耐腐蚀和耐磨的装饰涂层的制作方法

文档序号:3253683阅读:223来源:国知局
专利名称:耐腐蚀和耐磨的装饰涂层的制作方法
技术领域
本发明涉及制品例如龙头和有关的管件产品,包括喷头、商标牌、浴盆喷管等的装饰涂层。更具体地说,本发明涉及这种产品的耐腐蚀、耐磨和耐化学品侵蚀、并有除黄铜色以外的特殊的装饰颜色的装饰涂层。本发明具体地涉及耐腐蚀的装饰涂层(许多现代装饰涂层中的共有的问题),只利用锆或铪作为外层装饰层的主要组分。有许多现有技术专利文件公开了利用锆提供耐腐蚀的黄铜色外观的外装饰涂层。但是,虽然利用不是锆或铪作外涂层的主要组分,但是应用现有技术公开的技术原理提供除黄铜色以外的颜色都失败了。本发明提供的这种涂层中,颜色不是黄铜色,例如是灰色、金黄色或黑色,但是利用锆或铪作为外层的主要组分,通过控制物理气相沉积法(PVD)的参数,得到所要求耐腐蚀、耐磨和耐化学品侵蚀的外层。
本发明涉及具有非黄铜色装饰涂层的制品,更具体地说是涉及耐腐蚀、耐磨和耐化学品侵蚀的这种涂层。
本发明的第一个目的是提供一种新的制品,它有特殊的装饰颜色,例如灰色、金黄色或黑色且其外层仅以锆或铪作主要组分。
本发明的第二个目的是提供所述的这种类型的制品,在这种制品中,通过物理气相沉积涂覆的外层,根据沉积过程的特定参数,通过只利用锆或铪作为外层的主要组分,可以得到不同的颜色。
本发明的第三个目的是提供所述的这种类型的制品,在这种制品中,基材的表面基本无裂缝和孔隙,选自包括黄铜、金属玻璃和由半-固态法或空心铸件法制备的锌铸件的组。
本发明的第四个目的是提供所述类型的耐腐蚀制品,例如门的金属附件或龙头或其管件,通过保持在其外面的钝化层而具有增强的耐腐蚀性能。
通过下面的描述、附图
和权利要求书,本发明的其它目的将会更清楚。
本发明在附图中图示地进行说明,在图中示出了制品的一部分。
许多家庭用品,例如龙头及其管件,包括按装饰和功能两方面设计的零件。通常,这些零件是由保持形状和机械功能的基材和提供物品装饰图案、耐腐蚀或耐锈蚀、耐化学侵蚀、耐磨或耐冲击或这些增强性能的组合的涂饰层组成。通常涂饰层是由比基材薄的一层或多层相互重叠的物质层组成。涂饰方法一般是由涂饰所述层所需的步骤加上一些清洁表面或通过物理或化学方法改变表面的组织的其它中间步骤组成。
直到1980年左右止,建立的最好装饰涂饰方法是电镀和用液态或粉未状的聚合物体系漆饰。最近以来,根据新技术的新的涂饰方法已经出现,通常包括利用真空室或压力容器。这些现代的方法包括PVD、CVD、PECVD、离子镀和MOCVD。物理气相沉积(PVD)是一类方法的总称,在90年代美国特别流行,其中把耐用的耐刮的抛光的黄铜色的涂饰层涂覆到锌、塑料、钢或黄铜基材表面上。Moen Incorporated(本专利申请的受让人)拥有的美国专利5759677公开了这样的一种方法,在基材上例如龙头表面上制得黄铜色耐用涂饰层。Baldwin Hardware Corp(Reading,Pennsylvania)拥有的美国专利5814415、5783313、5716721、5693427、5667904、5654108、5648179、5641579、5639564、5626972、5552233、5484663、5482788、5478660、5478659、5476724和5413874公开了一系列的方法,这些方法着力于腐蚀防护,并制得了不同类型硬件产品黄铜色的装饰涂饰层。在这些方法中所使用的具体参数和这些专利中所述的具体参数引入本申请供参考,因为它们为本领域内的技术人员提供有关利用PVD方法的技术信息。
上述的专利公开了利用锆与氮和碳的化合物产生PVD抛光黄铜色涂蚀层。通常,PVD层提供颜色、且耐刮和耐化学侵蚀。在金属基材上,在一层或多层PVD层之下一般涂蚀一独立的电镀层体系提供耐腐蚀的功能。该电镀层体系通常是由标准的铬电镀层体系和往往更贵的替代物如镍、双层镍(duplexnickel)、钯-镍、锡-镍或镍-硼和钨组成,在上述的Baldwin Hardware拥有的专利中公开了其中的细节。PVD ZrN磨光黄铜色涂饰层仅是利用一种或多种金属和含氮、碳、氢、氩和氧的工艺气体使用PVD方法可以生产的很大一类的带颜色涂饰层中的一组。
最近已确定,ZrN涂饰层与众不同之处在于,当它与电镀铬腐蚀屏蔽体系相结合涂覆到对腐蚀敏感的基材如锌上时,它提供了可接受的耐腐蚀性能。过去,ZrN仅被用于提供黄铜色外观的基材。本发明特别关注这样的方法和由其制造的制品,其中,可以利用ZrN、ZrCN、HfN和HfCN提供黄铜色以外的其它颜色,并且还保持已确定是由ZrZ提供的的耐腐蚀性能。另外已经明确,在涂蚀装饰层中使用其它的金属如钛、铝或铬实际上的降低涂层整体的耐腐蚀性能。因此,本发明特别是针对通过只使用锆和铪作为外层的主要组分来保持耐腐蚀性能,还通过对工艺参数的控制提供黄铜色以外的各种颜色。
在现有技术中,关于对腐蚀敏感的金属基材的防腐蚀保护可以利用在锌铸件上镀铬的实例进行总结。许多家庭用物品,例如龙头或门拉手,包含由用包括铜、镍和铬电镀层重叠的装饰涂饰层防护的锌铸件或注塑成型基材构成的装饰部件。在这种装饰层体系中,铜层(也称为“氰化铜层”或“冲击”层)的作用是促进基材和随后各层之间的良好的粘合作用。镍层(多层)的功能是提供腐蚀防护性并产生所要求的表面组织,通常是镜面亮光反射表面。铬层的目的提供所要求的颜色、所要求的耐磨性、提供所需的对有害化学品如常见于家用清洁剂中的强酸、或强碱的耐受性,和进一步改进组合体系的耐腐蚀性能。在上述基本方案的一个众所周知的变体中,较厚的铜层称为“酸铜”层,可介于铜冲击层和镍层之间。其中酸铜层的功能是“整平”;完全覆盖上述的层,封闭在这些层下面的任何裂缝或孔,使表面任何粗糙的区域光滑。
对腐蚀防护和耐化学侵蚀来说,铬特别有用,因为它易生成韧而化学惰性的氧化物层。该氧化物层是电绝缘的,或至少具有很高的电阻,并存在于铬材料表面的所有点上。
当一部分铬氧化物膜由于机械损伤如刻痕或磨擦被除去时,在几乎所有的化学环境下,在暴露的金属处,都自发地生成新的铬氧化物膜。因此,绝缘氧化物层有自愈的性质,所以在正常的情况下,总是完全覆盖铬金属表面。这种氧化物层本技术领域的技术人员通常称为“钝化”氧化物膜。
当金属腐蚀时,发生化学反应,其中电中性原子在通常称为“阳极部位”的区域转化成带正电荷的金属离子。电子在阳极留下并流向“阴极部位”,在阴极它们被互补的化学反应消耗。这种电子转移现象使得电化学反应与化学反应相区别,在化学反应中,产生电子和消耗电子的反应在同一区域发生。
当由两种不同的金属形成的电极浸在一电解质中并通过电桥连接时,电子通过电路中的桥从阳极向阴极流动。这样形成的电池具有一个特征电压,该特征电压可通过施加可变的平衡电压(countervailing voltage)并观察将电路中的电流减少到零所需要的平衡电压值来确定。
可按下述来构建称为“电势序”的评价体系,即,通过选择标准电极材料和标准电解质,把一系列不同金属的电极浸入电解质中,经电桥连接标准电极,并观察电池的极性和上述的特征电压。
在电势序的一端处发现是“贵”金属例如金。在另一端处是“贱”金属例如锌。当利用标准电解质、一贵金属电极和一贱金属电极制成电化学电池时,贵金属电极是阴极,而贱金属电极是阳极。如果阳极随后用更贱的金属的新阳极代替,那么会观察到电池的电压和电流升高,新阳极的腐蚀速率高于原来阳极的腐蚀速率。这种情况的假定前提条件是,在两个阳极产生的正离子没有价差,而且两个电池有相似的极化特性。
在一般情况下,钝化氧化物膜对防腐蚀有非常好的效果,这是因为钝化氧化物膜提高了阳极和阴极反应部位之间的电路的电阻,或本申请公开的环境中基材和外涂层之间电路的电阻。所以“腐蚀电流”降低,而腐蚀速率大大低于除去钝化氧化物膜的。这就是为什么铬镀层是这样一种有效的防腐涂饰层的原因之一。将铬用作涂饰层叠层的一部分,就会产生钝化氧化物膜。
镀铬装饰涂饰层最简单的形式会发生称为“大阴极面积效应”的现象,这加速了称为“点蚀”的破坏机理。几乎所有的镀铬物品在镀铬层中都包含一些细微的缺陷,例如洞、空隙或裂缝,使得在其之下的镍层裸露。在一般的腐蚀情况下,这些局部缺陷是阳极反应的部位,从而金属镍转变成正镍离子。不利的是,阴极区域不是以相同的方式形成,而是可存在于金属铬表面的任何地方。
由于总阴极面积大于总阳极面积,而在阴极每消耗的每一个电子必须是在阳极产生,所以在各个阳极部位的腐蚀进程迅速,且易于产生洞或裂缝。当洞完全穿透镍达到锌基材时,锌代替镍作为阳极材料。由于锌是一种比镍贱的多的金属,这时的腐蚀进程比前者镍腐蚀更快。从腐蚀部位溢出通称为“白锈”的锌的特征固体腐蚀产物。白锈时常充满镍中的原始腐蚀洞,将其上的镀铬层推出,产生腐蚀泡。如果基材是黄铜而不是锌,会发生相同的过程,但是,由于在黄铜中锌的化学活性低于纯态的,白锈的产生速率降低。
使镀铬层中由大阴极面积效应或点蚀所产生的问题减至最少可以利用几种方法。最简单的方法是简单地增加镍层的总厚度直到获得所要求的耐蚀性。第二个更有效的方法是将在铬层下面的“光亮镍”电镀层用“双镍层”代替。双镍层是由比光亮镍层更贱(电负性)的第二层覆盖的标准、光亮镍层组成。通常通过设置比标准的光亮镍层硫含量高得多的外层来实现增加电负性。在腐蚀洞穿过高硫层后,后来的腐蚀倾向于在高硫镍层的侧向发生,不是穿透光亮镍层到下面的锌层。因此防止了发生白锈和起泡的第二加速腐蚀阶段。
第三个方法和更有效的方法是依赖于在铬层中有意引入的大量细小的缺陷,其尺寸小至肉眼不可见。在这些缺陷处暴露出的镍形成“分散的阳极”,大大地减缓了上述的阴极面积效应。再有,现在腐蚀在铸件的整个表面内扩展,而不是在集中在一些孔洞处进行。在分散的阳极中的各个孔或裂缝处的腐蚀速率低至几乎不形成深孔,而更不会穿透达到锌基材。
镀铬层是“平衡”腐蚀保护体系的优良实例,其中阴极和阳极面积没有过大的差别,阴极和阳极电势差别不大,阴极或阳极都没有以太高速率腐蚀的固有倾向,确实发生的任何腐蚀由于存在高电阻的钝化膜如铬氧化物而变慢。许多其它的涂饰层倾向于简单地依赖于将易于受腐蚀的物品密封在一无缺陷屏蔽涂饰层内。屏蔽涂饰层可以是相对的贵金属,例如参考Baldwin Hardware的上述专利的钯镍合金,或是绝缘体例如清洁的环氧树脂涂饰剂。
近来,出现了一类新的涂饰剂,其中一层或一层以上的层通过PVD涂覆。最后的一层通常是一金属化合物,所述的金属化合物通常是钛或锆与氮和/或碳的化合物。金属/氮/碳化合物的最后一层通常是涂覆在不存在氮和碳的PVD金属的冲击层上。就象电镀的情况那样,冲击层的作用是促进良好的粘附作用。PVD涂覆法通常是在约10-3-10-2毫巴真空压力下进行。为了进一步的促进粘附作用,被涂覆的表面首先清洗清除污物例如润滑脂后,进一步在真空室中进行预清洗,通过离子轰击除去小厚度的物质层,其中包括任何表面氧化物层。PVD涂覆法使得所涂覆的物品被加热,使其达到至少100℃、通常为150℃至900℃的温度。在进行PVD涂覆前,被涂覆的物品可以进行预热。
相对于其它种类的涂层来说,PVD涂饰层是优选的,因为PVD物料一般是化学惰性并耐腐蚀的。表面极硬且涂饰层可呈一定范围的颜色。例如,在上述专利中公开的黄铜色的PVD涂饰层。不利的是,PVD涂饰层常常是不连续的,对基材没有提供任何附加的耐腐蚀性能。因此,在PVD层下常常涂饰一种标准的铬电镀层体系作为腐蚀屏蔽层。此外,某些PVD涂饰层,例如TiN已经显示出降低在其之下的腐蚀保护体系层的性能。为此,已经建议使用非铬的腐蚀保护层体系作为PVD涂饰层的理想层,如同在Baldwin Hardware的专利中所叙述的。所有提议的体系是依据上述的理想贵金属屏蔽概念,而不是依据阴极和阳极面积差别不大、电势差别不过大并均没有以高速率腐蚀的固有倾向的“平衡体系”概念。
十分清楚,PVD涂覆方法在三方面中违反了“平衡保护”概念。第一,除去或至少是破坏钝化铬氧化物膜层;第二,由于PVD氮化物层是比铬更贵的金属,所以增加了促进腐蚀的可利用的电池电压;和第三,在加热和真空中,许多铸件,特别是锌压铸件下易释出一些气体。这些气体可在铸件的孔隙处产生,或者在电镀层内夹带或在铸件表面缺陷中吸附的电镀溶液中产生,所述表面缺陷例如表面暴露的孔隙或裂缝,如“冷疤(cold shuts)”。无论气体来源如何,其进入真空易于冲破防护性的镍/铬层并产生使锌暴露于腐蚀环境的路径。
已经测定,当暴露到室温的盐水中时,在不锈钢上的ZrN涂层与水反应在ZrN涂层上生成钝化膜并阻止钢的腐蚀。因此,ZrN和ZrCN涂层被有效地钝化,并能达到由铬氧化物钝化膜所提供的上述功能。反之,TiN涂层没有被这样有效地钝化,不能有效地作为腐蚀屏蔽层。总的来说,锆和钛与氮的反应相似,生成一定范围内的导电化合物和固体溶液,但是Zr-N体系包含不常见的绝缘化合物Zr3N4,在Ti-N体系中,或在除Hf-N以外的任何其它金属-N化学体系中没有已知的相似物。已经测定,在盐雾试验中,ZrN PVD涂层并没有降低镀铬装饰锌铸件的腐蚀性能,而含可观数量钛、铬或钛和铝的PVD涂层却降低了腐蚀性能。据信,ZrN涂层在水中的有利的钝化行为与生成不寻常的Zr3N4相有关,并且Hf-N基PVD涂层具有相似的可接受的耐腐蚀性能。
现有技术表明,在PVD涂饰中,为实现黄铜色以外的颜色,要求钛、铬或钛/铝的存在。通常利用铬得到与锡基合金相似的灰色;利用钛得到金黄色;和利用钛/铝得到黑色。由于上述由PVD装饰过程引起的对平衡保护从基础上的违背,已经测定,现有技术建议的腐蚀保护体系在大规模生产中无效。实际上,当真空排气在一种贵金属屏蔽腐蚀保护体系中产生破坏时,预期的结果是“大阴极面积效应”的严重而致命的情况。在现有技术中腐蚀保护的方法由于昂贵而受进一步的局限,在生产中难于控制和仅可得自专业的电镀服务厂家。
本发明提供了PVD装饰层的腐蚀保护并按这样的方式产生黄铜色以外的颜色。在外面涂层中的金属种类只选自锆和铪。控制PVD过程的工艺参数以提供所要求的颜色。
参考附图,这是按照本发明所制备的物品的部分剖视图,标号10表示基材,优选基本上没有表面裂缝和空隙的材料。所述基材优选选自黄铜、金属玻璃和锌铸件,所述锌铸件通过双相浇铸(DPC)(又称为半固态浇铸)、空心浇铸或易变形浇铸来制备。优选半固态浇铸,因为它产生基本不含气孔且松心空隙为零或减至最小的铸件。这种方法的费用较低,并且半固态锌铸件易于取代现有的压铸成型制成的锌压铸件。半固态黄铜铸件也是作基材的可接受的产品材料,半固态的镁铸件也一样。低压永久成型法,象半固态浇铸一样,产生比压铸件少的孔隙,可以用于制造黄铜基材,这种基材比通用的锌压铸件有较少的孔隙。
直接邻近基材层10是腐蚀保护层12,它是一层或一层以上的铜、镍和铬层。这种腐蚀保护层是本技术领域内众所周知的,它可以是一层或一层以上的层。该腐蚀保护层还可以选自由镍,双层镍、镍/钯,镍、钨和硼,或镍和锡组成组的一种。所有这些腐蚀保护层在以上引用的现有技术中已经详细地进行描述。虽然经济原因可决定使用传统的铜、镍和铬层,但是在具体的腐蚀保护层中可以变化。层12的厚度将取决于所利用的具体材料。例如,氰化铜、酸铜、双相镍和铬的组合,其最小的厚度为约35微米,额定厚度为约48微米。
与腐蚀层12相邻的层是不导电的或至少有很高电阻的绝缘层14。绝缘层可选自由钛和锆的氧化物、SiO2、SiOxCyH2、Al2O3、AlOxCyHz、Zr3N4、ZrxNyCz、Hf3N4或HfxNyCz或生成与Zr3N4同构绝缘化合物的其它金属组成的组。这一层可以通过PVD法涂覆。在另一方案中,绝缘层14可以是物品的外层或在物品的表面上,或在装饰外涂层18的上面,或嵌入装饰外涂层之内。这种非导电层是重要的,但是其位置可以在物品最后的许多层内变化。绝缘层优选的额定厚度为1微米,最小的厚度为0.5微米。低于下限,绝缘层将不连续,如果厚度显著高于额定值,绝缘层的应用将不经济,并易于在内应力作用下破裂。
在绝缘层14和外装饰涂层之间,有一由锆和/或钛的化合物形成的冲击层或粘合层16。层16的最小厚度为约0.025微米,额定厚度为约0.05微米。
外层18提供所要求的装饰颜色,其使用列于下表的工艺参数进行涂覆,并选自仅由ZrN、ZrCN、HfN和HfCN组成的组。外层18的最小厚度为约0.015微米,额定厚度为约0.35微米。在PVD沉积领域的技术人员可认识到,ZrN不是简单地指化合物Zr1N1,而是主要包含Zr和N原子种类的膜。同样,ZrCN表示含Zr、C和N原子种类的膜,而SiOxCyHz是含Si、O、C和H原子种类的膜。
已知,颜色的度量由三个专门的参数确定,其中“L”是物体的亮度的量度,“a”是物体的红度(正)或绿度(负)的量度,而“b”是物体的黄度(正)或蓝度(负)的量度。这三个参数一起构成了具体的颜色。
如上表所示,当锆是产生PVD外涂层颜色的主要组分时,物品通过了标准腐蚀试验,而当铬、钛或铝是主要组分时,就未通过腐蚀试验。因此,已经明确只有锆和铪提供了所需的耐腐蚀物品。据认为,锆和铪的化合物是优异的,因为这些组分能够生成钝化氧化物层,而该钝化氧化物层可有效代替由在先离子刻蚀过程除去或破坏的钝化铬氧化物层,并可以以具有极高的电阻的形态来沉积。其它金属则并非如此,主要是因为它们的PVD氮化物化合物没有象ZrN或ZrCN那样有效地被钝化,它们不可能生成Zr3N4组分或其等同物。看起来,在PVD层中为了产生高电阻,Zr3N4组分是非常必须的,并且认为与对照的TiNPVD膜相比,这导致了ZrN PVD膜在盐水中优良的钝化行为。
十分清楚,在本发明中,虽然在本发明的PVD外涂层中排除了钛及其它金属,但这些物质可在其中以微量存在,其简单的原因是在PVD室内存在由这类物质制备的靶,因为这类物质可用作冲击层的一部分。
本发明的优选方案已经示出和描述,应当理解,本发明可以进行许多改进、替换和修改。
权利要求
1.一种具有非黄铜色的特殊颜色的新制品,该制品耐腐蚀、耐磨和耐化学品侵蚀,所述的物品包括(1)一基材;(2)至少一层耐腐蚀层;(3)通过PVD涂覆并仅由选自Zr、N、C和Hf中的一种或多种而构成的外层,该外层提供了制品所需的非黄铜色的颜色及所需的耐化学侵蚀性和耐磨性,当该外层与空气或水接触时,被有效地钝化。
2.权利要求1的制品,进一步包括邻于所述外层的非导电层,它选自由钛和锆的氧化物、SiO2、SiOxCyHz、Al2O3、AlOxCyHz、Zr3N4、ZrxNyCz、Hf3N4或HfxNyCz或生成与Zr3N4同构绝缘化合物的其它金属组成的组。
3.按权利要求2的制品,其中所述非导电层是在耐腐蚀层和所述的外层之间。
4.按权利要求2的制品,其中上述的非导电层是在上述外层的外面。
5.按权利要求2的制品,其中上述的非导电层是嵌入上述外层之内。
6.权利要求1的制品,进一步包括通过PVD涂覆的冲击层,以提高外层与耐腐蚀层之间的结合力。
7.按权利要求6的制品,其中上述的冲击层包括锆和/或钛。
8.按权利要求1的制品,其中基材基本上没有表面缺陷和孔隙,它选自由黄铜、金属玻璃和半固态锌铸件组成组中的一种。
9.按权利要求1的制品,其中耐腐蚀层包括镍。
10.按权利要求9的制品,其中所述的耐腐蚀层包括含有半光亮镍的第一层和含有沉积在所述第一层的半光亮镍上的光亮镍的第二层。
11.按权利要求1的制品,其中所述的耐腐蚀层包括镍和钯的合金。
12.按权利要求1的制品,其中所述的耐腐蚀层包括镍、钨和硼的合金。
13.按权利要求1的制品,其中所述的腐蚀层包括镍和锡的合金。
14.按权利要求1的制品,所述的特殊的装饰颜色是灰色,而外层包括锆作为PVD方法的靶材料。
15.按权利要求14的制品,其中灰颜色是“L”值为约79、“a”值为约0.6和“b”为约5定义的颜色。
16.按权利要求1的制品,其中所述特殊的装饰颜色是金黄色,而外层包括锆作为PVD法的靶材料。
17.按权利要求14的制品,其中金黄色是“L”值为约77、“a”值为约4和“b”为约23定义的颜色。
18.按权利要求1的制品,其中所述特殊的装饰颜色是黑色,而外层包括锆作为PVD方法的靶材料。
19.按权利要求14的制品,其中黑色是“L”值为约43、“a”值为约0.5和“b”值为约3定义的颜色。
全文摘要
一种具有除黄铜色以外的特殊装饰颜色的新的制品,例如耐腐蚀、耐磨和耐化学品侵蚀的龙头或硬件的其它制品。该制品包括一基材、涂覆在上述基材上的一或多层的耐腐蚀层和通过PVD法涂覆并由仅选自锆、铪、碳和氮的一种或多种而构成的外层。该外层提供了制品所需的除黄铜色以外的颜色、所需的耐化学品侵蚀性和耐磨性,当与水或空气接触时,该外层以与铬相似的方式钝化。
文档编号C23C28/00GK1268535SQ0010641
公开日2000年10月4日 申请日期2000年3月1日 优先权日1999年3月1日
发明者T·J·欧布里恩, I·桑, B·L·特劳特曼, B·S·布巴, D·K·梅, J·E·普里斯汤, J·G·史克, J·D·威尔德 申请人:莫恩股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1