涂覆切削刀片的制作方法

文档序号:3251178阅读:172来源:国知局
专利名称:涂覆切削刀片的制作方法
技术领域
本发明涉及一种CVD涂覆切削刀片,其适用于利用车、铣、钻或用类似的形成切屑的机械加工方法加工金属。当用于断续的切削操作时该涂覆的刀片表现出改进的韧性性质。
背景技术
现代高生产率形成切屑的金属机械加工需要可靠的切削刀片,其具有高耐磨性、良好的韧性性质和非常好的抗塑性变形性质。
迄今为止,这些性质通过采用用耐磨涂层涂覆的硬质合金刀片已经实现。硬质合金刀片通常是夹紧在刀夹中的可转位刀片的形式,但是也可以是整体硬质合金钻头或铣刀的形式。利用诸如TiC、TiCxNy、TiN、TiCxNyOz以及Al2O3的各种类型硬质涂层涂覆的硬质合金切削刀片已经可以在市场上买到许多年了。多层结构的中的多个硬质层通常构成这种涂层。各个层的顺序和厚度仔细地选择成适合不同的切削应用范围和工件材料。
这些涂层最经常地使用化学气相沉积(CVD)或物理气相沉积(PVD)方法进行沉积。在一些很少的情况下,也实施等离子体辅助化学气相沉积(PACVD)。
与PVD相比,由于CVD方法具有多个优点而通常是优选的。它允许较大的涂覆批量,在形状复杂的刀片上产生具有良好涂层厚度分布的涂层,具有很高的布散能力,能够用于沉积像Al2O3和ZrO2的非导电层。在同一个涂覆操作中可以沉积许多不同的材料,如Al2O3、TiC、TiCxNy、TiN、TiCxNyOz、ZrCxNy和ZrO2。
CVD方法在950-1050℃的相当高的温度范围进行。由于这种高沉积温度和被沉积的涂覆材料与硬质合金刀片之间的热膨胀系数的失配,CVD方法产生具有冷却裂纹和拉应力的涂层。
PVD方法在450-650℃的显著更低的温度下进行,并且在很强的离子轰击下完成,离子轰击导致具有高压应力的无裂纹层。这种高压应力和无冷却裂纹使PVD涂覆切削刀片比CVD涂覆的刀片具有更好的韧性,因此在例如铣削的断续切削操作中经常被优选。
在当大约5-10年前MTCVD(中温CVD)方法开始进入刀具工业时,CVD涂覆的刀片在性质上发生显著的改进。获得在切削刀片的韧性性质的改进。目前大多数刀具制造商使用这种方法。遗憾的是,MTCVD方法仅限于制造TiCxNy层,其中0.5<x<0.7并且0.3<y<0.5,x+y等于或接近于1。在这种方法中沉积过程发生在温度为700-930℃的范围内。它利用CH3CN、TiCl4和H2的混合气体。目前的现代涂层还包括至少一层Al2O3,以便达到高的抗月牙洼磨损性。
当α-Al2O3过程的沉积温度成为可能时能够获得在韧性性质方面的进一步改进,如欧洲专利申请EP-A-1464727中所公开的。
在一些专利中公开了利用刷擦或利用湿喷对被涂覆的切削刀片进行后处理。其目的是,如,例如在US5,851,678和EP 603 144中所公开的,获得光滑的切削刃和/或沿着刃线露出Al2O3,或者如在US5,861,210中所公开的,在当TiN在后刀面上用作磨损识别层的情况下,为了获得Al2O3作为前刀面上的顶层。将表面例如涂覆表面暴露于例如用诸如湿喷或干喷、或者超声冲击波所产生的冲击力的每种处理方法对涂层的应力状态(σ)有一定影响。但是,为了大大降低CVD涂覆结构中所有层中的拉应力,需要强烈的表面处理。但是,这种处理甚至可能导致太大的应力状态变化,例如,从高拉伸状态到高压缩状态,如在EP-A-1311712中所公开的,其中利用干喷技术。
至于湿喷技术,通常用Al2O3磨料和水的喷丸媒质以高冲击力撞击涂覆表面。冲击力能够通过例如喷丸泵压、喷丸喷嘴和涂覆表面之间的距离、喷丸媒质的颗粒尺寸、喷丸媒质的浓度以及喷丸射流的冲击角度来控制。

发明内容
尽管存在这些进步,CVD涂覆切削刀片的韧性性质的进一步改进是非常需要的。
本发明的目的是提供具有改进韧性性质的CVD涂覆切削刀片。
本发明的另一个目的是提供一种制造具有改进韧性性质的CVD涂覆切削刀片的方法。


图1示出通过X射线测量用于评估剩余应力的量角仪装置,其中E-欧拉1/4托架S-样品I-入射的X射线束D-衍射的X射线束θ-衍射角ω-θψ-沿着欧拉1/4托架的倾角Φ-绕样品轴的旋转角本发明涉及涂覆切削刀片,其包括基本为多边形或圆形的主体,具有包括涂层和基质的至少一个前刀面和至少一个间隙面。该涂层包括至少一个TiCxNy层和一个由100%α-Al2O3构成的良好的结晶层。一个这种α-Al2O3层至少在前刀面上和沿着切削刃线是顶部可见层,并且它被强烈湿喷过或用能够以足够高的能量轰击该涂覆表面以在Al2O3层和TiCxNy层形成拉应力松弛的其他类似的技术处理过。该Al2O3顶层具有非常光滑的表面。
令人惊奇的发现对于具有至少一个前刀面和至少一个间隙面的基本为多边形或圆形形状的涂覆切削刀片,如果所述切削刀片被至少部分地涂覆生产以具有下述的特征,则能够实现相当大的韧性性质的改进,所述特征为倒数第二层的TiCxNy层的厚度为1-8μm,优选为2-5μm,其中x≥0,y≥0,x+y=1,优选用MTCVD产生,其拉应力为0.01-300MPa,优选为0.01-200MPa;以及外层的α-Al2O3层的厚度为1-5μm,优选为2-4μm,该层作为前刀面和沿着刃线的顶层,在10μm的长度上用原子力显微镜(AFM)测量其平均粗糙度Ra<0.1μm,并且I(012)/I(024)的XRD衍射强度(峰值高度减背景值)比≥1.5。
优选,在TiCxNy层和α-Al2O3层之间具有TiCxNyOz结合层,其中x≥0,z>0,并且y≥0,这两层的总厚度为≤10μm,优选≤6μm。
在涂覆结构中在基质和根据本发明的各层之间可以包括附加层,该附加层由金属氮化物和/或碳化物和/或氧化物构成,其中金属元素选自如下的金属Ti、Nb、Hf、V、Ta、Mo、Zr、Cr、W和Al,总的涂层厚度<20μm。
优选,在TiCxNy层具有低拉应力,因为发现,如果通过喷丸引起压应力则需要非常高的喷丸冲击力,而在这种条件下沿着切削刃产生涂层剥落。还发现,与涂层如果具有仍然存在的一些拉应力的情形相比,这样引起的压应力随着切削操作中产生的温度增加并不那么稳定。
内层TiCxNy层的剩余应力σ通过XRD测量用熟知的sin2ψ法评估,这种方法由I.C.Noyan、J.B.Cohen在“Residual Stress Measurement byDiffraction and Interpretation”一文中所描述,见Springer-Verlag,NewYork,1987(pp 117-130)。利用如图1所示的量角仪装置,使用CuKα照射测量TiCxNy(422)的反射。测量应当在尽可能平坦的表面上进行。建议用侧倾技术(ψ几何),其具有6-11个ψ角,在0-0.5(ψ=45°)的sin2ψ范围内等距离。在90°的Φ扇形内的Φ角的等距离分布也是优选的。为了确认双轴应力状态,样品在ψ中倾斜的同时应当旋转Φ=0°和90°。建议测试可能存在的剪切应力,因此应当测量正负ψ角。在欧拉1/4托架的情况下,对于不同的ψ角,这是通过在Φ=180°和270°测量样品完成的。sin2ψ法用于评估剩余应力,优选用市场上能买到的软件,例如Bruker AXS公司的DIFFRACPlusStress32 V.1.04进行评估,在MTCVD Ti(C,N)层的情况下其具有不变的杨氏模量,E=480GPa,和泊松比,V=0.20,并且用伪Voigt-Fit函数定位反射。在下面的参数中,使用E模量=480GPa,和泊松比V=0.20。在双轴应力状态,拉应力计算为所得到的双轴应力的平均值。
对于α-Al2O3,通常不能用sin2ψ法,因为需要的大2θ角XRD反射通常太弱。但是,本发明人已经找到一种使得α-Al2O3的状态与切削性能相关的有用的可选测量。
对于α-Al2O3粉末,衍射强度比I(012)/I(024)接近于1.5,PowerDiffraction File(粉末衍射资料)JCPDS No43-1484号表明强度I0(012)=72,而I0(024)=48。本发明人还观察到,对于拉应力(σ>约350MPa)的硬质合金上的CVDα-Al2O3层,强度比I(012)/I(024)令人吃惊地大大小于期望的1.5的值,最通常<1。这可能是由于拉应力而导致在晶格中存在一些无序的缘故。业已发现,当对这样的层进行强烈的喷丸时(应力释放)或者它已经完全从基质上去掉并且是粉末的(无应力的),根据所用的喷丸力,比值I(012)/I(024)变为比较接近、等于或者甚至大于1.5。因此这种强度比可以用作α-Al2O3层的重要状态特征。如果使用高喷丸力与这样的事实一起使用,可能产生高于1.5的比,即对于薄层的XRD分析,与例如(024)反射的大角度反射相比,如果不进行所谓的“薄膜修正”计算,像(012)反射这样的小2θ角,峰值强度I(012)将被过高地估计。
根据本发明的方法,切削刀片具有CVD涂层,其包括倒数第二层的TiCxNy层和外层的α-Al2O3层。为了得到高表面光滑度和低拉应力水平,对该涂层在前刀面上进行第一次大约2-8秒钟/刀片的强烈湿喷操作,用由水中的F80Al2O3磨料(FEPA标准)构成的浆料,空气压力为1.8-2.4巴,接着用由水中的F320Al2O3磨料(FEPA标准)构成的浆料,空气压力为约2巴进行约4-10秒钟/刀片的第二次喷丸处理。在由F80磨料和水新制成的浆料在使用在生产的刀片上之前应当首先用于模型刀片上,以便使磨料稍稍变圆。
如果在间隙表面上也希望得到光滑的涂覆表面,那么也应当对其进行喷丸。在这种情况下,TiCxNy层在前刀面和间隙表面都将具有低拉应力。当切削像不锈钢或球墨铸铁那样的涂抹材料时,这是优选的实施例。
如果希望刀片在间隙面具有与黑色前刀面不同的颜色,那么在最外层沉积0.1-2μm厚的TiN(黄色)、TiCxNy(灰或赤褐色)或TiC(灰色)的薄的色层。该刀片然后以90°的喷射角喷丸,去掉顶层露出黑色的Al2O3层。在这种情况下,前刀面上的涂层将具有所希望的低拉应力,而根据所选的涂层和所用硬质合金刀片的热膨胀系数(CTE)间隙面将具有在600-1000MPa范围内的高的拉应力。
具体实施例方式
例子1A)R390-11T308M-PM型的硬质合金刀片,其成分为12.6wt%的Co,1.25wt%的TaC,0.32wt%的NbC,其余为WC(CTE=约6×10-6),该刀片用常规的CVD法在930℃的温度下涂覆0.5μm厚的TiN层,然后用MTCVD法,用TiCl4、H2、N2和CH3CN作为工艺气体,在885℃的温度下涂覆2μm厚的TiCxNy层。在随后的处理步骤中,在同样涂覆循环期间,在1000℃的温度下,用TiCl4、CO和H2作为工艺气体,沉积约0.5μm厚TiCxOz层。然后在沉积2.2μm厚的α-Al2O3层之前,用2%的CO2、5%的HCl和93%的H2洗涤反应器两分钟。沉积步骤期间的工艺条件如下

对所沉积的Al2O3层进行的XRD分析表明,该层仅由α相构成。
例子2重复例子1,但是用于TiCxNy步骤的处理时间为1.5小时,用于Al2O3步骤的时间是4小时。
得到约3μm厚的TiCxNy和约4.5μm厚的α-Al2O3的涂层。
例子3重复例子1,但是用于Al2O3步骤的处理时间是6小时。得到约2μm厚的TiCxNy和约6.5μm厚的α-Al2O3的涂层。
例子4来自例子1、2和3的涂覆的刀片在不同的条件下用湿喷(两侧)进行后处理和刀刃刷擦。喷丸以两个步骤进行。第一,用包含Al2O3的磨料(粒度尺寸F80,FEPA标准)和水的浆料喷射,然后在第二步骤用Al2O3的磨料(粒度尺寸F320,FEPA标准)喷射。这些步骤的目的是降低拉应力水平并产生高涂层光洁度。四种不同的喷射压力为1.8、2.0、2.2和2.4巴,在第一步骤中两种不同的喷射角45°和90°。在第二步骤中只用2巴的压力和90°喷射角。一些刀片还用含有SiC颗粒的尼龙刷子刷擦。以便使沿着切削刃及其附近的涂覆表面变光滑。不同后处理过的刀片的涂层在高倍扫描显微镜(SEM)下检查。从检查中发现,仅有一些以2.4巴压力喷射过的例子1的刀片在切削刃出现零星的涂层剥落。以90°角度喷射过的刀片比以45°角喷射的刀片表现出稍好的表面光洁度。
用熟知的粗糙度值Ra表示的涂覆表面的光洁度在Surface ImagingSystem公司(SIS)的设备上利用AFM测量,除了刷擦过的和未喷过砂的,所有的刀片都进行测量。在10个随机选取的平面表面区域(10μm×10μm)上进行粗糙度测量。10个Ra值的平均值用作粗糙度值,在下面的表1中叫做平均Ra(MRa)。
使用Bragg-Brentano衍射仪Siemens D5000进行X射线衍射分析,以利用CuKα照射确定I(012)/I(024)比。剩余应力在X射线衍射仪BrukerD8,Discover-GADDS上用ψ几何法评估,该衍射仪具有激光视频定位的欧拉1/4托架,作为X射线源(CuKα照射)的旋转阳极和面积测定器(Hi-Star)。尺寸为0.5mm的准直仪用来聚焦X射线束。使用以下量角仪设置对TiCxNy(422)反射进行分析2θ=126°,ω=63°,Φ=0°、90°、180°、270°。对于每个φ角,在0°和70°之间8个ψ倾角被完成,sin2ψ法用来评估剩余应力,利用Bruker AXS公司的软件DIFFRACPlusStress32 V.1.04进行评估,其具有不变的杨氏模量,E=480Gpa,和泊松比,V=0.20,并且用伪Voigt-Fit函数定位反射。确定双轴应力状态,并且用平均值作为剩余应力值。
例子5进行过不同后处理的刀片在两个不同的铣削操作中进行测试,两种铣削操作对韧性有很高的要求。测试时使用如下的条件切削测试1铣削操作在合金钢SS2541上进行。工件是长方形块。铣刀从其长边进入工件许多次,条件归入“很难进入”。
干燥状态切削速度 V=200m/min每齿进给量Fz=0.17mm/Z轴向切削深度 Ap=3mm径向切削深度 Ae=16mm齿数 =1三个刀片(一个刃/刀片)切过工件。用刀刃发生损坏之前能够完成的进入数目表示的寿命示于表1中。
切削测试2铣削操作在合金钢SS2244上进行。工件是其厚度比铣刀直径小得多的细长条。铣刀纵向通过该条,条件归入“很难退出”。
湿润状态切削速度 V=150m/min
每齿进给量Fz=0.15mm/Z轴向切削深度 Ap=3mm径向切削深度 Ae=7mm齿数 =23×2个刀片(一个刃/刀片)切过工件。用刀刃发生损坏之前能够完成的工件条的数目表示的寿命示于表1中。
表1

A-H)2.5μm(TiN+TiCxNy)+0.5μm TiCxOy+2.2μmα-Al2O3I)3.5μm(TiN+TiCxNy)+0.5μm TiCxOy+4.5μmα-Al2O3J)2.5μm(TiN+TiCxNy)+0.5μm TiCxOy+6.6μmα-Al2O3测试结果清楚标表明,样品E、F、G和H得到最好的韧性性质,其在TiCxNy层具有最低的拉应力,具有Al2O3层的最高的I(012)/I(024)比以及最低的平均粗糙度值。总涂层厚度为8.5μm的样品I没有表现出如相应较薄的5.2μm的样品G一样好的性质(但是仍然是令人满意的)。而且,具有厚Al2O3层的样品
J表现出较低的性能。在这里TiCxNy层中的应力较高,为390MPa。这些事实表明,存在一定的性质参数空间,其与切削刀片的寿命直接相关。因此必须同时存在多个条件和特征,以便实现切削刀片的高性能。
权利要求
1.一种由硬质合金、金属陶瓷或陶瓷制成的涂覆切削刀片,其包括基本为多边形或圆形的主体,该主体具有至少一个前刀面和至少一个间隙面,所述刀片至少部分地采用厚2-10μm的涂层涂覆,该涂层包括至少一个TiCxNy层,优选该TiCxNy层用MTCVD沉积,和一个α-Al2O3层,该α-Al2O3层至少在前刀面上是外层,其特征在于,在所述至少一个前刀面和所述至少一个间隙面上该TiCxNy层的厚度为1-8μm,优选为2-5μm,并且拉应力水平为10-300MPa,并且,该α-Al2O3层是最外层,其厚度为1-5μm,优选为2-4μm,XRD衍射强度比I(012)/I(024)≥1.5,并且用AFM方法在10个随机选取的10×10μm2的面积上测量的平均粗糙度值MRa<0.1μm,或者,只在所述的至少一个前刀面上该TiCxNy层的厚度为1-8μm,并且拉应力水平为10-300MPa,并且,该α-Al2O3层是最外层,其厚度为1-5μm,优选为2-4μm,XRD衍射强度比I(012)/I(024)≥1.5,并且用AFM方法在10个随机选取的10×10μm2的面积上测量的平均粗糙度值MRa<0.1μm,并且在所述至少一个间隙面上该TiCxNy层的拉应力在600-1000MPa范围内,并且,该α-Al2O3层的XRD衍射强度比I(012)/I(024)<1.5,优选用在该面上给出刀片不同颜色的0.1-2μm厚的TiN、TiCxNy或TiC层覆盖。
2.如前述权利要求中任何一项所述的切削刀片,其特征在于在TiCxNy层的顶部上具有0.1-1μm厚的TiCxNyOz的薄结合层。
3.如前述权利要求中任何一项所述的切削刀片,其特征在于所述刀片为由热膨胀系数≥5.5×10-6m/K的硬质合金制成。
4.一种制造具有TiCxNy层和α-Al2O3层的CVD涂覆切削刀片的方法,该刀片具有高表面光洁度和低拉应力水平,其特征在于对该涂层用在水中包含F80的Al2O3磨料的浆料,以1.8-2.4巴的气压进行第一次强湿喷,随后用在水中包含F320的Al2O3磨料的浆料,以大约2巴的气压进行第二次喷丸处理。
全文摘要
本发明涉及一种CVD涂覆切削刀片,其具有10-300MPa的低拉应力水平的TiC
文档编号C23C16/30GK1824440SQ20061005497
公开日2006年8月30日 申请日期2006年2月27日 优先权日2005年2月25日
发明者比约恩·永贝里 申请人:山特维克知识产权股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1