,利用中间轧辊弯曲装置校正钢板整体的大的形状,利用低温冷却剂校正钢板宽度内的局部伸长形状,可以校正成如图所示的大致上平坦的钢板形状。
(5)就冷却剂头部构造的变形例进行说明。图12是图2所示的流量温度调整装置43及冷却剂头部列45a、45b的变形例,两者的不同点在于冷却剂选择供给装置434是上下(434a、434b)分离的。从成本上考虑,如图2所示的上下共用的好处是减少零件数。但是冷却剂选择供给装置434上下共用时,由于选择供给装置434设置在轧钢机的上部或者下部,到达冷却剂头部列45a、45b的管道长度有时上下不一样,开关操作完成后,在喷嘴顶端使流量或/及温度实际上发生变化的时间上产生快慢差。为了不产生这样的时间差,使冷却剂选择供给装置434上下分离,将到达冷却剂头部列45a、45b的管道长度设置在最短的位置。
图13(a)是应用例,在输入侧,将对工作轧辊喷射冷却剂的冷却剂头部列451a、451b、452a、452b上下设置两对,可以在一对喷嘴时、冷却剂的喷射面积小的情况下,确保喷射面积。
图13(b)、图13(c)是利用原有的冷却剂供给装置,应用本发明时的实施方式。图13(b)所示的原有的冷却剂供给设备45c,是在轧制材料的输入输出两侧用同样的流量、温度向宽度方向供给冷却剂,供给的主要目的是在输入一侧进行轧辊与轧制材料之间的润滑,在输出侧冲洗残存在钢板表面的铁粉及无光粉。在此,通过增设或改造本发明的输入侧的喷嘴头部451a、451b及输出侧的喷嘴头部452a、452b,控制轧辊的热膨胀量,进行钢板形状的控制。
图13(c)是在输入侧保留原有的冷却剂供给设备,在输出侧应用本发明的冷却剂头部列45a、45b的情况。一般来说刚轧制后的轧辊表面是高温的,如果在向半径方向传热之前进行冷却,冷却效果提高。在轧制材料的输出侧应用本发明,也可以提高钢板的形状控制效果。
根据本发明,用高反应得到所希望的钢板形状,并且可以提供利用小型设备能够降低成本的轧钢机及轧制方法。
权利要求
1.一种轧钢机,具有轧制轧钢材料的工作轧辊、至少在轧钢材料的输入侧供给冷却剂的冷却剂装置、测定轧制后的钢板形状的形状检测器及控制钢板形状的机械控制装置,其特征在于,前述工作轧辊的直径是轧制可能的钢板最大宽度的0.16倍以上、不足0.3倍,在前述冷却剂装置中,设置在钢板宽度方向配置有多个喷嘴的冷却剂头部列、和具有分别调整冷却剂流量及温度的装置的多个供给系统,具有根据前述形状检测器的检测值,控制该机械控制装置及该冷却剂装置的控制装置。
2.一种轧钢机,具有上下一对的工作轧辊、中间轧辊、加强轧辊、及中间轧辊的轴方向的移动装置、工作轧辊和中间轧辊的弯曲装置、及至少在轧制材料的输入侧供给冷却剂的冷却剂装置、及测定轧制后的钢板形状的形状检测器、及控制前述中间轧辊移动、工作轧辊弯曲、中间轧辊弯曲装置及冷却剂供给装置的动作的装置,其特征在于,前述工作轧辊的直径是轧制可能的钢板最大宽度的0.16倍以上、不足0.3倍,前述冷却剂供给装置具有在钢板宽度方向配置有多个喷嘴的至少上下一对以上的冷却剂头部列,该喷嘴对应前述形状检测器的钢板横向测定间隔;及具有分别调整冷却剂流量或/及温度的装置的多个供给系统;前述中间轧辊移动、工作轧辊弯曲、中间轧辊弯曲控制装置及冷却剂控制装置,具有以前述形状检测器的输出信号与目标形状的偏差为基础、演算处理各个控制量的装置;并且前述冷却剂控制装置,具有从前述多个冷却剂供给系统中选择1系统的冷却剂、供给前述冷却剂头部列的各个喷嘴的装置。
3.如权利要求2所述的轧钢机,其特征在于,前述中间轧辊的直径超过前述工作轧辊直径的1.2倍。
4.如权利要求2所述的轧钢机,其特征在于,前述冷却剂供给装置具有在钢板宽度方向配置有多个喷嘴的至少上下一对的冷却剂头部列,该喷嘴对应前述形状检测器的钢板横向测定间隔;及具有分别调整冷却剂流量的装置的两个供给系统,第2供给系统的每个喷嘴的流量比第1供给系统的每个喷嘴的流量要多。
5.如权利要求2所述的轧钢机,其特征在于,前述冷却剂供给装置具有在钢板宽度方向配置有多个喷嘴的至少上下一对的冷却剂头部列,该喷嘴对应前述形状检测器的钢板横向测定间隔;及具有分别调整冷却剂温度的装置的两个供给系统,第2供给系统的温度比第1供给系统的温度要低。
6.如权利要求2所述的轧钢机,其特征在于,前述冷却剂供给装置具有在钢板宽度方向配置有多个喷嘴的至少上下一对的冷却剂头部列,该喷嘴对应前述形状检测器的钢板横向测定间隔;及具有分别调整冷却剂温度的装置的三个供给系统,第2供给系统的温度比第1供给系统的温度要低,第3供给系统的温度比第1供给系统的温度要高。
7.一种轧钢机的轧制方法,该轧钢机具有轧制轧钢材料的工作轧辊、至少在轧钢材料的输入侧供给冷却剂的冷却剂装置、测定轧制后的钢板形状的形状检测器及控制钢板形状的机械控制装置,前述工作轧辊的直径是轧制可能的钢板最大宽度的0.16倍以上、不足0.3倍,其特征在于,在前述冷却剂装置中,分别调整该冷却剂的流量及温度的同时,从多个供给系统中,向钢板宽度方向配置有多个喷嘴的冷却剂头部列供给冷却剂,通过该机械控制装置及该冷却剂装置,根据前述形状检测器的检测值,控制钢板形状。
8.一种轧钢机用的控制装置,该轧钢机具有至少在轧钢材料的输入处供给冷却剂的冷却剂装置、测定轧制后的钢板形状的形状检测器及控制钢板形状的机械控制装置,轧制轧钢材料的工作轧辊的直径是轧制可能的钢板最大宽度的0.16倍以上、不足0.3倍,其特征在于,前述冷却剂装置,具有分别调整该冷却剂流量及温度的同时,从多个供给系统中,向钢板宽度方向设置有喷嘴的冷却剂头部列供给冷却剂的装置,通过该机械控制装置及该冷却剂装置,根据前述形状检测器的检测值,控制钢板形状。
全文摘要
本发明的目的是,用高反应得到所希望的钢板形状,并且提供利用小型设备能够降低成本的轧钢机及轧制方法。本发明的轧钢机,具有轧制轧钢材料的工作轧辊、至少在轧钢材料的输入侧供给冷却剂的冷却剂装置、测定轧制后的钢板形状的形状检测器及控制钢板形状的机械控制装置,前述工作轧辊的直径是轧制可能的钢板最大宽度的0.16倍以上、不足0.3倍,前述冷却剂装置中,设置在钢板宽度方向配置有多个喷嘴的冷却剂头部列、及具有分别调整冷却剂流量及温度方法的多个供给系统,具有根据前述形状检测器的检测值,控制该机械控制装置及该冷却剂装置的控制装置。
文档编号B21B37/00GK1473669SQ0314256
公开日2004年2月11日 申请日期2003年6月10日 优先权日2002年8月8日
发明者斎藤武彥, 二瓶充雄, 平間幸夫, 乳井辰彰, 小林裕次郎, 夫, 彰, 次郎, 藤武 , 雄 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1