非接触磁性转向的制作方法

文档序号:13809226阅读:215来源:国知局
非接触磁性转向的制作方法

相关申请的交叉引用

本申请要求于2015年6月9日提交的美国临时申请第62/173,097号的权益,其全部内容通过引用并入本文。

本公开总体涉及金属带的加工,并且具体涉及在加工期间对金属带,特别是非铁金属带的转向或控制。



背景技术:

许多金属加工工艺涉及操纵和加工连续的金属带。将金属加工成条带允许长的金属快速加工,但是要求金属带保持居中于与加工装备的期望轧制线相差一定的距离内。如果条带偏离装备期望的轧制线太远,则条带可能与装备边缘发生不期望的接触,条带可能无法正确加工(例如,未被加热或冷却均匀)或其它不期望的、危险的或代价高昂的影响可产生。在某些装备中,金属带被保持在高张力中,并且主动转向可能不是必需的。然而,当金属带未被保持在高张力时,例如当条带首先被送入冷轧机或当在连续退火线中加工金属带时,对主动转向或控制的需求可能增加。主动转向在其它情况下也可能有用。

另外,诸如铝的某些金属可能通过与装备接触而受到伤害。非接触转向装备的使用可能是期望的,特别是在金属是软的(例如由于加热)时加工金属时。此外,某些金属可能会受到金属中局部热点的伤害。



技术实现要素:

术语实施例和类似术语旨在广义地指代本公开的所有主题和下面的权利要求。包含这些术语的陈述应理解为不限制本文描述的主题或限制下面的权利要求的含义或范围。本文所涵盖的本公开的实施例由下面的权利要求限定,而不是本发明内容。该发明内容是对本公开的各个方面的高度概述,并且引入了在下面的详细描述部分中进一步描述的一些概念。本发明内容不旨在识别所要求保护的主题的关键或基本特征,也并非旨在孤立地用于确定所要求保护的主题的范围。应当通过参考本公开的整个说明书的适当部分、任何或所有附图和每个权利要求来理解主题。

本公开的方面包括用于磁转向或定位金属的系统和方法。系统和方法可以通过使用不与金属物理接触的磁体(诸如安装在靠近金属的转子上的磁体)来将移动金属带或固定的金属片转向。在一些情况下,固定的磁体可以邻近移动金属带放置,并且穿过移动金属带的电力可以在金属带中引起移动。

非接触转向装置可以包括位于金属带附近的一个或多个磁性转子。每个转子可以包括一个或多个永磁体并且可以旋转以在经过附近的金属带上施加变化磁场。磁性转子可以围绕平行于金属带的纵向行进方向的旋转轴线旋转。磁性转子可被定位成以横向、垂直或纵向的任何组合在条带施加力。控制机构可以控制转子速度、转子方向、转子的垂直位置、转子之间的垂直间距和/或转子的横向位置。在一些情况下,控制机构可以联接到诸如光幕和激光距离传感器的传感器,以便提供穿过非接触磁性转子转向装置的金属带的闭环反馈控制。

附图说明

本说明书参考了以下附图,其中在不同附图中使用相同的参考标号旨在说明相似或类似的部件。

图1是根据本公开的某些方面的磁性转子转向装置的图示。

图2是根据本公开的某些方面的图1的磁性转子转向装置的前视图。

图3是根据本公开的某些方面的图1的磁性转子转向装置的垂直支撑件和两个转子的特写视图。

图4是根据本公开的某些方面的图1的磁性转子转向装置的垂直支撑件和两个转子的特写后视图。

图5是根据本公开的某些方面的图1的磁性转子转向装置的垂直支撑件和两个转子的特写视图,其中转子护罩就位。

图6是根据本公开的某些方面的磁性转子转向装置的两个转子的特写前剖视图,其中冷却剂护罩和转子护罩就位。

图7是根据本公开的某些方面的描绘在金属带周围就位的永磁体磁性转子转向装置的顶视图。

图8是根据本公开的某些方面的描绘图7的永磁体转子转向装置的前视图。

图9是根据本公开的某些方面的描绘定位在连续退火线中的各个位置处的磁性转子转向装置的示意图。

图10是根据本公开的某些方面的描绘用于引起金属带中的正弦波型波动的偏移转子的示意性侧视图。

图11是根据本公开的某些方面的描绘反馈控制过程的流程图。

图12是根据本公开的某些方面的描绘用于在没有反馈控制的情况下将金属带转向的过程的流程图。

图13a是根据本公开的某些方面的包括可纵向定位在金属带上方的转子的磁性转子转向装置的俯视图。

图13b是根据本公开的某些方面的包括纵向可定位在金属带上方的转子的图13a的磁性转子转向装置的前视图。

图13c是根据本公开的某些方面的包括纵向可定位在金属带上方的转子的图13a的磁性转子转向装置的侧视图。

图14是根据本公开的某些方面的描绘金属加工系统的示意性正视图,该金属加工系统包括用于在进入条带加工装备之前将金属带转向的磁性转子转向装置。

图15是根据本公开的某些方面的描绘图14的金属加工系统的示意性顶视图。

图16是根据本公开的某些方面的描绘金属加工系统的示意性正视图,该金属加工系统包括用于在离开条带加工装备之后将金属带转向的磁性转子转向装置。

图17是根据本公开的某些方面的描绘图16的金属加工系统的示意性顶视图。

图18是根据本公开的某些方面的施加电流磁性转向设备的轴测图。

图19是根据本公开的某些方面的图18的施加电流磁性转向设备的前视图。

图20a是根据本公开的某些方面的图18的施加电流磁性转向设备的顶视图。

图20b是根据本公开的某些方面的施加电流磁性转向设备的顶视图。

图21是根据本公开的某些方面的磁性转子转向装置的前视图。

图22是根据本公开的某些方面的磁性转子转向设备能够配合到其中的炉的剖面侧视图。

图23是根据本公开的某些方面已经被修改成接收磁性转子转向设备的炉的剖面侧视图。

图24是根据本公开的某些方面的描绘结合到炉中的磁性转子转向设备的剖面侧视图。

图25是根据本公开的某些方面的描绘结合到炉入口处的炉中的磁性转子转向设备的剖面侧视图。

图26是根据本公开的某些方面的描绘结合在炉出口处的炉中的磁性转子转向设备的剖面侧视图。

图27是根据本公开的某些方面的具有次转子的磁性转子转向装置的前视图。

图28是根据本公开的某些方面的用于将金属带转向的磁性转向装置的前视图。

具体实施方式

本公开的某些方面和特征涉及一种非接触磁性转子转向装置和使用方法。非接触转向装置包括位于金属带附近的一个或多个磁性转子。每个磁性转子包括一个或多个永磁体(例如钐钴、钕或其它磁体)。当每个磁性转子旋转时,其在通过附近的金属带上施加变化磁场。磁性转子可以各自围绕平行于金属带的纵向行进方向的旋转轴线旋转。在其它方面,磁性转子可以围绕垂直于金属带的纵向行进方向的旋转轴线旋转。磁性转子可被定位成以横向、垂直或纵向的任何组合在条带上施加力。控制机构可以控制转子速度、转子方向、转子的垂直位置、转子的横向位置、转子之间的水平间距,和/或转子之间的垂直间距。在一些情况下,控制机构联接到诸如光幕和激光距离传感器的传感器,以提供穿过非接触磁性转子转向装置的金属带的闭环反馈控制。转向装置可以用在诸如铝的非铁导电金属带上。其它导电非铁金属也可以使用。

无论何时对金属带的电流轧制线(例如金属带通过加工装备行进的电流路径)、位置、方向和/或形状的调节是必要的,都可以使用转向装置。转向装置可用于将移动金属带推向期望的轧制线。期望的轧制线可以是金属带沿着加工装备行进所需的路径。轧制线可以包括横向部件(例如,装备内的金属带的横向位置,诸如从装备的侧壁起)和垂直部件(例如装备内的金属带的垂直位置,诸如从装备的顶部和底部壁起)。期望的轧制线的横向中心线可以被称为中心线目标,并且可以指当金属带沿着期望的轧制线行进时金属带的横向中心线的期望位置。期望的轧制线的垂直中心线可以被称为垂直目标,并且可以指当金属带沿着期望的轧制线行进时金属带的垂直中心线的期望位置。

转向装置可以包括任何数量的转子。每个转子包括一个或多个永磁体。可以基于强度、耐温性和/或其它因素来选择合适的永磁体。合适的永磁体可以从现在已知的或未来发现的任何永磁体中选择。合适的永磁体可以包括钐钴磁体。永磁体可以布置围绕转子的圆周,在转子的圆周内,或者可以构成转子本身。永磁体可以布置成围绕转子的圆周的交替方向。永磁体可以以许多不同的配置布置,诸如以halbach阵列将磁场集中在转子的外部。

转子以任何合适的方式靠近金属带被支撑。一个这种合适的方式包括位于转子臂上的每个转子。转子臂可以包括驱动转子所需的装备。在一些情况下,转子臂包括通过皮带联接到转子的驱动马达。驱动马达控制转子本身的速度和旋转方向。转子臂可以安装在垂直支撑件上。在一些情况下,单个垂直支撑件包括两个转子臂,位于金属带或期望轧制线的垂直中心线上方的顶部转子臂以及位于金属带或期望轧制线的垂直中心线下方的底部转子臂。任何数量的转子臂可以在单个垂直支撑件上使用。在一些情况下,转向装置包括两个垂直支撑件,靠近条带右边缘定位的右垂直支撑件和靠近条带左边缘定位的左垂直支撑件。任何数量的垂直支撑件可用在转向装置上。垂直定位马达可用于控制垂直支撑件上的一个或多个转子臂的垂直位置。足够多的垂直定位马达可用于提供所有转子臂在单个垂直支撑件上的垂直移动,以及在单个垂直支撑件上的转子臂之间的垂直分离。每个垂直支撑件定位在轨道上用于水平移动(例如,朝向和远离条带的中心线)。水平定位马达可用于控制垂直支撑件的水平移动,并且从而控制附接的转子臂。在一些情况下,水平定位马达可以被定位成控制单个转子相对于其垂直支撑件的水平定位。

通过各种定位马达和驱动马达,转向装置可以提供至少四个范围的运动:转子速度、转子方向、转子的垂直定位以及转子的水平定位。在一些情况下,转向装置可另外提供至少第五范围的运动:在共享相同垂直支撑件的另一个转子之间的垂直间隙。在一些情况下,当由于与第一旋转转子的磁耦合而驱动相邻的转子时,第一转子可以由转子马达驱动。

可以使用任何合适的转子速度。在一些情况下,转子可以是固定的(例如,每分钟零转),直到需要为止,此时它以期望的速度被驱动。在一些情况下,转子的合适转速可以从每分钟0转(rpm)到每分钟2000rpm。在一些情况下,速度可能超过2000rpm。可能期望以250-2000rpm、500-1750rpm、1000-1600rpm、1200-1500rpm、1300-1500rpm或其中任何其它范围的速度操作转子。在一些情况下,合适的转速可以取决于各种因素,诸如旋转轴线的垂直和/或横向放置以及磁体的强度。在一些情况下,联接到温度传感器的控制器可用于调节转子的转速,以在磁体的温度波动时补偿转子的永磁体的强度波动。例如,如果冷却系统不能将磁体的温度保持在期望的水平,则磁体的强度可能降低,并且控制器可以使转子支撑那些磁体以提高速度来补偿磁体的降低磁场强度。

每个转子可以被包围在转子护罩中。转子护罩可以进一步包围转子臂以及任选地包围垂直支撑件的部分或全部。转子护罩可以是一个或多个部分。转子护罩可以是防水的,或者可以将转子与周围环境流体隔离。转子护罩可以选自磁性透明材料或几乎磁性透明的材料。换句话说,转子护罩可以设计成不吸收由旋转的转子产生的任何磁场。转子护罩可以是绝热的。流体隔离的转子护罩可以使转向装置能够在可能发生湿气和流体暴露的某些装备中或附近使用,诸如在连续退火线的急冷部分内。在各种情况下,转子护罩可以是流体屏蔽和/或绝热中的任何一个或其组合。

在一些情况下,冷却剂循环通过或接近转子以冷却转子的永磁体。冷却剂可以是流体,诸如冷却气体。在一些情况下,热管被结合到转子臂中以从转子提取热量。在一些情况下,冷却剂在内部冷却剂护罩和转子护罩之间的空间内循环。内冷却剂护罩可以围绕转子,允许转子在冷却剂护罩内自由移动。冷却剂护罩可以保护转子不与冷却剂直接接触,同时允许冷却剂流过转子和转子护罩,并从转子和转子护罩去除热量。在不期望转子直接与冷却剂接触的情况下(例如,如果空气是冷却剂),冷却剂可以在转子护罩的体积内循环,诸如不使用内冷却剂护罩。

由于永磁体可以在相对较高的温度下操作(例如,对于钐钴磁体高达大约550℃,或对于钕磁体高达大约200℃),如果转向装置将被用在诸如炉的高温区域内,则需要实施适度量的冷却。在实例中,在600℃至650℃左右操作的炉中使用的非接触永磁体磁性转子转向装置可能仅需要大约100℃至150℃的冷却。额外的冷却可能期望从所需的永磁体获得强磁场。对于非接触永磁体磁性转子转向装置中与永磁体结合使用的其它部件(例如,轴承、马达等)可能需要一些额外的冷却。在一些情况下,当期望高热量时钐钴磁体可能期望优于钕磁体,因为钐钴磁体在较高的热量下磁场强度会降低。然而,在一些情况下,由于钕磁体在更冷的温度下具有更强的磁场强度,所以当不期望更高的热量时,钕磁体可能期望优于钐钴磁体。

另外,与电磁体相比,使用永磁体需要更少的能量来引起转向移动,特别是随着操作温度升高。当操作温度升高太多时,电磁体不再正常工作,并且必须花费大量的资源来充分冷却电磁体。相比之下,永磁体在较高的温度下操作并且需要较少的冷却。

此外,用于将金属带转向的旋转永磁体横跨整个条带的宽度施加最小至没有的热变化。使用固定的电磁体或感应转向来改变横跨条带宽度施加的感应场以转向条带可以在条带中生成局部热点。变化的感应场可以由电磁体绕组中的自然差异引起。电磁体绕组中的差异可导致在一些横向位置比在相邻的横向位置生成更多的热量。本地化的热点可能不均匀地使条带变形,并可导致其它制造缺陷。相反,由旋转的永磁体生成的感应场不会横跨金属带的整个宽度发生,并且不会以足够高的频率发生以引起这种局部热点。尽管永磁体可能包括横跨尺寸或从一个磁体到另一个磁体的一定程度的固有磁差异,但是由于永磁体在转子中的旋转,这种差异被平均化。没有单个的永磁体被保持在任何横向固定的位置,并且由此旋转的永磁体施加平均磁场。因此,旋转的磁性转子转向装置能够以最小至没有引起不期望的局部热点来使金属带转向

在一些情况下,电磁体可以通过被包括在转子中而被有利地使用。如上所述,当放置在转子中并且旋转类似于永磁体如何旋转时,电磁体可以提供变化磁场,而没有使用固定电磁体时存在的局部热点形成的相同问题。转子中的旋转电磁体可以包括使用电刷、滑环或类似的电旋转接头而不是换向器,以确保施加到相邻金属带的磁场不断地改变,而不管电磁体在转子内旋转。在一些情况下,转向装置包括至少四个转子,其中一个转子位于条带的横向边缘的顶侧和底侧中的每一个处(例如,左上角一个,左下角一个,右上角一个,以及右下角一个)。该四转子配置使转向装置能够在金属带的边缘处或附近向金属带施加横向力。如果金属带开始横向偏离期望的轧制线太远,则靠近偏离方向的边缘的转子可以以适当的方向和速度旋转,并且必要时水平或垂直地定位以转向或者将金属带引导返回朝向期望的轧制线。类似地,在金属带的相对边缘(例如远离偏离)上的转子可以施加力以将金属带拉回到期望的轧制线。此外,即使金属带在期望的轧制线附近运行,转向装置仍然可以转动其转子,以横跨条带的横向宽度施加张力或压力。这种拉伸力或压缩力可以帮助保持金属带在期望的轧制线上居中,并且可以帮助控制金属带中的片材形状或平坦度。

在一些情况下,成对转子可以彼此纵向偏移(例如,进一步向下延伸到条带的连续长度,而不是横跨条带的宽度偏移)以便施加金属带的正弦波形波动。第一对转子可以定位在金属带的两个边缘处或附近,并且垂直偏离所需轧制线的金属带或垂直中心线。第一对转子可以提供向上转向,以将金属带推到标准化的轧制线(例如,没有正弦波动的标准轧制线)上方。与第一对转子纵向偏移的第二对转子可以定位在金属带的两个边缘处或附近,并垂直偏离金属带或期望轧制线的垂直中心线并且在其上方。第二对转子可以向下提供转向,以将金属带推向归一化的轧制线下方。另外的成对转子可以用在从第一对转子和第二对转子纵向偏移的位置上,以引起金属带的向上或向下移动。在随后的纵向偏移位置处金属带的向上和向下移动可以在金属带中引起正弦波形的波动。该正弦波形的波动可以帮助金属带在没有横向下垂的情况下行进通过加工装备(例如,不会有条带的中心线下垂超过条带的边缘)并且可以校正形状/平坦度条件,诸如十字弓和鸥翼。转子可以垂直于或平行于片材的纵向轴线(例如,在片材行进方向中延伸的轴线)或其任何组合来定位。

转子可以是圆柱形或大致圆柱形的。在一些情况下,转子具有桶形轮廓(例如,转子的中心具有比转子的边缘更大的直径)。如本文所述,当引起正弦波形波动时,桶形轮廓可以是特别有用的。桶形轮廓可以帮助避免条带和转子之间的不期望接触。可以使用其它形状的轮廓。

在一些情况下,至少一个转子定位成其旋转轴线平行于金属带的横向宽度。在一个方面,单个转子位于金属带或期望的轧制线的垂直中心线的上方或下方,以引起金属带的向上或向下移动。单个转子可以定位在条带轧制线下方,以引起条带的横向十字弓(例如,条带中心垂直偏移到比条带边缘更高的位置)。在一些情况下,单个转子可以位于或靠近金属带的横向中心线。横向十字弓可以用来通过允许它们从条带的边缘脱落而保持诸如水的液体免于汇集在条带的中心。在一些情况下,单个转子被定位成其旋转轴线平行于金属带的纵向轴线。

转向装置可特别有用于将不处于高张力下的金属带转向。例如,当金属带处于大约40mpa或更小、30mpa或更小、20mpa或更小、10mpa或更小、5mpa或更小、2mpa或更小、1mpa或更小的纵向张力下时,可以使用转向装置。在一些情况下,转向装置可用于将处于高张力下的金属带转向。例如,当金属带处于大约1mpa或更大、2mpa或更大、5mpa或更大、10mpa或更大、20mpa或更大、30mpa、40mpa或更大的纵向张力时,转向装置可以是有用的。在一些情况下,较大直径的转子(例如,具有较强磁场的较大磁体)可用于在较高张力下将金属带转向。在一些情况下,增加数量的转子可用于将金属带转向,诸如参考图27描述的主转子和次转子。

转向装置可以在条带上引起协同的横向力以引起条带的横向移动,诸如使条带与加工设备的期望的轧制线对齐,或者如果金属带与期望的轧制线偏离太远则将引起金属带中的横向力朝向期望的轧制线。期望的轧制线可以是通过装备的任何轧制线,不管它是否遵循装备的中心线。例如,期望的轧制线可以居中在装备的垂直和横向中心线处;任选地,期望的轧制线可以从装备的垂直和水平中心线中的任一个或两者中偏移。在一些情况下,期望的轧制线可以是通过装备的条带的自然轧制线(例如,条带在没有转向机构就位的情况下行进通过装备的路径)。然而,任选地,期望的轧制线可以是除自然轧制线以外的轧制线。转向装置可以在条带上引起相反的横向力以在条带上引起横向拉伸或压缩。转向装置可以引起条带的垂直移动,诸如使条带在其当前的轧制线上方或下方升高或降低。转向装置可以进一步将条带的位置保持在目标垂直位置(例如,相对于一件加工装备的顶部和底部)和/或目标横向位置(例如相对于一件加工装备的侧壁)。例如,转向装置可以用于通过一件装备将条带保持在期望的轧制线处。

控制系统可以管理转向设备的转子的位置、速度和/或方向。控制系统可以联接到一个或多个传感器,用于转子的反馈控制(例如,闭环反馈控制)。一个或多个传感器可以定位成与磁性转子转向装置的转子相邻,或者可以在上游或下游方向中的一个或二者中与转子间隔开一定距离。可以使用任何合适的传感器。在一些情况下,诸如光幕的横向位置传感器用于检测条带与期望的轧制线的横向偏差。诸如当光幕的附加部分被遮挡时,横向位置传感器可以检测条带与中心的横向偏差。来自横向位置传感器的信号可触发控制系统操纵转子以施加额外的横向力以将条带推回或拉回期望的轧制线。在一些情况下,一个或多个垂直位置传感器(例如激光测距仪)可用于确定条带是否与期望的轧制线垂直偏离。垂直位置传感器可以检测条带与期望的轧制线的垂直偏差。来自垂直位置传感器的信号可触发控制系统操纵转子(例如垂直移动转子)以施加额外的垂直力以将条带推回期望的轧制线。垂直位置传感器阵列可用于确定片材的形状或平坦度。控制系统然后可以通过对条带施加合适的力来操纵转子以实现期望的形状和/或平坦度。

在一些情况下,传感器可联接到转子或转子马达,以在转子马达驱动转子时测量扭矩的变化。扭矩测量可以用于确定关于移动金属带的位置的信息,诸如金属带是运行得更高还是更低,还是横向偏离期望的轧制线。

在一些情况下,控制系统可以在没有反馈控制的情况下操作,诸如在不使用横向位置传感器或垂直位置传感器的情况下。在这种情况下,控制系统可以在操作期间不断地运转转子。通过适当定位的转子(例如定位在金属带的横向边缘处或恰好经过金属带的横向边缘),在没有反馈的情况下恒定的转子操作可以在一定程度上保持移动金属带的横向位置,这可以适合于各种操作。当金属带开始从中心横向偏离时,金属带将移动到一组转子的移动磁场中,同时远离位于金属带的横向相对侧的另一组转子的移动磁场。由于金属带在第一组移动磁场中比第二组移动磁场更多,所以第一组移动磁场将以比第二组移动磁场更强的力将金属带推向期望的轧制线,从而提供自动纠正措施而不需要传感器的主动反馈。然而,在一些情况下,传感器的主动反馈可能更期望用于更多的主动控制。

在一些情况下,转子的旋转轴线可以落在与金属带的边缘共面的垂直平面上,即在金属带的边缘的转子的半径内,或者在远侧(例如远离期望的轧制线的横向中心线)与金属带的边缘间隔开(例如,大于转子半径的距离)。在实例中,宽度为一米的金属带的加工可以包括定位转子与期望轧制线的横向中心线横向间隔开一米,导致当金属带沿着期望的轧制线行进时在包含转子的旋转轴线的垂直平面和金属带的边缘之间0.5米的间隙。

在实例中,转向装置紧接在冷轧机之前放置,以便根据需要将条带转向,以确保条带在送入轧机时居中。如果条带开始偏离中心,则转向装置可以施加横向力以帮助将条带返回到中心。因此,在条带最终进入轧机之前,可以在不接触金属带的情况下纠正条带在送入转向装置中时的条带对齐不准确性。

在另一个实例中,转向装置被用在各种加热装备中或附近,诸如感应加热器。由于加热的条带可以是软的,因此可能期望在金属带充分冷却或进一步加工之前不接触金属带。非接触转向装置可以确保条带保持居中并位于适当的轧制线上(例如,期望的轧制线)而不接触加热的条带。此外,使用永磁体代替电磁体可以允许非接触转向装置在如本文所述的加热装备的高温中或附近操作。另外,与电磁体相比,永磁体需要较少的冷却。使用永磁体代替电磁体也可以允许非接触转向装置将金属带转向,而在其中最小至没有引起局部热点。

在另一个实例中,转向装置在卷绕线圈时使用。当金属带被卷绕成线圈时,条带与中心的任何未对准都可能导致卷绕不良的线圈,这可能难以处理,可能会损坏金属,或者可能是其它方式不期望的。为了确保条带在卷绕线圈时居中,转向装置可用于使条带沿着线圈的中心线保持居中。

在另一个实例中,转向装置可以用于热轧机的无张力或低张力部分(例如,在反转部分和串联部分之间)。

在另一个实例中,转向装置可以用于稳定在循环式分切机的低张力区域中的分离的金属股线。

在另一个实例中,转向装置可以用于将移动金属带定位在诸如下料机的一件加工装备内的正确位置中。

在一些情况下,当用于移动或定位固定金属片时,磁性转向设备可被称为磁性定位设备。例如,磁性定位设备可以包括旋转磁体,诸如本文所公开的那些旋转磁体,并且参考各个附图,用于生成移动磁场,所述移动磁场引起固定金属片中的力以将固定金属片移动到期望位置。一个或多个旋转磁体可以靠近期望位置(诸如在冲压机的周边周围)放置,以将固定的金属片推进到期望位置,诸如在冲压机内的期望位置。

在所有实例中,非接触磁性转子转向装置能够控制金属带的定位而不接触金属带。

在实例中,非接触磁性转子转向装置可以用在连续退火线中。在连续退火线(也称为连续退火溶液热处理(cash)线)中,金属必须在低张力下穿过多个部分。一些cash线可能长达约800米或更长。在某些部分中,诸如炉和冷却部分,金属带可能不被辊或其它接触装置支撑。金属带可穿过大约100米或更长的无支撑部分。随着未来cash线的发展,这些长度可能会变更长。在无支撑部分中,金属带可以漂浮在流体垫(例如气体或空气)上。由于金属带没有被支撑相当长的距离,所以金属带可倾向于偏离加工装备的期望轧制线。另外,水淬火喷嘴、空气喷嘴或其它工艺装备可能以不期望的方式推动或移动片材。如果条带偏离期望的轧制线太远,可能需要将加工装备关机以便解决问题。如果条带接触加工装备的边缘,诸如炉的边缘,则对条带、炉和周围区域的损害可发生,导致时间和材料的显著损失。如果条带接触加工装备的边缘,则对人员也可能是危险的。每当关机发生时,大量的金属带都必须报废。

在一些情况下,如本文所公开的非接触磁性转子转向装置的使用可以帮助保持缓慢移动金属带在cash线或其它线中的适当位置,其中金属带可以不被支撑持续时间。在不使用非接触磁性转子转向装置的情况下,诸如在cash线的启动或关机期间,cash线中的缓慢移动金属带可能需要被支撑(例如通过物理接触的支撑件,诸如辊或一块木头),直到它已经达到了维持合适的轧制线的最低速度,而没有物理接触支撑。合适的轧制线可以是期望的轧制线,或者可以是允许金属带穿过加工装备的一组轧制线(例如,期望的轧制线,次优轧制线或其任何组合),而不产生不期望的结果,诸如不期望的碰撞。然而,当使用非接触磁性转子转向装置时,直到移动金属带不再需要通过物理接触支撑件支撑所需的最小速度可能更小。可能需要报废由cash线内的物理接触支撑件支撑的任何长度的移动金属带。因此,使用一个或多个非接触磁性转子转向装置可以减少生成的报废量,因为移动金属带将需要通过物理接触的支撑件支撑较短的持续时间或可能没有时间,因为维持合适的轧制线的最低速度较低。cash线以较低的最低速度运行的能力可以提供额外的好处。例如,随着炉温增加到其期望的操作温度,在启动期间以较低的最低速度运行可以生成较少的报废。由于材料在达到期望的温度之前穿过炉可能需要报废,所以在达到期望的炉温之前启动期间的较低可用条带速度可能导致较少的材料穿过未预热的炉,并且因此较少的材料需要报废。

非接触磁性转子转向装置可以放置在炉部分中、炉和冷却部分之间、冷却部分中、冷却部分之间或cash线的冷却部分之后。除了提供如本文所述的转向能力之外,非接触磁性转子转向装置可以操作以使金属带浮在其中气浮不切实际或不期望的位置中。整个cash线中可以使用多个转向装置。例如,在整个cash生产线中使用多个转向装置可以包括以下中的任何一个或任何组合:放置在炉部分中的一个或多个转向装置;放置在冷却部分中的一个或多个转向装置;紧接放置在炉部分之前的一个或多个转向装置;紧接放置在炉部分之后的一个或多个转向装置;紧接放置在冷却部分之前的一个或多个转向装置;以及紧接放置在冷却部分之后的一个或多个转向装置。

在另一个实例中,转向装置用于在金属带上施加横向力。当条带穿过转向装置时,这些横向力可用于形成期望的片材形状和/或平坦度。片材形状和/或平坦度的控制可用在工作台辊上和其它装备中。在实例中,当金属带穿过淬火装备时,片材形状和/或平坦度控制使金属带能够更一致地冷却。通过帮助保持金属带的形状和/或平坦度,转向装置可以确保从横跨金属带横向布置的各种喷嘴散布的冷却流体大致同时到达金属带。另外,改进的平坦度或引入正十字弓或正弦波可以保持冷却流体免于汇集在金属带的弯曲区域中。此外,转向装置可以将条带保持在分散冷却流体的喷嘴区域内。如果条带不保持居中,则条带可能不均匀地冷却。在其中仅从底部(诸如通过水)冷却条带的一些情况下,可能不期望允许流体(例如水)到达可能损坏条带的条带的顶部。在这种情况下,冷却剂喷嘴通常配备有可调节宽度的盖子,这可以阻止水被向上喷射,使得水不会到达条带的顶部。转向装置可用于将条带保持在喷嘴的中心领域,使得宽度盖子不需要被调节。另外,与转向单元结合的条带位置测量可用于确保宽度盖子被定位在适于获得期望的片材形状和/或平坦度的相对于条带边缘的位置处。在一些情况下,使用本文公开的转向装置的淬火装备可以在不需要可调节宽度盖子的情况下操作。在一些情况下,给定已知输入(例如,金属带的宽度),如本文所公开的没有反馈的转向装置可以结合具有可调节宽度盖子的淬火设备来操作。

非接触磁性转子转向装置的总体尺寸可以相对较小并且可以容易地结合到现有装备中或附近。例如,转向装置可以附接到一件装备上(例如,循环式分切机),通过使该设备具有在纸张进出设备时自动校正错位的能力来升级或改进该设备。

转向装置可以以许多方式操纵条带,包括扭转条带(例如,通过降低条带一侧上的转子同时升高条带另一侧上的转子)。不仅转向装置可用于保持对条带的位置和/或形状的控制(例如,纠正与期望的轧制线的轻微偏差,诸如与期望的轧制线的横向中心线的横向偏差),而且转向装置可用于在不接触片材的情况下将片材主动转向(例如,转动、旋转或以其它方式引导片材,诸如从一件装备向上或向下运动到另一件装备)。

在一些情况下,一个或多个转子以额外的自由度(例如由机器人臂支撑)支撑,允许转子更精确地定位在金属带的周围。

在一些情况下,反馈控制电路使用反馈控制过程来控制转向装置的转子。反馈控制电路可以联接到用于测量金属带的水平偏差和垂直偏差中的一个或二者的传感器。基于测量,反馈控制电路可以确定将金属带返回到期望路径所需的校正力的方向和强度。在一些情况下,只能确定校正力的方向。校正力的方向和强度可以单独地对每个转子确定。然后反馈控制电路可以对于每个转子确定为了施加适当的校正力需要进行哪些调节。确定的调节可以包括调节每个转子的速度、转子的方向、转子的垂直位置、转子的水平位置和/或转子与同一垂直支撑件上的另一个转子的垂直分离。在一些情况下,确定的调节包括基于上面考虑的其它自由度的调节。反馈控制电路然后可以根据需要通过操纵转子来实施确定的调节。操纵转子可以包括调节永磁体转子的转速或方向或者调节永磁体转子相对于条带的位置。随着反馈控制电路测量新的水平偏差和新的垂直偏差中的一个或多个,反馈控制过程然后可以重复。

在一些情况下,可以使用更复杂或不太复杂的反馈控制电路。例如,可以设置反馈控制电路,以当条带朝向该侧转向太远时,简单地打开金属带的一侧上的转子。在另一个实例中,反馈控制电路可以使用附加传感器(诸如全视角相机)来确定可能需要进行哪些调节,以便使条带返回到期望的路径或将条带保持在期望的路径上。在一些情况下,转向装置可以在条带的两个边缘处使用,以在片材中连续地引起压缩或拉伸应力。持续的应力可以达到期望的片材形状和/或平坦度,并将条带保持在期望的位置处。在其它情况下,可能不需要反馈回路。例如,转向装置可以连续操作(例如,基于转子速度、方向和位置的预设设定,而无需反馈控制)以将条带保持在期望的轧制线上或其附近,或以其它方式控制条带。在这种情况下,可以任选地包括用于垂直稳定性的附加控制,例如但不限于空气喷嘴。在一些情况下,没有反馈控制的转向装置的操作设定可以基于待加工的金属带的已知或预测的宽度。

在一些情况下,磁性转向设备可以包括固定磁体,当定位靠近移动金属带处时,所述固定磁体引起移动金属带中的力来将移动金属带推向期望的轧制线。

给出这些说明性实例是为了向读者介绍这里讨论的一般主题,而不是意在限制所公开的概念的范围。以下部分参考附图描述了各种附加特征和实例,其中相同的附图标记表示相似的元件,并且方向性描述用于描述说明性实例,但是像示范性实例一样,不应该用来限制本公开。包括在本文的图示中的元件可以不按比例绘制。

图1是根据本公开的某些方面的磁性转子转向装置100的图示。待控制的金属带102在纵向方向112中穿过转向装置100的转子110。为了说明的目的,金属带102被示出为部分剖开。每个转子110由被布置成围绕其外表面呈现磁场的一个或多个永磁体制成。当转子110旋转时,靠近转子110处感应变化磁场。通过控制转向装置100的转子110的位置和旋转,可以在经过转子110附近的金属带102上引起期望的力。

转向装置100可以包括可移动地定位在横向轨道106上的两个垂直支撑件104。在一些情况下,每个垂直支撑件104由其自己的横向轨道106支撑。每个垂直支撑件104可以被单独控制以沿着横向轨道106移动,因此控制联接到该特定垂直支撑件104的任何转子110的横向移动。在一些情况下,共同控制垂直支撑件104以沿着横向轨道106在相同方向(例如,左或右)或相反方向(例如一起或分开)中移动。垂直支撑件104的横向移动可以通过一个或多个线性致动器124来实现。垂直支撑件104的横向移动可以允许转向装置100容纳各种宽度的金属带102并且允许进一步控制由转子110施加的变化磁场。

每个垂直支撑件104可以包括一个或多个转子臂108。在一些实例中,诸如图1所示的那些,每个垂直支撑件104包括两个转子臂108,使得一个可以定位在条带102下方,而另一个定位在条带102上方。每个转子臂108可以由保护性转子护罩120覆盖,如在此更详细描述的。如图1中可见,为了说明的目的,在最左侧的垂直支撑件104上的转子臂108被示出为没有它们的转子护罩120,而最右侧的垂直支撑件104的转子臂108通过它们的转子护罩120被隐藏而看不见。每个转子臂108支撑一个或多个转子110。每个转子臂108在垂直支撑件104上的垂直位置可以被单独控制,从而控制与该特定转子臂108联接的任何转子110的垂直移动。在一些情况下,可共同控制单个垂直支撑件104的转子臂108以沿着垂直支撑件104在相同方向(例如,向上或向下)或相反方向(例如,一起或分开)中移动相同距离。垂直控制可通过一个或多个线性致动器122实现。

每个转子臂108可以包括一个或多个转子110。转子臂可以容纳用于转子臂108上的全部或每个转子110的转子马达116。转子马达116可以由磁屏蔽件126保护。为了说明目的,围绕左顶部转子马达116的磁屏蔽件126在图3中被隐藏。转子马达116可使用传送带114联接到转子110以控制转子110的旋转。传送带114可以是用于将旋转传送到转子110的任何合适的装置,诸如链条或扁平带。在一些情况下,转子马达116可以位于其它地方。转子马达116可以提供动力以在向内的方向118(例如,转子的最靠近金属带102的一侧朝向金属带102的中心移动)或向外的方向(例如,与向内方向118相对的旋转)中旋转任何附接的转子110。术语“向内方向”和“向外方向”在本文中用于方便地帮助描述转子相对于通过转子附近的片材的大致旋转方向。显而易见的是,当位于垂直支撑件104上的金属带102上方的第一转子110在向内方向中旋转时(例如,当在如图1所描绘的金属带移动的纵向方向112中面向转向装置100观察时逆时针旋转),其实际上将从位于同一垂直支撑件104上的位于金属带102下方的第二转子110在相反方向中旋转,该同一垂直支撑件104也在向内的方向中转动(例如当在如图1所描绘的金属带移动的纵向方向112中面向转向装置100观察时,在金属带102下方向内旋转的转子110将顺时针旋转)。

每个转子110的旋转的方向和速度可以被单独地控制。在一些情况下,共同控制单个垂直支撑件104上的转子110以相对于条带102以相同速度和/或在相同方向中旋转。

在一些情况下,单独控制每个转子臂108和/或转子110以调节转子110与垂直支撑件104的横向距离。在一些情况下,转子臂108可以锚定到垂直支撑件104以相对于垂直支撑件104枢转(例如,围绕垂直于垂直支撑件104的旋转轴线枢转)。

如图1所示,转子110定位邻近条带102的边缘并取向成使得每个转子110的旋转轴线128平行于条带102的纵向方向112。在其它配置中,每个转子110的旋转轴线128可以不平行于条带102的纵向方向112。此外,每个转子110的旋转轴线128可以相对于条带102可调节,诸如通过其垂直支撑件104沿着垂直旋转轴线从垂直支撑件104的底部延伸穿过其顶部。在一些配置中,转子110可定位在金属带102的上方或下方(例如,与边缘不直接邻近)。可以直接位于金属带102的边缘的上方或下方;或者可以靠近金属带102的边缘,而不直接在金属带或金属带的边缘的上方或下方。当转向装置100包括横跨金属带的中心横向相对地定位的至少两个转子110时,两个转子110的旋转轴线128之间的距离可以小于、等于或大于金属带102的宽度。

转向装置100可以包括屏蔽件(未示出),如本文进一步详细描述的。为了保护装备免受错误的金属带的损坏,控制屏蔽件内的部件的温度或其它目的,可能期望使用屏蔽件。在一些情况下,转子110可以在没有任何屏蔽件的情况下使用(例如,没有转子护罩120)。

图2是根据本公开的某些方面的图1的磁性转子转向装置100的前视图。为了说明的目的,转子护罩120未在图2中示出。转向装置100包括在相应的横向轨道106上的两个垂直支撑件104。每个垂直支撑件104承载两个转子臂108,每个转子臂承载转子110。如本文所述,四个转子110可以可控地定位在金属带102周围。如图2中可见,所有转子110在向内方向中转动(例如,如图2可见,右顶部和左底部转子110以顺时针方向旋转,而左顶部和右底部转子110以逆时针方向旋转)。所有转子110的这种向内旋转可以导致横跨金属带102横向施加的压缩力。转子110可以在与图2中所示的方向相反的方向中旋转,以横跨金属带102横向地施加张力。

转子110的位置可以参考每个转子110的旋转轴线128或者参考旋转轴线所位于的平面来描述。转子平面202可由金属带102的横向中心线208或期望的轧制线的横向中心线214的一侧上的一个或多个转子110的旋转轴线限定。转子平面202可以从旋转轴线垂直延伸。如图2可见,转子平面202与金属带102的边缘212(例如,与金属带102的边缘212共面的垂直线204)横向间隔开距离206。在一些情况下,转子平面202可以与金属带102的边缘212垂直对齐(例如,距离206为零或大致为零)。在一些情况下,转子平面202可以与远离金属带102的中心线208的金属带102的边缘212横向间隔开(例如,金属带的中心线208与转子平面202之间的距离大于金属带102的宽度的一半)。在一些情况下,转子平面202可以与金属带102的中心线208和金属带102的边缘212之间的金属带102的边缘212横向间隔开(例如,金属带102的中心线208和转子平面202之间的距离小于金属带102的宽度的一半)。

在一些情况下,假定转子平面202围绕金属带102的横向中心线208或期望的轧制线的横向中心线214为中心,则可基于转子平面202之间的距离来描述转子放置。对于放置在金属带102的边缘处的转子,转子平面202可以分开大致等于金属带102的宽度的距离,诸如在等于或小于10%、9%、8%、7%、6%、5%、4%、3%、2%或1%的偏差内。对于放置在金属带102的边缘或边缘外侧的转子,转子平面202可以分开分别小于或大于金属带102的宽度的距离。在一些情况下,距离可以比金属带102的宽度大至少转子平面202中的每一个转子平面中相对转子的半径总和,使得当金属带102在期望的轧制线上居中时转子不直接位于金属带102的上方。在一些情况下,该距离可以大于金属带102的宽度至少金属带102的宽度的20%、30%、40%、50%、60%、70%、80%、90%或100%或更多。

在转子平面202之间的距离大于金属带的宽度的情况下,转子平面202可以各自定位在金属带102的边缘212与障碍物(诸如装备的壁,相邻一件装备、建筑物的墙壁、操作员走道或如果金属带102偏离期望的轧制线太远则可能处于接触移动金属带102的危险中的其它这种障碍物)之间。转子平面202可以位于障碍物和金属带102之间的任何地方,以确保金属带102在接触障碍物之前朝向期望的轧制线转向。

另外,每个转子110的旋转轴线与共同的纵向平面210相交。如图2所描绘,共同的纵向平面210是与图2的页面共面的平面。并且与磁性转子转向装置100的每个转子110相交。

图3是根据本公开的某些方面的图1的磁性转子转向装置100的垂直支撑件104和两个转子110的特写视图。为了说明的目的,转子护罩120和金属带102未在图3中示出。示出的垂直支撑件104支撑两个转子臂108,每个转子臂支撑转子110。每个转子臂108包括通过相应的传送带114联接到相应的转子110的转子马达116。可看见用于沿着横向轨道106横向移动垂直支撑件104的线性致动器124。在一些情况下,转子马达116包括能够衰减由转动转子110产生的变化磁场的磁屏蔽件126。在这种情况下,基于磁性的马达(例如,与基于气动或液压的马达相反)可以使用。为了说明的目的,顶部转子马达116的磁屏蔽件126未在图3中示出。共同的纵向平面210的一部分在图3中描绘。

图4是根据本公开的某些方面的图1的磁性转子转向装置100的垂直支撑件104和两个转子110的特写后视图。为了说明的目的,顶部转子护罩120和金属带102未在图4中示出,然而,底部转子护罩120示出狭缝121。所示的垂直支撑件104支撑两个转子臂108,每个转子臂支撑转子110。线性致动器402控制每个转子臂108沿垂直支撑件104的垂直移动。其它机构可用于控制每个转子臂108的垂直移动,包括任何合适的线性致动器,诸如本文所述的那些。在一些情况下,线性致动器402由马达404供电。

可以看到用于控制垂直支撑件104沿着横向轨道106的横向移动的线性致动器124。在一些情况下,线性致动器124可以由马达406供电。

图5是根据本公开的某些方面的图1的磁性转子转向装置100的垂直支撑件104和两个转子110的特写视图,其中转子护罩120就位。金属带102在转子护罩120之间通过,使得由转子护罩120内的转子110的旋转感应的变化磁场穿过金属带102。垂直支撑件104示出支撑两个转子臂108,每个转子臂108支撑转子110,并且其中的每个都由转子护罩120封装。

如本文进一步详细描述的,转子护罩120可以是单层或多层的并且可以保护转子护罩120内的转子110和其它装备免受灰尘、碎片、流体或其它污染物。转子护罩120也可以是绝热的,从而减少横跨转子护罩120传递的热量。

转子护罩120可以具有任何合适的轮廓或形状。在一些情况下,附加屏蔽件被包括在垂直支撑件104上或附近。附加屏蔽件可以联接到垂直支撑件104的转子护罩120或者与其连续。附加屏蔽件可以帮助保护和冷却与转子110或垂直支撑件104相关联的任何马达和致动器。

在一些情况下,诸如当转子护罩120由金属制成时,转子护罩120可以包括狭缝121或其它开口,用于减小转子护罩120中的涡流。没有这种狭缝121或其它开口,由转子110产生的移动磁场可以在导电转子护罩120中引起相当大的热积聚。狭缝121或其它开口可以是用于减小涡流的任何合适的形状或图案。在一些情况下,狭缝121或其它开口随后填充或覆盖有电绝缘材料。在一些情况下,转子护罩120包括诸如聚四氟乙烯(ptfe)的非导电材料的外层或覆盖物。在一些情况下,转子护罩120由非导电材料制成并且不包括狭缝121或其它开口。在某些情况下,层压用于降低涡流的影响。

在一些情况下,转子护罩120由诸如不锈钢的金属制成,以在移动金属带接触的情况下保护转子110。在一些情况下,转子护罩120包括一层ptfe(例如teflontm)或其它低摩擦涂层,以在移动金属带接触转子护罩120的情况下减少对金属带或转子护罩120的损坏。

图5中另外示出了任选的位移传感器502。位移传感器502可以联接到垂直支撑件104、转子臂108、转子护罩120或任何其它合适的装备。位移传感器502可以被联接以相对于转子110保持横向固定。位移传感器502可以被联接以相对于转子臂108保持垂直固定。在一些情况下,位移传感器502可以测量位移金属带102相对于转子110的垂直位移。在一些情况下,位移传感器502可以测量金属带102相对于转子110的横向位移。

在实例中,位移传感器502是提供第一光束504和第二光束506的激光传感器。第一光束504可以与金属带102的期望的边缘位置对准,而第二光束506可以与金属带102的期望的边缘位置(例如,朝向期望的轧制线,如图5所描绘,或远离期望的轧制线)横向地间隔开。每个光束504、506可以测量在下面的金属带102的存在或测量从位移传感器502到金属带102的距离。这些测量可以用于近似或以其它方式确定金属带102的边缘相对于转子110的位置。位移传感器502可以用作反馈传感器以提供金属带102的位置,如在此更详细描述的。

图6是根据本公开的某些方面的磁性转子转向装置600的两个转子610的特写前剖视图,其中冷却剂护罩602和转子护罩612就位。每个转子臂614可以支撑转子610。围绕转子610和转子臂614的护罩可以包括转子护罩612(例如外层)和冷却剂护罩602(例如内层)。转子护罩612和冷却剂护罩602可一起作用以围绕转子610和任何其它被包围的部分形成保护罩608。在一些情况下,冷却剂604可以在冷却剂护罩602和转子护罩612之间的空间中循环。在一些情况下,冷却剂604通过位于冷却剂护罩602和转子护罩612之间的路径或管道循环。冷却剂604可以使用冷却剂泵606来循环。

在实例中,冷却剂泵606将冷却剂604泵入保护罩608的最靠近金属带616的一侧处的冷却剂罩602和转子罩612之间的空间中。冷却剂604可以在保护罩608内循环并且在离金属带102最远的保护罩608的一侧被拉出。然而,冷却剂604可以以其它方式循环。通过保护罩608循环的冷却剂604可以从转子610中提取热量,并在再次泵送通过保护罩608之前释放提取的热量(例如被冷却)。其他部分(例如轴承、马达、致动器)可以以相同的方式冷却。

在一些情况下,冷却剂泵将冷却剂泵入冷却剂护罩602或转子护罩612的整个体积中(例如,如果不使用单独的冷却剂护罩602)。冷却剂可以围绕冷却剂护罩602或转子护罩612内的部分进行循环。转子610的移动可以有助于使冷却剂在冷却剂护罩602或转子护罩612的整个体积内移动。在一些情况下,管道或其它特征可用于引导靠近或经过转子610的冷却剂流动。

冷却剂604可以是任何合适的冷却剂,包括诸如空气、水或制冷剂的流体。

图7是根据本公开的某些方面的描绘围绕金属带702就位的永磁体磁性转子转向装置700的顶视图。待控制的金属带702在纵向方向712中穿过转向装置700的转子710。每个转子710由布置成围绕其外表面呈现磁场的一个或多个永磁体752制成。当转子710旋转时,在转子710附近感应变化磁场。通过控制转向装置700的转子710的位置和旋转,可以在通过转子710附近的金属带702上引起期望的力。每个转子710可以围绕其自身的旋转轴线770旋转。每个转子710可以与垂直于金属带702的纵向方向712(例如,行进方向)的共同平面772相交。每个转子710的旋转轴线770可平行于纵向方向712或不平行于纵向方向712。金属带702可穿过共同平面772。无论每个转子710的旋转轴线770相对于纵向方向712的取向如何,转子710可以在共同平面772处彼此间隔开。

转向装置700可以包括可移动地定位在横向轨道706上的两个垂直支撑件704。每个垂直支撑件704可以被单独地控制以沿着横向轨道706移动,从而控制联接到该特定垂直支撑件704的任何转子710的横向移动。在一些情况下,共同控制垂直支撑件704以沿着横向轨道706在相同方向(例如,左或右)或相反方向(例如,一起或分开)中移动相同的距离。垂直支撑件704的横向移动可以由马达754控制。马达754可以驱动线性螺杆756,该线性螺杆756沿着横向轨道706移动垂直支撑件704。

每个垂直支撑件704可以包括一个或多个转子臂708。每个转子臂708支撑一个或多个转子710。在垂直支撑件704上的每个转子臂708的垂直位置可以被单独控制,从而控制联接到特定转子臂708的任何转子710的垂直移动。定位马达760可以控制相应的垂直移动。在一些情况下,足够数量的定位马达760用于单独地控制每个转子臂708的垂直移动(例如每个转子臂708一个定位马达760)。在一些情况下,单个定位马达760可共同控制特定垂直支撑件704上的所有转子臂708的垂直移动。

如本文进一步详细描述的,每个转子臂708和相关联的转子710可以封闭在保护罩750中。

在一些情况下,可以将光幕传感器(例如,光幕发射器762和光幕接收器764)定位在转子710附近,以便检测金属带702的横向位移。可以基于远离期望的轧制线的横向中心线768的位移来检测横向位移。如果金属带702开始在一个方向或另一个方向中横向地偏离太远,则控制器可以改变一个或多个转子710的位置、转速和/或旋转方向,以便在金属带702上施加力以校正偏差。

在一些情况下,一个或多个垂直位置传感器766定位在转子710附近,以测量金属带702与期望的轧制线的垂直偏差。如果金属带702在一个方向或另一个方向中开始偏离太高,则控制器可以改变一个或多个转子710的位置、转速和/或旋转方向,以便在金属带702上施加力以校正偏差。

一个或多个垂直位置传感器766还可用于在将转子710移动到操作位置(例如,邻近金属带702)之前进行初始测量(例如初始轧制线高程测量)。转子710可以被保持在非操作位置(例如远离金属带702的期望的或预期的轧制线),直到进行初始轧制线高程测量,在该时间之后,每个转子710可以被移动到操作位置。

转子马达758可以位于每个转子臂708上,以为转子710的旋转移动提供动力。转子马达758被示出为位于转子臂708和保护罩750的外部,然而在一些情况下,转子马达758位于转子臂708和/或保护罩750内。

图8是根据本公开的某些方面的描绘图7的永磁体磁性转子转向装置700的前视图。在转子710之间可见金属带702。如图8可见,每个转子710包括联接到外表面的多个永磁体752。单个转子710上的相邻永磁体752可以布置成呈现不同的磁极(例如,交替地面向径向外侧的北极和南极)。任选地,单个转子710上的相邻永磁体752可以根据其它配置来布置,诸如但不限于halbach阵列配置或其它配置。转子710的永磁体752可以联接到转子710的外表面或者封装在转子710的壳体中。虽然图7-8中描绘了磁体的单个配置,但是可以相对于转子710使用磁体的其它配置。例如,可以横跨转子的宽度(例如,在由图7中所描绘的永磁体752占据的空间中)和/或转子的圆周以设计成当转子710旋转时输出围绕转子710的期望的磁场的任何合适的布置(诸如halbach阵列)布置多个永磁体。在一个实例中,图7-8中描绘的永磁体752中的每一个可以由与永磁体752的形状联接在一起的若干个磁体的halbach阵列替代。

示出了垂直支撑件704,并且每个垂直支撑件704通过致动相应的马达754沿着横向轨道706可移动地定位。

转子臂708示出支撑相应的转子710并且封闭在相应的保护罩750中。可以分别通过定位马达760来单独地和共同地实现垂直支撑件704的转子710的垂直定位。

转子马达758可以位于每个转子臂708上,以为转子710的旋转移动提供动力。转子马达758被示出为位于转子臂708和保护罩750的外部,然而在一些情况下,转子马达758位于转子臂708和/或保护罩750内。

在转子710附近示出了光幕传感器(例如,光幕发射器762和光幕接收器764)。从光幕发射器762发射的光806由光幕接收器764接收。通过跟踪其中发射的光806会和不会到达光幕接收器764,光幕传感器可以检测到金属带702的横向位移。

垂直位置传感器766被示出为邻近转子710。在一些情况下,激光804通过垂直位置传感器766从金属带702的表面反弹,以测量金属带702与期望的轧制线的垂直中心线802的垂直偏差。金属带的厚度可以是已知的或计算的,以考虑金属带的表面和金属带的中心之间的距离。如果金属带702在一个方向或另一个方向中开始垂直偏离太远,则控制器可以改变一个或多个转子710的位置、转速和/或旋转方向,以便在金属带702上施加力以校正偏差。

图9是示出根据本公开的某些方面的描绘定位在连续退火线900中的各个位置处的磁性转子转向装置902的示意图。示出了连续退火线900的一部分,其包括由间隙912分开的炉部分908和冷却部分910。金属带904可在方向906中穿过连续退火线900。

炉部分908可以包括由间隙918分开的第一炉区914和第二炉区916。冷却部分910可以包括由间隙924分开的第一冷却区920和第二冷却区922。如图所示,任选的热增强区926位于炉部分908和冷却部分910之间。间隙928位于炉部分908和热增强区926之间,并且间隙930位于热增强区926和冷却部分910之间。在热增强区926中,金属带904的温度可以保持,而不是被加热或冷却。在一些情况下,不使用热增强区926,并且间隙912相对较小,炉部分908在冷却部分910的开始附近结束。在一些情况下,热增强区926仅仅是以热增强模式操作的冷却部分910的冷却区中的一个。

在一些情况下,炉部分908、冷却部分910和/或热增强区926可以具有比图9所示更少或更多的区域。特定部分(例如炉部分908的第一炉区914和第二炉区916)的每个区域可以包括其自己的壳体(例如,第一炉区914处于与第二炉区916分开的壳体中)。放置在区域内的转向装置902可以放置在用于该特定区域的壳体内,而放置在间隙(例如,间隙918)中的转向装置902可以放置在任一周围区域的壳体的外部。在一些情况下,特定部分的一个或多个区域(例如炉部分908的第一炉区914和第二炉区916)或甚至相邻部分(例如第二炉区916和热增强区926或第一冷却区域920)位于共享的共同的壳体中(例如,第一炉区914和第二炉区916位于单个炉壳体中)。在这种情况下,放置在区域内的转向装置902可以位于与放置在间隙(例如,间隙918)中的转向装置902相同的壳体中,但位于不同的位置。例如,放置在第一炉区914内的转向装置902可以位于与放置在间隙918中的转向装置902相同的整个壳体内,然而放置在第一炉区914内的转向装置902可以是第一炉区914的相邻的温度控制元件。单个连续退火线900可以包括一个或多个壳体,其中一个或多个部分(例如炉部分908和冷却部分910)和/或区域(例如第一炉区914和热增强区域926)具有单独或共享的壳体。换句话说,如下所使用的术语“间隙”反映了相邻元件之间的一般空间,但是可能反映或不反映相邻元件的物理壳体之间的空间。

尽管在图9中用十一个转向装置902(例如,诸如来自图1的转向装置100或来自图7的转向装置700)示出,但是在任何的位置组合中,连续退火线900可以具有更少或更多的转向装置902。转向装置902可位于炉部分908之前(例如邻近炉部分908的入口)。转向装置902可位于炉部分908内,诸如在第一炉区914内,在间隙918内,和/或在第二炉区916内。转向装置902可位于炉部分908和冷却部分910之间的间隙912内。当使用热增强区域926时,转向装置902可位于间隙928内,在热增强区域926内,和/或在间隙930内。转向装置902位于冷却部分910内,诸如在第一冷却区域920内(例如,在第一冷却区域920的入口内和附近),在间隙924内,和/或在第二冷却区域922内。转向装置902可位于冷却部分910之后(例如,邻近冷却部分910的出口)。转向装置902可以位于连续退火线900中的其它位置。

图10是示出根据本公开的某些方面的用于引起金属带1002中的正弦波型波动的偏移转子1010的示意性侧视图。所示的条带1002在方向1012中行进。三个转子1010显示处于纵向偏移位置。如图所示,转子1010可以对齐,使得每个转子的旋转轴线平行于条带的纵向方向。在一些情况下,转子1010可以对齐,使得每个转子的旋转轴线平行于条带(未示出)的横向宽度。

每个转子1010可将力施加在金属带1002上以使金属带1002与中性轧制线的垂直路径1004(例如,大致平坦的轧制线或预期轧制线)垂直移位。当相邻的转子1010在纵向上偏移并且交替地定位在金属带1002的相对侧上(例如,在轧制线上方和轧制线下方交替)时,来自转子1010的垂直位移在金属带1002中引起正弦波型波动,如图10中可见。在一些情况下,转子1010可以具有与金属带1002的一般正弦波形状匹配的轮廓,允许转子1010定位在金属带1002附近而没有接触金属带1002的危险。例如,转子1010可以是桶形的,但是也可以使用其它形状的轮廓。

图11是根据本公开的某些方面的描绘反馈控制过程1100的流程图。反馈控制过程1100可以由联接到本文公开的传感器、定位马达和驱动马达的任何组合的控制器(例如,一个或多个专用集成电路(asic)、数字信号处理器(dsp)、数字信号加工装置(dspd)、可编程逻辑装置(pld)、现场可编程门阵列(fpga)、处理器、微控制器、微处理器、被设计为执行本文所述功能的其它电子单元,和/或其组合)来执行。

在框1102处,诸如通过光幕可以感测到水平偏差。感测水平偏差可以包括测量水平偏差量。在框1104处,可以诸如通过垂直位置传感器来感测垂直偏差。感测垂直偏差可以包括测量垂直偏差量。在某些反馈控制过程1100中,可以执行框1102和框1104中的任一个或两者。

在框1106处,可以基于来自相应框1102和1104的水平偏差测量和/或垂直偏差测量来确定校正力的方向。在框1108处,校正力的强度可以基于来自相应框1102和1104的水平偏差测量和/或垂直偏差测量来确定。

在框1110处,可以确定对永磁体转子的调节。确定的调节可以基于在框1106处确定的校正力的方向和/或在框1108处确定的校正力的强度。

在框1112处,操纵转子。基于在框1110处确定的调节,可以在框1112处操纵转子。转子的操纵可以包括调节磁性转子转向装置的一个或多个转子的位置、转速和/或旋转方向。

在一些情况下,不执行框1106、1108和1110,而是基于框1102处的水平偏差的检测和/或框1104处的垂直偏差的检测来直接操纵转子。例如,光门可以定位在期望的边缘点处,使得如果金属片材横向地偏离超出期望的边缘点,则光门向操纵转子的控制器发送信号,诸如在触发的光门附近打开转子。这种系统将提供简单的开/关反馈控制,而不是计算的反馈控制(例如使用框1106、1108和1110)。

过程1100可以连续且重复地操作。

图12是根据本公开的某些方面的描绘用于在没有反馈控制的情况下将金属带转向的过程1200的流程图。在框1202处,使金属带通过具有期望的轧制线的加工装备。在框1204处,在期望的轧制线的横向中心线的相对侧上或在金属带的横向中心线的相对侧上的磁性转子被旋转以感应靠近磁性转子的变化磁场。在框1206处,允许金属带的横向中心线朝向至少一个旋转磁性转子偏离加工装备的期望的轧制线的横向中心线。在框1208处,通过变化磁场中的至少一个(例如,靠近磁性转子朝向金属带已经移动的变化磁场)在金属带中生成力。在框1208处生成的力可以推动金属带的横向中心线朝向加工装备的期望的轧制线的横向中心线。在一些情况下,过程1200可以继续重复框1206和1208以将金属带保持居中在加工装备的期望的轧制线上。

图13a是根据本公开的某些方面的磁性转子转向装置1300的俯视图,该转子转向装置1300包括可纵向定位在金属带1302上方的转子1310。转子1310可被取向成使得其旋转轴线平行于条带1302的纵向行进方向。转子1310可横跨条带1302的横向宽度的一部分。

可以使用各种数量的转子1310。在一些情况下,单个转子可以大致定位在期望的轧制线的横向中心线处或金属带的横向中心线处,并且可以取决于金属带的横向中心线与期望的轧制线的横向中心线的检测偏差(例如,与期望的轧制线的横向偏差)而以顺时针或逆时针方向旋转。在一些情况下,转子1310的数量可以是偶数,如图13a-13c所描绘的。多个转子1310可以定位成具有平行的旋转轴线。在一些情况下,没有转子位于与转子1310相对的条带1302下方。在一些情况下,一个或多个转子位于与转子1310相对的条带1302下方。

可能期望用转子1310覆盖条带1302的更多横向宽度,以便在该位置处提供对条带1302的增加的垂直控制。

图13b是根据本公开的某些方面的包括可纵向定位在金属带1302上方的转子1310(以虚线示出的金属带1302下方的任选转子1310)的图13a的磁性转子转向装置1300的前视图。金属带1302上方的转子1310居中在期望的轧制线的横向中心线周围。金属带1302下面的转子1310居中在期望的轧制线的横向中心线周围。横向相邻的转子1310可以在相反的方向中旋转(例如,如图13b所示顺时针或逆时针)。由于转子1310的数量是偶数,所以当金属带1302居中在期望的轧制线周围时,由转子1310感应的变化磁场在金属带1302中生成的净横向力为零。

图13c是根据本公开的某些方面的包括可纵向定位在金属带1302上方的转子1310(在金属带1302下方以虚线示出的任选转子1310)的图13a的磁性转子转向装置1300的侧视图。

图14是示出根据本公开的某些方面的包括用于在进入条带加工装备1406之前将金属带1402转向的磁性转子转向装置1404的金属加工系统1400的示意性正视图。条带1402可以在方向1410中穿过条带加工装备1406。在进入转向装置1404之前,条带1402可以与期望的轧制线的垂直路径1408(例如,一组垂直中心线)垂直偏移。转向装置1404可以校正垂直偏差,导致进入条带加工装备1406的条带1402与期望的轧制线的垂直路径1408垂直对准。转向装置1404可以是如本文所述的任何转向装置。

图15是根据本公开的某些方面的描绘图14的金属加工系统1400的示意性顶视图。条带1402可以在方向1410中穿过条带加工装备1406。在进入转向装置1404之前,条带1402可以与期望的轧制线的期望的横向中心线1502水平偏移。转向装置1404可以校正水平偏差,导致进入条带加工装备1406的条带1402与期望的轧制线的期望的横向中心线1502水平对准。转向装置1404可以是如本文所述的任何转向装置。

图16是示出根据本公开的某些方面的金属加工系统1600的示意性正视图,该金属加工系统1600包括用于在离开条带加工装备1606之后将金属带1602转向的磁性转子转向装置1604。条带1602可以在方向1610中穿过条带加工装备1606。在离开条带加工装备1606之后,条带1602可以与期望轧制线的垂直路径1608垂直偏移。转向装置1604可校正垂直偏差,导致条带1602变得与期望轧制线的垂直路径1608垂直对齐,尽管通过条带加工装备1606或在条带加工装备1606之前遭受了问题。转向装置1604可以是如本文所述的任何转向装置。

图17是描绘根据本公开的某些方面的图16的金属加工系统1600的示意性顶视图。条带1602可以在方向1610中穿过条带加工装备1606。在离开条带加工装备1606之后,条带1602可以与期望的轧制线的期望的横向中心线1702水平偏移。转向装置1604可以校正水平偏差,导致条带1602与期望的轧制线的期望的横向中心线1702水平对齐。转向装置1604可以是如本文所述的任何转向装置。

图18是根据本公开的某些方面的施加电流磁性转向设备1800的轴测图。施加电流磁性转向设备1800使金属带1802通过磁场,并将电流施加到金属带1802的至少一部分,以便感应垂直于磁场和电流方向的力。磁场可以通过任何合适的技术生成,诸如电磁体或永磁体。直流(dc)电流可以通过任何合适的技术(诸如石墨电刷、导电辊或其它技术)施加到金属带1802。

施加电流磁性转向设备1800可以包括一对永磁体1808,该永磁体1808保持固定在一对横向支撑件1804上(例如,在金属带1802的期望的轧制线的垂直中心线1822上方的顶部框架和在期望的轧制线的垂直中心线1822下方的底部框架)。永磁体1808可以呈现与期望的轧制线的垂直中心线1822相反的磁极,由此通过期望的轧制线的垂直中心线1822生成磁场1820。在一些情况下,框架可相对于金属带1802的垂直中心线而不是期望的轧制线的垂直中心线1822定位。尽管在一些情况下可以使用不均匀的磁场,但是磁场1820可以是横跨金属带1802的宽度的均匀磁场。在一些情况下,放置磁体1808以仅在金属带1802的边缘附近生成磁场。在一些情况下,一个或多个永磁体1808仅放置在金属带1802的仅一侧上的金属带1802附近(例如,仅顶部或仅底部)。

横向支撑件1804可由一对垂直支撑件1806支撑。垂直支撑件1806上的线性致动器1810可控制一个或两个垂直支撑件1806与金属带1802的垂直距离。线性致动器1810可控制每个横向支撑件1804(例如,顶部支撑件和底部支撑件)分别或一起的垂直定位。在一些情况下,一些线性致动器1810可以控制横向支撑件1804之间的间隙,而其它线性致动器1810可以控制顶部和底部横向支撑件1804之间的中心线的垂直位移。可以使用任何合适数量的线性致动器1810。可以使用任何合适的线性致动器1810,诸如马达和螺杆组合或液压致动器。

每个垂直支撑件1806可以支撑一个或多个电极1812、1814,尽管一个或多个电极1812、1814可以由其它装备支撑。一个或多个电极1812、1814可以施加电流通过金属带1802。电极1812、1814可以被定位成沿着磁场1820内金属带1802的边缘,横跨磁场1820内金属带1802的宽度,或其任何组合,施加电流通过金属带1802。在一些情况下,每个垂直支撑件1806可以支撑一个正电极1812和一个负电极1814。正电极1812和负电极1814可以位于在横向支撑件1804之间形成的平面的相对侧上。在一些情况下,一个垂直支撑件1806的正电极1812可以从另一个垂直支撑件1806的负电极1814横跨金属带1802横向地定位,尽管在其它情况下其可以从另一个垂直支撑件1806的正电极1812横跨金属带1802横向地定位。

在一些情况下,电极1812、1814位于其它地方,诸如在不同于垂直支撑件1806或横向支撑件1804的装备上,包括与施加电流的磁体的其它元件(例如,永磁体1808)的任何距离处。只要电流流过由施加电流磁性转向设备1800生成的磁场1820,电极1812、1814就可以放置在与金属带1802接触的任何地方。例如,正电极1812可以放置在一件或多件金属带加工装备的开始附近,而负电极1814放置在一件或多件金属带加工装备的结束附近,其中永磁体1808在电极1812、1814之间的任何地方生成磁场1820。在一些情况下,电极1812、1814可以放置在其中金属带1802处于比其中金属带1802正被转向(例如,在磁场1820与金属带1802相交的情况下)的更大的张力和/或更冷的位置处。当金属带处于高张力和/或相对低的温度(例如处于或接近室温,在连续退火线的冷却部分中冷却之后和/或在连续退火线的炉部分中加热之前)时,使金属带1802与电极1812、1814接触可以避免对金属带1802的基于接触的损害。永磁体1808可以放置在期望转向的任何地方。

每个电极1812、1814可以包括用于将电流传输到金属带1802的任何合适机构。在一些情况下,电极1812、1814包括石墨电刷,但是其它机构可用于将电流传输到金属带1802。在一些情况下,辊定位成在电极1812、1814处或其附近接触金属带1802,以保持金属带1802与电极1812、1814之间的接触,从而使电弧最小化。辊可以被偏置(例如,用弹簧)以确保在施加电流之前与金属带1802接触。施加电流的磁性转向设备1800可用于防止金属带的超行程(例如,金属带的横向中心线从期望的轧制线的横向中心线移动超过期望距离),因为电极1812、1814可以定位成接触金属带1802,并且因此仅当金属带1802从期望的轧制线偏离多于预设公差时才产生校正力。

通过金属带1802施加的电流可以是dc。电极1812、1814可以通过电缆1816连接到电源。在一些情况下,直到确定需要转向(例如,需要校正)之前,没有电流被施加到金属带1802。施加电流的磁性转向设备1800可以包括关于磁性转子转向装置(例如,图7的永磁体磁性转子转向装置700)的本文所公开的任何感测装备以确定何时需要转向。

在一些情况下,在纵向偏移位置处使用多组永磁体1808以在纵向偏移位置处生成多个磁场1820。在这种情况下,电极1812、1814可位于第一组永磁体1808之前和最后一组永磁体1808之后,使得流过金属带1802的电流穿过多个磁场1820中的每一个。在这种情况下,通过控制每个特定位置处的磁场1820,可以在各个位置控制金属带1802的转向。在特定位置处的磁场1820可以通过调节在该特定位置处的永磁体1808与金属带1802之间的垂直距离来控制。例如,为了在第一组磁体处施加较多的转向力以及在第二组磁体处施加较小的转向力,可以通过金属带1802施加相同的电流,并且第一组磁体可以垂直移动比第二组磁体更接近金属带。电流可以保持恒定或同时控制。每组磁体可以与其自己的一组感测装备相关联,以控制该组特定磁体相对于金属带的垂直距离。

在一些情况下,施加电流的磁性转向设备1800包括取向在相对于金属带1802横向以外的方向中的永磁体1808。例如,施加电流磁性转向设备1800可以包括永磁体1808,该永磁体1808在金属带1802的边缘的上方和下方相对于金属带1802纵向地取向,以通过金属带1802的边缘生成磁场1820。这种情况例如可以用于在用于纵向距离(例如,永磁体1808的长度或合成磁场1820的纵向长度)的金属带1802的边缘处施加转向力。

图19是根据本公开的某些方面的图18的施加电流磁性转向设备1800的前视图。所示的施加电流磁性转向设备1800具有支撑两个横向支撑件1804的两个垂直支撑件1806。永磁体1808由金属带1802上方和下方的横向支撑件1804支撑。电极1812、1814接触在金属带1802的边缘处或附近的金属带1802。如上所述,线性致动器1810可以调节横向支撑件1804的垂直定位。

电缆1816将电极1814联接到电源1902。电源1902可以是适合于提供电流以通过金属带1802的任何电源。

图20a是根据本公开的某些方面的图18的施加电流磁性转向设备1800的顶视图。所示的施加电流磁性转向设备1800具有支撑横向支撑件1804的两个垂直支撑件1806。电极1812、1814在金属带1802的边缘处或其附近接触金属带1802。线性致动器1810可调节如上所述的横向支撑件1804。电缆1816向电极1814提供电力以将电流施加到金属带1802。

在一些情况下,施加电流磁性转向设备包括安全装备,以确保当在金属带1802中发生断裂时,由任何电极施加的电流将不能够找到可能损坏其它装备或造成危害的通过接地的路径。在一些情况下,接地装备(例如导电辊)可以位于施加电流磁性转向设备之前和/或之后,以便确保存在不会损坏其它装备或造成危险的通过接地的路径。在一些情况下,断路器装备(例如,接地故障中断断路器)可用于在意外负载的情况下确保设备的安全性。在一些情况下,可以在施加电流磁性转向设备之前放置剥离断裂检测装备(例如,视觉或导电),使得如果检测到断裂,则可以在断裂达到施加电流磁性转向设备之前关机或禁用施加电流磁性转向设备。可以使用其它类型的安全装备。

如本文所述的施加电流的磁性转向设备可以用于需要转向的任何地方,诸如代替图14-17的非接触磁性转子转向设备1604。如上面参考各种转向装置所描述的,诸如在图11的反馈控制过程1100中,施加电流磁力转向设备也可以与检测装备一起使用。当将施加电流磁性转向设备应用于图11的反馈控制过程1100时,在框1110处确定对永磁体转子的调节和在框1112处对转子的操纵将被分别替换为确定对施加的电流和/或磁场的调节(例如,通过对支撑永磁体的横向支撑件的垂直调节)和操纵施加的电流和/或磁场。施加电流磁性转向设备也可以用于连续退火线中的任何合适的位置,诸如图9的连续退火线900,其中磁性转子转向装置902中的每个或任一个可以是施加电流磁性转向设备。

图20b是根据本公开的某些方面的施加电流磁性转向设备2000的顶视图。施加电流磁性转向设备2000类似于图18-20的施加电流磁性转向设备1800。然而,利用位于边缘的磁体2008而不是图18的磁体1808。

施加电流磁性转向设备1800可以包括支撑电极1812、1814的一对垂直支撑件1806。每个垂直支撑件1806可以沿着电极1812、1814之间的金属带1802的边缘在金属带1802的上方和下方支撑一组永磁体2008。

图21是根据本公开的某些方面的磁性转子转向装置2100的前视图。磁性转子转向装置2100可以包括联接到水平支撑件2104的一组转子2110。如本文所公开的,每个转子2110可以是永磁体或电磁体转子。磁性转子转向装置2100可以类似于图1的磁性转子转向装置100,然而,其中转子2110从金属带2102的上方和下方安装,使得如果在垂直相邻的辊(例如,如图21中所示的最左侧或最右侧的两个辊)之间不存在金属带2102碰撞到的结构,则金属带从期望的轧制线的横向中心线2106离得足够远。转子2110可以由转子臂2108从水平支撑件2104支撑。

在一些情况下,转子臂2108被调节成在垂直方向2118中(例如,向上或向下)操纵转子2110。在一些情况下,转子臂2108可沿着水平支撑件2104移动以在水平方向2116中(例如远离或朝向期望的轧制线的横向中心线2106)操纵转子。在一些情况下,来自控制系统或反馈传感器的反馈可以调节转子2110的位置。然而,在一些情况下,转子臂2108可以将转子2110相对于水平支撑件2104保持固定(例如水平和垂直固定)。

在一些情况下,马达或其它驱动器以顺时针2114或逆时针2112方向旋转每个转子2110。用于旋转转向装置2100或本文所公开的其它转向装置的转子的马达或其它驱动器可以是或可以包括用于提供对转子的转速的调节的变速驱动器。例如,可以使用变频驱动器来调节交流(ac)马达的速度。可以使用预设值或通过来自反馈传感器的反馈来控制转速。在一些情况下,马达或其它驱动器可以提供稳定的力来旋转转子,而不需要任何变速控制器或传感器反馈。

在一些情况下,马达或其它驱动器可以在合适的方向中旋转转子2110,使得最靠近期望的轧制线的垂直中心线2120的每个转子的表面朝向期望轧制线的横向中心线2106移动。换句话说,从左顶部开始并继续如图5所示的顺时针方向,如图21所描绘,第一和第三转子2110可以以逆时针方向2112转动,而第二和第四转子2110以顺时针方向2114转动。

图22是根据本公开的某些方面的磁体转子转向设备能够装配到其中的炉2200的剖面侧视图。在一些情况下,可能期望将磁性转子转向设备定位在炉区或冷却区中,诸如以上参考图9所描述的。在一些情况下,可能期望将磁性转子转向设备设置在炉区的炉2200的壳体或外壁2202的外部,但与金属带2210充分相邻以将金属带2210转向。

炉区中的炉2200可以包括包围多个空气喷嘴2204的外壁2202。在金属带2210所穿过的上空气喷嘴2204和下空气喷嘴2204之间存在轧制线间隙2214。空气喷嘴2204可以提供足够的气流以将金属带2210保持在期望的轧制线的垂直路径2212处或附近。当穿过炉2200时,金属带2210可以呈正弦形状。

在现有炉2200的相邻空气喷嘴2204之间可以存在间隙2216。可以在点2206处将外壁2202切割以去除外壁2202的部分2208。一旦部分2208已经被去除,则凹入部分可以安装在外壁2202中,如图23和24所示。

图23是已经修改成接收磁性转子转向设备的炉2300的剖面侧视图。外壁2202具有安装在一部分已经被移除的地方的凹入部分2308。凹入部分可以包括垂直壁2318和水平壁2320。水平壁2320可以与期望的轧制线的垂直路径2312间隔开大约与喷嘴2304的端部相同的距离,因此保持与之前的修改大致相同的轧制线间隙2314。

凹入部分2308的壁2318、2320可提供热绝缘以保持炉2300中的热量。在一些情况下,垂直壁2318可提供比水平壁2320更多的热绝缘。在一些情况下,水平壁2320可以比垂直壁2318更薄,以允许磁性转子转向装置被定位成接近穿过炉2300的金属带2310的期望轧制线的垂直路径2312。

在一些情况下,任选的辊2322可以在轧制线间隙2314内邻近凹入部分2308安装。辊2322可以自由地旋转或者可以以移动通过炉2300的金属带2310的速度旋转,使得如果金属带2310移动距离期望的轧制线的垂直路径2312太远,则金属带2310将接触辊2322而不是碰撞到凹入部分2308中。

一旦炉2300已经被修改为包括凹入部分2308,则可以将磁性转子转向装置放置在凹入部分2308的u空间中,如图24所示。

图24是根据本公开的某些方面的描绘结合到炉2400中的磁性转子转向设备2424的剖面侧视图。炉2400可以在炉2400的外壁2402中包括凹入部分2408。凹入部分2408可以最初构建在炉2400的外壁2402中,或者可以通过修改被添加到现有炉中,诸如上面参考图22-23描述的。金属带2410可以在空气喷嘴2404之间的期望轧制线的垂直路径2412处或附近移动通过炉2400。

在一些情况下,凹入部分2408的垂直壁2418可以具有足够的厚度,或者由足以提供高度绝热的材料制成,以保持炉2400内的热量并减少从炉2400传递到磁性转子转向设备2424的热量。在一些情况下,凹入部分2408的水平壁2420可以比垂直壁2418更薄,以允许磁性转子转向设备2424的转子2426被定位为尽可能接近金属带2410。在一些情况下,凹入部分2408的水平壁2420可以由非导电材料制成。在一些情况下,凹入部分2408的水平壁2420可以由导电材料制成,任选地具有用于减小涡流的狭缝,如上面参考图5的转子护罩120所述。

图25是根据本公开的某些方面的描绘在炉入口2550处结合到炉2500中的磁性转子转向设备2524的剖面侧视图。炉2500可以包括在炉入口2550处的炉2500的外壁2502中的凹入部分2508。凹入部分2508可以最初构建在炉2500的外壁2502中,或者可以通过修改添加到现有炉,诸如上面参考图22-23所描述的。金属带2510可以在空气喷嘴2504之间的期望的轧制线的垂直路径2512处或附近移动通过炉2500。

当在炉入口2550处实施时,凹入部分2508可以包括垂直壁2518和水平壁2520。在一些情况下,与垂直壁2518相对的水平壁2520的一侧可以保持开放或半开放(例如,具有小于垂直壁2518的垂直壁部分),允许更容易地接近磁性转子转向设备2524。

图26是根据本公开的某些方面的描绘结合在炉出口2650处的炉2600中的磁性转子转向设备2624的剖面侧视图。炉2600可以在炉出口2650处的炉2600的外壁2602中包括凹入部分2608。凹入部分2608可以最初构建在炉2600的外壁2602中,或者可以通过修改添加到现有炉,例如上面参考图22-23所描述的。金属带2610可以在空气喷嘴2604之间的期望的轧制线的垂直路径2612处或附近移动通过炉2600。

当在炉出口2650处实施时,凹入部分2608可以包括垂直壁2618和水平壁2620。在一些情况下,与垂直壁2618相对的水平壁2620的一侧可以保持开放或半开放(例如,具有小于垂直壁2618的垂直壁部分),允许更容易地接近磁性转子转向设备2624。

图27是根据本公开的某些方面的具有次转子的磁性转子转向装置2700的前视图。如本文所公开的,磁性转子转向装置2700可以包括多个永磁体或电磁体转子的转子2710。如图27所描绘,每个转子2710安装到位于金属带2702上方和下方的水平支撑件2704,类似于图21。然而,在一些情况下,转子2710安装到垂直支撑件,诸如图1所描绘的。转子2710可以由转子臂2708支撑。

磁性转子转向装置2700可包括主转子2730和次转子2732。主转子2730可定位成比次转子2732更靠近期望的轧制线的横向中心线2706。次转子2732可与主转子2730间隔开距离2740。距离2740可以足以避免相邻转子2710之间的磁干扰(例如,使得邻近主转子2730的次转子2732的旋转将主转子2730的旋转效率降低了至少少于20%、15%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%)。如果主转子2730中的任何一个未能保持金属带2702横向地与期望的轧制线的横向中心线2706对准或处于期望的横向偏移(例如,由于主转子2730或附接到其的任何马达的故障或由于通过其它因素施加在金属带2702上的压倒性的强横向力),则次转子2732可以提供额外的力来朝向期望的轧制线的横向中心线2706推动金属带2702。

如图27所描绘,次转子2732中的每一个由与主转子2730分开的转子臂2708支撑,然而不一定如此。在一些情况下,次转子2732可以联接到主转子2730的转子臂2708。主转子2730和次转子2732可以由分开的马达供电或旋转,然而情况不一定如此。在一些情况下,单个马达可以驱动或旋转次转子2732和主转子2730二者。

每个主转子2730可以沿着主转子平面2734定位(例如,使得主转子2730围绕在主转子平面2734上找到的旋转轴线旋转)。每个次转子2732可以沿着次转子平面2736定位(例如,使得次转子2732围绕在次转子平面2736上找到的旋转轴线旋转)。因此,次转子平面2736与金属带2702的期望轧制线的横向中心线相对初级转子平面2734定位(例如,次转子平面2736与远离金属带2702的期望轧制线的横向中心线的主转子平面2734间隔开一定距离)。主转子组2742可以包括位于单个主转子平面2734上的一个或多个主转子2730。次转子组2744可以包括位于单个次转子平面2736上的一个或多个次转子2732。图27描绘了两个主转子组2742和两个次转子组2744,每个具有两个转子2710(例如,位于金属带2702上方的顶部转子2710和位于金属带2702下方的底部转子2710)。

主转子平面2734和次转子平面2736可以通过沿着水平支撑件2704调节转子臂2708来调节。在一些情况下,主转子平面2734和次转子平面2736可以是固定的。如图27所描绘的,主转子平面2734可以位于(例如,固定或可调节)金属带2702的横向边缘2738处或周围。如本文所使用的,转子平面距侧边缘的距离的引用可以指转子平面与金属带的横向边缘之间的距离,其横向中心线与期望的轧制线的横向中心线对齐。在一些情况下,主转子平面2734可位于横向边缘2738的转子半径内。在一些情况下,主转子平面2734可在远侧(例如远离所需轧制线的横向中心线2706)与横向边缘2738分隔开一个距离,诸如小于转子半径、近似为转子半径或大于转子半径。

主转子2730和次转子2732可以连续操作,其中马达或其它驱动器使每个转子2710以顺时针方向2714或逆时针方向2712旋转。在一些情况下,次转子2732可以旋转起来并且仅在金属带2702已经横向地远离期望的轧制线的横向中心线2706时充分地操作。

在一些情况下,马达或其它驱动器可以在合适的方向中旋转转子2710,使得最接近期望的轧制线的垂直中心线2720的每个转子的表面朝着期望轧制线的横向中心线2706移动。换句话说,从左顶部开始并继续如图27所描绘的顺时针方向,第一转子、第二转子、第五转子和第六转子2710可以以逆时针方向2712旋转,而第三转子、第四转子、第七转子和第八转子2710以顺时针方向2714旋转。

马达或其它驱动器可以是或可以包括用于提供对转子2710的转速的调节的变速驱动器。例如,变频驱动器可用于调节交流(ac)马达的速度。可以使用预设值或通过来自反馈传感器的反馈来控制转速。在一些情况下,马达或其它驱动器可以提供稳定的力来旋转转子2710,而不需要任何变速控制器或传感器反馈。

次转子2732和主转子2734可以具有相同或不同的尺寸,并且可以包括相同或不同的磁化水平(例如,通过选择转子内的磁体的数量、尺寸和类型)。次转子2732和主转子2734可以以相同或不同的转速操作。在一些情况下,次转子2732可以以大于主转子2730的速度的速度操作。

虽然图27描绘了主转子2730和次转子2732,但是磁性转子转向装置2700可以包括任何数量的横向间隔开的转子,例如三级、四级等。

图28是根据本公开的某些方面的用于将金属带2802转向的磁性转向装置2800的前视图。金属带2802可以在垂直于平面2810(例如,朝向图28的观察者)的条带移动方向中移动。一个或多个磁体2804(例如,永磁体或电磁体)可定位在金属带2802上方和/或下方。在一些情况下,一个或多个磁体2804包括与第二组磁体2816相对金属带2802的中心线2814定位的第一组磁体2812。磁体2804可全部位于共同平面2810中。

磁体2804可以在平面2810内的各个方向中移动和/或平移。合适的致动器(例如,线性致动器)和/或连杆可用于沿着形成闭环的路径2806移动磁体2804。路径2806可以具有任何合适的形状,包括圆形、椭圆形、卵形、大致矩形或其它形状。路径2806可以包括靠近中心的部分,金属带的水平面2818以及与该平面2818进一步分隔开的部分,使得当在第一横向方向中移动时,磁体2804更靠近金属带2802(例如从左到右),并且当在相反的横向方向中(例如从右到左)移动时从金属带2802进一步移动。磁体2804在最接近金属带2802时的移动可以产生推动金属带2802横向移动(例如,当最接近金属带2802时磁体2804移动的方向中)的力。

在使用电磁体的一些情况下,路径2806可以是两点之间的线性、弧形或弯曲路径。由于两点之间的这种路径(例如,不是闭环)可能涉及在第一方向和相反方向二者中最靠近金属带2802通过的磁体2804,因此电磁体可以被致动为在第一方向中通过时打开,并且在相反方向中通过时关闭或大部分衰减,从而在第一方向中引起净力。

磁性转向装置2800可以与传感器、控制器以及与本文中参考磁性转子所描述的那些相似的其它元件适当地使用。

已经仅为了说明和描述的目的而呈现了包括所示实例的实例的以上描述,并且不旨在穷举或限制所公开的确切形式。对于本领域技术人员而言,许多修改、改变和使用对于它们是显而易见的。

如下面所使用的,对一系列实例的任何引用应被理解为分离地对这些实例中的每一个的引用(例如,“实例1-4”应被理解为“实例1、2、3或4”)。

实例1是磁性转向设备,其包含:第一转子组,其包含至少第一磁性转子,所述第一磁性转子围绕相应的第一旋转轴线旋转;第二转子组,其包含至少第二磁性转子,所述第二磁性转子围绕相应的第二旋转轴线旋转,其中第一旋转轴线不与所述第二旋转轴线共线,其中第一转子组和第二转子组的每个磁性转子与垂直于移动金属带的行进方向的平面相交,并且其中第一旋转轴线和第二旋转轴线中的每一个在平面处从移动金属带的横向中心线偏移;以及一个或多个转子马达,其联接到第一磁性转子和第二磁性转子以旋转磁性转子并感应靠近磁性转子的变化磁场,其中变化磁场中的至少一个在移动金属带中生成力以当移动金属带穿过至少一个移动的磁场时将移动金属带转向。

实例2是实例1的设备,其中磁性转子中的每一个包括一个或多个永磁体。

实例3是实例1或2的设备,其中第一旋转轴线可与第二旋转轴线相对移动金属带的横向中心线定位,并且其中第一旋转轴线和第二旋转轴线横向间隔开大于移动金属带的宽度的距离。

实例4是实例1-3的设备,其中第一转子组包含第三磁性转子,并且第二转子组包含第四磁性转子,其中第一磁性转子和第三磁性转子与第二磁性转子和第四磁性转子相对移动金属带的横向中心线水平地定位,其中第一磁性转子和第三磁性转子彼此垂直地间隔开,并且其中第二磁性转子和第四磁性转子彼此垂直地间隔开。

实例5是实例1-4的设备,进一步包含:一个或多个致动器,其联接到第一转子组和第二转子组的一个或多个磁性转子以调节一个或多个磁性转子的垂直、水平或垂直和水平定位。

实例6是实例5的设备,进一步包含联接到传感器和一个或多个致动器的控制器,以响应于来自传感器的信号来调节一个或多个磁性转子的垂直、水平或垂直和水平定位。

实例7是实例1-6的设备,进一步包含对于第一转子组和第二转子组的每个磁性转子,转子护罩围绕磁性转子,其中转子护罩限定封闭空间。

实例8是实例7的设备,进一步包含对于第一转子组和第二转子组的每个磁性转子,冷却剂源流体地联接到封闭空间用于从磁性转子去除热量。

实例9是实例1-8的设备,进一步包含:第三转子组,其具有围绕相应的附加旋转轴线旋转并与平面相交的至少一个附加磁性转子,其中第三转子组的每个附加磁性转子的附加旋转轴线在平面处从第一旋转轴线和第二旋转轴线中的每一个偏移。

实例10是一种磁性转向设备,包含:第一转子组,其包括与第一底部转子相对期望轧制线垂直定位的第一顶部转子,其中第一顶部转子和第一底部转子中的每一个包括一个或多个永磁体,并且其中第一顶部转子和第一底部转子中的每一个包括联接到转子的马达,用于旋转转子以感应靠近转子的变化磁场;第二转子组,其包括与第二底部转子相对期望轧制线垂直定位的第二顶部转子,其中第二顶部转子和第二底部转子中的每一个包括一个或多个永磁体,并且其中第二顶部转子和第二底部转子中的每一个包括联接到转子的马达,以感应靠近转子的变化磁场,并且其中第一顶部转子和第一底部转子的旋转轴线与第二顶部转子和第二底部转子的旋转轴线横向间隔开并且相对期望轧制线的中心线定位,使得一个或多个变化磁场在靠近第一转子组和第二转子组行进的移动金属带中生成力,以朝向期望轧制线的中心线将移动金属带的中心线转向。

实例11是实例10的设备,其中:第一顶部转子和第一底部转子联接到第一垂直支撑件;第二顶部转子和第二底部转子联接到第二垂直支撑件;以及第一垂直支撑件和第二垂直支撑件二者能够沿水平支撑件水平定位。

实例12是实例10或11的设备,其中第一顶部转子和第二顶部转子能够沿着顶部水平支撑件水平地定位,并且其中第一底部转子和第二底部转子能够沿着底部水平支撑件水平地定位。

实例13是实例12的设备,其中第一顶部转子和第二顶部转子能够相对于顶部水平支撑件垂直地定位,并且其中第一底部转子和第二底部转子能够相对于底部水平支撑件垂直地定位。

实例14是实例10-13的设备,进一步包含对于第一转子组和第二转子组的每个转子,转子护罩围绕转子,其中转子护罩限定封闭空间。

实例15是实例14的设备,进一步包含对于第一转子组和第二转子组的每个转子,冷却剂源流体地联接到封闭空间用于从转子去除热量。

实例16是实例10-15的设备,其中第一顶部转子和第一底部转子的旋转轴线与第二顶部转子和第二底部转子的旋转轴线之间的横向距离处于金属带宽度的5%偏差内。

实例17是实例10-16的设备,其中第一顶部转子和第一底部转子的旋转轴线与第二顶部转子和第二底部转子的旋转轴线之间的横向距离大于金属带的宽度。

实例18是实例17的设备,其中第一顶部转子和第一底部转子的旋转轴线与第二顶部转子和第二底部转子的旋转轴线之间的横向距离大于金属带的宽度至少第一顶部转子和第二顶部转子的半径的总和。

实例19是实例17的设备,其中第一顶部转子和第一底部转子的旋转轴线与第二顶部转子和第二底部转子的旋转轴线之间的横向距离大于金属带的宽度至少金属带的宽度的一半。

实例20是实例10-19的设备,其中金属带的中心线是金属带的横向中心线;并且其中期望轧制线的中心线是期望轧制线的横向中心线。

实例21是一种金属处理系统,包含:用于接收移动金属带的加工装备,加工装备具有期望轧制线;以及靠近移动金属带可定位的磁性转子转向装置,磁性转子转向装置包含至少一个磁性转子,该至少一个磁性转子可旋转以在适于在移动金属带中生成力的移动金属带中感应变化磁场,以朝向加工装备的期望的轧制线的横向中心线将移动金属带的横向中心线转向。

实例22是实例21的系统,其中加工装备选自连续退火线的炉区和冷却区。

实例23是实例21或22的系统,其中磁性转子转向装置定位邻近加工装备的入口和加工装备的出口中的至少一个。

实例24是实例21或22的系统,其中磁性转子转向装置定位在加工装备的入口和加工装备的出口之间。

实例25是实例21-24的系统,其中加工装备包括具有凹入部分的外壁,其中磁性转子转向装置至少部分地定位在凹入部分内。

实例26是实例21-25的系统,进一步包含:一个或多个致动器,其联接到至少一个磁性转子,以调节至少一个磁性转子的垂直、水平或垂直和水平定位;以及控制器,其联接到传感器和一个或多个致动器,以响应于来自传感器的信号来调节至少一个磁性转子的垂直、水平或垂直和水平定位。

实例27是实例21-26的系统,其中至少一个磁性转子中的每一个包括一个或多个永磁体。

实例28是实例21-27的系统,其中至少一个磁性转子包括邻近移动金属带的第一边缘的第一组转子和邻近移动金属带的第二边缘的第二组转子,其中第一边缘与第二边缘相对移动金属带的横向中心线定位。

实例29是实例28的系统,其中第一组转子中的一个与第一组转子中的另一个转子相对移动金属带定位,并且其中第二组转子中的一个与第二组转子中的另一个相对移动金属带定位。

实例30是实例21-29的系统,其中移动金属带不被加工装备的一部分的物理接触支撑件支撑,并且其中磁性转子转向装置定位在部分内。

实例31是实例21-30的设备,其中金属带的中心线是金属带的横向中心线;并且其中期望轧制线的中心线是期望轧制线的横向中心线。

实例32是一种操纵移动金属带的方法,包含:使与至少一个磁性转子相邻的金属带通过,至少一个磁性转子与金属带的表面间隔开;旋转至少一个磁性转子以在移动金属带上感应变化磁场;并且响应于感应的变化磁场而在移动金属带中生成力。

实例33是实例32的方法,进一步包含:感测金属带的位置;以及基于感测的位置来控制联接到至少一个磁性转子的致动器,其中控制致动器包括调节至少一个磁性转子的水平或垂直位置中的至少一个。

实例34是实例32或33的方法,进一步包含:访问条带的预定参数;以及基于预定参数控制联接到至少一个磁性转子的致动器,其中控制致动器包括调节至少一个磁性转子的水平位置或垂直位置中的至少一个。

实例35是实例34的方法,其中访问条带的预定参数包括访问选自由条带宽度、条带厚度以及期望轧制线的横向中心线的位置组成的组中的至少一个。

实例36是实例32-35的方法,进一步包含:感测金属带的位置;以及控制基于感测的位置联接的至少一个磁性转子的转速。

实例37是实例32-36的方法,其中通过金属带包括以等于或低于40mpa的张力通过金属带。

实例38是实例32-37的方法,其中通过金属带包括以等于或低于5mpa的张力通过金属带。

实例39是一种修改用于磁性转子转向的加工装备的方法,该方法包含:从加工装备移除外壁部分;用具有水平壁和至少一个垂直壁的凹入部分替换外壁的部分;以及将磁性转子转向装置的磁性转子定位在凹入部分内,使得至少一个磁性转子与加工装备的内部的水平壁相对。

实例40是实例39的方法,进一步包含:旋转磁性转子以在加工装备的内部感应变化磁场,其中变化磁场足以在移动通过加工装备的内部的金属带中生成力。

实例41是实例39-40的方法,其中水平壁具有比垂直壁的厚度更小的厚度。

实例42是实例39-41的方法,进一步包含识别外壁的部分,其中识别该部分包括确定从一个或多个相邻喷嘴纵向偏移的外壁的距离。

实例43是施加电流磁性转向设备,包含:电流源,其用于向金属带施加直流电流;一对电极,其联接到电流源并且朝向金属带的表面偏置,以将直流电流施加通过金属带;以及永磁体,其定位靠近金属带以在垂直于穿过金属带的直流方向的方向中感应通过金属带的磁场。

实例44是实例43的设备,进一步包含:第二电流源,其用于向金属带施加第二直流电流;第二对电极,其联接到第二电流源并朝向金属带的第二边缘偏置以施加第二直流电流通过金属带,其中一对电极朝向与金属带的第二边缘相对的金属带的第一边缘偏置;以及第二永磁体,其定位靠近金属带,以在垂直于穿过金属带的第二直流电流的方向的方向中感应通过金属带的第二磁场。

实例45是实例43的设备,进一步包含:第二电流源,其用于向金属带施加第二直流电流;以及第二对电极,其联接到第二电流源并朝向金属带的第二边缘偏置以施加第二直流电流通过金属带,其中一对电极朝向与金属带的第二电极相对的金属带的第一边缘偏置,并且其中永磁体横跨金属带的宽度横向地延伸,使得在垂直于穿过金属带的第二直流电流的方向的方向中感应磁场。

实例46是一种将金属转向的方法,包含:在与移动金属带的行进方向平行的方向中沿着移动金属带的边缘施加直流电流;以及沿着移动金属带的边缘施加至少一个磁场,使得至少一个施加的磁场垂直地与施加的直流电流相交。

实例47是实例46的方法,其中施加至少一个磁场包含沿着移动金属带的第一边缘施加第一磁场,并且沿着移动金属带的第二边缘施加第二磁场。

实例48是实例46或47的方法,其中沿着移动金属带的边缘施加直流电流包含:完成第一组电极、第一电流源和移动金属带的第一边缘之间的第一电路;以及完成第二组电极、第二电流源和移动金属带的第二边缘之间的第二电路。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1