从铁精矿中直接制取铁和钒钛铝合金的工业化生产方法

文档序号:3427721阅读:224来源:国知局
专利名称:从铁精矿中直接制取铁和钒钛铝合金的工业化生产方法
技术领域
本发明涉及对矿物进行分离和合金冶炼方法,更特别地说,是指一种先从铁精矿中分离出块铁,然后通过添加铝熔炼制钒钛铝合金的工业化生产方法。
背景技术
钛是一种重要的结构金属,钛合金因具有强度高、密度小、耐蚀性好、耐热性高等特点,是很好的结构和功能材料,被广泛应用于航空航天、医疗器械、化工设备、军工及运动器材等领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。从20世纪50年代Kroll成功开发熔炼金属Ti以来,世界上广泛采用的钛的工业生产方法仍然是Kroll法,由于此法生产不连续、流程长、工序多,且常温下的TiCl4呈挥发性等因素,使海绵钛成本居高不下,限制了钛在各个行业的应用。人们一直在尝试用电解法生产金属Ti,通过把Ti的氧化物或氯化物熔解在熔融的电解质内,然后用电解的方法把Ti沉积在阴极上。然而这些方法都没能获得工业化应用。目前,国内外关于用熔盐电解法制备金属钛的工艺的研究巳经广泛的展开,主要的制备工艺有FFC剑桥法,钙热还原法(OS法),电介质还原法(EMR法)和阳极固体透氧膜法(SOM法)。然而,这些方法只是实验室规模,要实现工业化还有很多技术难题需要解决。
目前,有一种广泛使用的钛合金Ti-6A1-4V,主要釆用金属兌掺法获得,是将金属钛、金属钒、金属铝按照一定比例配置后熔炼而成,其量约占钛合金总量的70。/。,其他钛合金基本是以该合金为母合金熔配而成。但该法缺点是生产成本高,操作困难。
钒钛磁铁矿是一种共生复合矿,有钒钛磁铁岩矿和钒钛磁铁砂矿之分。世界上储存有大量的钒钛磁铁岩矿,如果用该矿物为原料,直接生产出钒钛铝合金,并再回收其中的大量铁,不但使得目前难以使用的钒钛磁铁岩矿得以综合利用,又大大降低了生产钛钒铝合金的成本。发 明 内 容
本发明的目的是提出一种对铁精矿进行还原熔分、筛分提取块铁,然后对钒钛氧化物渣采用铝热还原法得到钛钒铝合金的工业化生产方法。
本发明的一种从铁精矿中直接制取块铁和钒钛铝合金的工业化生产方法,其特征在于包括有下列生产步骤
步骤一采用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为20 60mm的球团;
所述压球机制球团时所需的压力为20 30MPa ;
用量:每lOOOg的铁精矿中加入100 250g的煤粉、10 40g的氟化钙和5~20g的木质素磺酸钠;
步骤二流动制干燥球团
通过传送带将步骤一制得的球团在传输速度为15~80m/h的条件下,经过温度为150。C 20CrC的干燥箱后制得干燥球团;所述干燥箱的长度L为50 200m;步骤三转底炉还原熔分出铁
将步骤二制得的干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物;
该转底炉转动一周所需时间为20min 50min;
该转底炉中预还原区的温度为80crc i30crc,还原熔分区的温度为i30o。c
1380°C,冷却区的温度为800°C 1300°C;
步骤四冷却、筛分块铁,渣铁分离 '将步骤三从转底炉中排出的熔分产物在300。C 350。C的冷却温度下进行冷却
20min 50min后,获得块铁和钒钛渣的混合物,然后采用筛分机将块铁筛分出来;步骤五铝热还原制钒钛铝合金
将单质铝粉和氟化钙与步骤四得到的钒钛渣混合均匀后装入真空感应炉中;抽真空使真空感应炉内的真空度达到5X 10-3Pa,然后充氩气至真空感应炉内真空度至0.5xl05Pa;接通电源,待炉内温度升到熔炼温度1600°C 170CTC时,铝热还原钒铝合金穿过液态氟化转熔剂沉入真空感应炉底部,而氧化铝渣溶解在氟化钙溶剂中,浮于液态钛钒铝合金上方;经冷却后,除去钛钒铝合金上方的氧化铝渣,而得到纯净的钛钒铝合金;
用量1000g的钒钛渣中添加100 400g的单质铝粉和2000 4000g的氟化i丐;单质铝粉的粒径为5mm。
本发明在制作工艺上的优点在于
(1) 所添加的钙盐和木质素磺酸钠,能够加快块铁从铁精矿中还原出来,使块铁的还原温度降低,促进铁生长和铁的汇聚,并且阻止了钒、钛的还原。木质素磺酸钠同时也起到粘结剂和催化剂的作用。
(2) 用铝热还原法生产钒钛铝合金,由于是放热反应,生产成本低,每吨钒钛铝合金耗电不足5000 A『/ 。
(3) 在转底炉中通过控制直接还原熔分过程中的还原熔分温度和催化剂用量,可以实现钒的氧化物在直接还原熔分过程中不被还原进入铁相,即直接还原熔分结束后,只有铁以单质状态生成块铁,钛和钒都以氧化物状态存在于渣中,还原和熔分同时进行,为后步筛分工序的渣铁分离和铁、钒和钛综合回收利用创造了有利条件。
(4) 本发明生产方法从铁精矿中制取的铁回收率为90%,钒回收率为85%,钛回收率为85%。本发明的铁钒钛综合回收利用率高,生产效率高,无环境污染,易于工业化推广,社会效益和经济效益显著。


图1是本发明先从铁精矿中分离出铁,然后掺铝制钒钛铝合金的工业化生产流程框图。
图2是本发明制球团至干燥球团的工业化生产流程示图。图3是转底炉的温度区分简示图。
具体实施例方式
下面将结合附图和实施例对本发明做进一步的详细说明。
6本发明所涉及的铁精矿是指从钒钛磁铁岩矿中经粉碎、磨矿、选矿后制得的产物。对于粉碎、磨矿、选矿为常规的技术手段,故本专利申请中不作详细说明。从钒钛磁铁岩矿中提取铁精矿的方法可以参见文献2005年8月《金属矿山》公开的"越低品位钒钛磁铁矿石选矿工艺优化实践" 一文。
参见图l、图2、图3所示,本发明是一种从铁精矿中直接制取块铁和饥钛铝合金的工业化生产方法,包括有下列生产步骤
步骤一釆用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为20 60mm的球团;
所述压球机制球团时所需的压力为20 30MPa。
用量:每1000g的铁精矿中加入100~250g的煤粉、10 40g的氟化l丐和5~20g的木质素磺酸钠。
煤粉的主要成分(质量百分比)为灰分含量为11.25%、挥发份含量为8.62%,固定碳含量为80.13%。煤粉的粒径为0.05mm lmm。步骤二流动制干燥球团
通过传送带将步骤一制得的球团在传输速度为15~80m/h的条件下,经过温度为150。C 200。C的干燥箱后制得干燥球团;所述干燥箱的长度L为50 200m。
在此步骤中,通过设置的干燥箱的长度L及干燥温度,能够控制球团的均匀脱水,并且使干燥球团的水分小于1%。步骤三转底炉还原熔分出铁
将步骤二制得的干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物;
该转底炉转动一周所需时间为每20min 50min。
该转底炉在熔炼物质时一般分有三个分区(如图3所示),即预还原区、还原熔分区和冷却区。在本发明中,预还原区的温度设置为800。C 130(TC;还原熔分区的温度设置为1300°C 1380°C;冷却区的温度设置为800°C 1300°C。
干燥球团在还原熔分区时,铁精矿中的铁被还原熔分出,并以单质块铁形式存在,而钛和钒仍以氧化物的形式存在。
步骤四冷却、筛分块铁,渣铁分离
将步骤三从转底炉中排出的熔分产物在300。C 350。C的冷却温度下进行冷却20min 50min后,获得块铁和钒钛渣的混合物,然后采用筛分机将块铁筛分出来;
7在此步骤中,由于从转底炉排出的熔分产物温度为8ocrc i30(rc,当在冷却
温度30(TC 35(rC的环境下,钒钛渣由于体积膨胀,使得钒钛渣自动粉碎,其粉化率达到97%以上,平均粒度为20微米。而块铁的粒径都在lOmm以上。因此,通过冷却手段,使块铁从熔分产物中分离出来,为筛分创造了条件;筛分机的筛子孔径为0.5mm,块铁为筛上物,钒钛渣为筛下物,筛分得到的块铁可以直接进行炼钢用。步骤五铝热还原制fl钛铝合金
将单质铝粉和氟化钙与步骤四制得的钒钛渣进行混合均匀后,装入真空感应炉中;抽真空使真空感应炉内的真空度达到5X10-3Pa,然后充氩气使真空感应炉内真空度至0.5X 105Pa;接通电源(30《『),待炉内温度升到熔炼温度1600。C 1700。C时,铝热还原保温反应40min 120min后生成液态钒钛铝合金和氧化铝;
用量1000g的钒钛渣中添加100 400g的单质铝粉和2000~4000g的氟化|丐;单质铝粉的粒径为0.4mm。
在此步骤中,发生铝热还原反应,单质铝与二氧化钛和五氧化二铫发生还原反应生成钛钒铝合金和氧化铝,其他杂质不发生反应,其中液态钛钒铝合金穿过液态氟化钙熔剂沉入真空感应炉底部,而氧化铝渣和其他杂质溶解在氟化钶溶剂中,浮于液态钛钒铝合金上方,从而得到纯净钛钒铝合金。钒钛渣、单质铝和氟化i丐在还原反应过程中,单质铝参与了钒钛渣中的二氧化钛和五氧化二铫的还原反应,并生成液态钛钒铝合金和氧化铝,其中液态钛钒铝合金穿过液态氟化妈熔剂沉入真空感应炉底部,而氧化铝渣溶解在氟化钙溶剂中,浮于液态钛钒铝合金上方;经冷却后,除去钛钒铝合金上方的氧化铝渣,而得到纯净的钛钒铝合金。由于铝热反应是放热反应,因此,该过程耗电低(每吨钒钛铝合金耗电不足500(Uff//0。使用氟化钙做熔齐iJ,熔点为136CTC,氧化物在该熔剂中溶解度大,并且其密度小于钒钛铝合金而大于其他金属氧化物。对制得的钛钒铝合金经化学分析(质量百分比),钛80 85%,铝10 15%,钒4 5%。
经X衍射分析钒钛渣中主要为Ti02和V205,当加入单质铝粉(粒径为5mm以下)后,其化学反应关系式为
3Ti02 + 4A1 = 3Ti + 2A12033V205 + 10A1 = 6V + 5A1203对液态钛钒铝合金和氧化铝的冷却可以采用水冷、空冷或者气冷等方式,可以通过设定冷却温度和冷却时间使被冷却物冷却至室温。在本发明中,发明人采用水冷方式,冷却水温度为20°C 40°C,冷却时间为15 48小时。实施例 1 :
采用河北承德地区的钒钛磁铁岩矿中提取得到的铁精矿。
该铁精矿(80。/。的粒径小于0.076mm)的主要成分为FeO含量为27.73%、 6203含量为48.13°/。、 Ti02含量为10.02%、 丫205含量为0.66%、 Si02含量为 3.5%、 MgO含量为4.1。/。、 CaO含量为3.2%和余量杂质(杂质是指微量的S、 P)。
釆用铁精矿制取块铁和钒钛铝合金的工业化生产制备步骤为
步骤一采用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为20mm 的球团;
所述压球机制球团时所需的压力为25MPa。
用量每1000g的铁精矿中加入250g的煤粉、30g的氟化钙和15g的木质素
磺酸钠。
煤粉的主要成分为灰分含量为11.25%、挥发份含量为8.62。/。固定碳含量为 80.13%。煤粉的粒径为lmm,其中60%的粒径在0.3mm。 步骤二流动制干燥球团
参见图2所示,通过传送带将步骤一制得的球团在传输速度30m/h的条件下, 经过温度为200。C的干燥箱后制得干燥球团;所述干燥箱的长度L为150m,通过 设置的干燥箱的长度L及干燥温度,能够使干燥球团均匀脱水,且水分小于1%。
步骤三转底炉还原熔分出铁
参见图3所示,干燥球团随传送带经进料口进入转底炉的熔炉内,在干燥球团 在熔炉内转动一周后经出料口排出熔分产物(块铁和钒钛渣的混合物);给转底炉提 供热源用的燃料是经燃料入口进入的,转底炉的转动是绕转轴的圆周转动。
所述转底炉转动一周所需时间设置为30min。
转底炉在熔炼物质时一般分有三个分区,即预还原区、还原熔分区和冷却区。
在本发明中,预还原区的温度设置为socrc。还原熔分区的温度设置为1380x:。冷 却区的温度设置为ioocrc。
干燥球团在还原熔分区时,铁精矿中的铁被还原熔分出,并以单质块铁形式存 在,而钛和钒仍以氧化物的形式存在。
9步骤四冷却、筛分块铁
从转底炉排出的熔分产物在35(TC的冷却温度下进行冷却50min,获得块铁和 钒钛氧化物渣的混合物,然后采用筛分机将块铁筛选出来;
在此步骤中,筛子孔径为0.5mm,块铁为筛上物,钒钛氧化物渣为筛下物,渣 铁分开,得到块铁和钒钛氧化渣两个产品,块铁送去炼特种钢。块铁化学分析(质量 百分比),铁含量为96.5%,碳含量为2.5%,钛含量为0.11。/。,硅含量为0.8%, 硫含量为0.05%。钛钒氧化物渣化学分析(质量百分比),Ti02含量为75。/。, V205 含量为9.45%, Si02含量为6.3。/。, CaO含量为4.3。/。, MgO含量为4.4。/。,其他 微量杂质。
步骤五铝热还原制钒钛铝合金
将单质铝粉(5mm)和氟化钙与步骤四制得的钒钛渣混合均匀后,装入真空感 应炉中;抽真空使真空感应炉内的真空度达到5xl0-spa,然后充氩气,将真空感应 炉内的气压充到0.5X 105Pa;接通电源(30kW),待温度升到熔炼温度1600。C时, 铝热反应60min后生成液态钒钛铝合金和氧化铝;经冷却后,除去钛钒铝合金上方
的氧化铝渣,而得到纯净的钛钒铝合金。
用量1000g的釩钛渣中添加400g的单质铝和3000g的氟化牵丐。 制得的钛钒铝合金经化学分析(质量百分比),钛含量81.3%,铝含量12.7%,
钒含量4.5。/。和微量的杂质。
实施例2 :
釆用四川攀枝花地区的钒钛磁铁岩矿中提取得到的铁精矿。
该铁精矿(87。/。的粒径小于0.1mm)的主要成分FeO含量为29.13%、 Fe203 含量为43.43%、 TiC^含量为14.52%、 ¥205含量为0.59%、 Si02含量为3.1。/。、 MgO含量为3.0。/。、 CaO含量为3.0。/。和余量杂质(杂质是指微量的S、 P)。
用铁精矿制取块铁和钒钛铝合金的工业化生产制备步骤为
步骤一釆用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为60mm 的球团;
所述压球机制球团时所需的压力为30MPa。
用量每1000g的铁精矿中加入150g的煤粉、40g的氟化妈和10g的木质素
磺酸钠。煤粉的主要成分(质量百分比)为灰分含量为11.25%、挥发份含量为8.62% 固定碳含量为80.13%。煤粉的粒径为lmm,其中60%的粒径在0.3mm。 步骤二流动制干燥球团
通过传送带将制得的球团在传输速度60m/h的条件下经过温度为20CTC的干 燥箱后制得干燥球团;所述干燥箱的长度L为200m,干燥球团均匀脱水,水分小
于1%。
步骤三转底炉还原熔分出铁
干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物; 所述转底炉转动一周的时间为每30min。
转底炉在预还原区的温度设置为IOO(TC。还原熔分区的温度设置为1380°C。 冷却区的温度设置为iooo°c。 步骤四冷却、筛分块铁
从转底炉排出的熔分产物在350。C的冷却温度下进行冷却50min,获得块铁和 钒钛氧化物渣的混合物,然后采用筛分方式将块铁筛选出来;
在此步骤中,筛子孔径为0.5mm,块铁为筛上物,钒钛氧化物渣为筛下物,渣 铁分开,得到块铁和钒钛氧化渣两个产品,块铁送去炼特种钢。块铁化学分析(质量 百分比),铁含量96%,碳含量2,5%,钛含量0.11%,硅含量0.8%,硫含量0.05%。 钛钒氧化物渣化学分析(质量百分比),Ti02含量65%, ¥205含量5.45%, Si02 含量8.2%, CaO含量10.3%, MgO含量7.1%。
步骤五铝热还原制钒钛铝合金
将单质铝粉(粒径5mm)和氟化钙与钒钛渣混合均匀后,装入真空感应炉中; 抽真空使真空感应炉内的真空度达到5xlO^Pa以下,然后充氩气,将真空感应炉 内的气压充到0.5xl05Pa;接通电源,待温度升到熔炼温度1650。C时,铝热反应 80min后生成液态钒钛铝合金和氧化铝;经冷却得到钒钛铝合金。
用量1000g的钒钛渣中添加150g的单质铝和3000g的氟化i丐。 制得的钛钒铝合金经化学分析(质量百分比),钛含量81.0%,铝含量13.5%, 钒含量5.1%和微量的杂质。实施例3 :
采用山东临沂地区的钒钛磁铁岩矿提取得到的铁精矿。
该铁精矿(70%的粒径小于0.4mm)的主要成分FeO含量为24.38%、 Fe203 含量为55.19%, 1102含量为13.42%、 ¥205含量为0.59%、 Si02含量为1.7%、 MgO含量为1.0。/。、 CaO含量为1.0%和余量杂质(杂质是指微量的S、 P)。
用铁精矿制取块铁和钒钛铝合金的工业化生产制备步骤为
步骤一采用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为50mm 的球团;
所述压球机制球团时所需的压力为25MPa。
用量每1000g的铁精矿中加入200g的煤粉、10g的氟化转和5g的木质素
磺酸钠。
煤粉的主要成分(质量百分比)为灰分含量为11.25%、挥发份含量为8.62% 固定碳含量为80.13%。煤粉的粒径为lmm,其中60%的粒径在0.3mm。 步骤二流动制干燥球团
通过传送带将步骤一制得的球团在传输速度为50m/h的条件下,经过温度为 20CTC的干燥箱后制得干燥球团;所述干燥箱的长度L为150m。 步骤三转底炉还原熔分出铁
干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物; 所述转底炉转动一周的时间为50min。
转底炉在预还原区的温度设置为80CTC。还原熔分区的温度设置为1380°C。 冷却区的温度设置为1000°C。 步骤四冷却、筛分块铁
从转底炉排出的熔分产物在35(TC的冷却温度下进行冷却50min,获得块铁和 钒钛氧化物渣的混合物,通过筛分方式将块铁筛选出来;
在此步骤中,筛子孔径为0.5mm,块铁为筛上物,钒钛氧化物渣为筛下物。 步骤五铝热还原制钒钛铝合金
将单质铝粉(5mm)和氟化钙与步骤四制得的钒钛渣"混匀后,装入真空感应炉 中;抽真空使真空感应炉内的真空度达到5Xicrspa以下,然后充氩气,将真空感 应炉内的气压充到0.5xl05Pa;接通电源,待温度升到熔炼温度170(TC时,铝热 反应60min后生成液态钒钛铝合金和氧化铝;经冷却得钒钛铝合金。
用量1000g的钒钛渣中添加400g的单质铝和2000g的氟化转。实施例 4 :
釆用山西代县地区的钒钛磁铁岩矿提取得到的铁精矿。
该铁精矿(80。/。的砂矿粒径小于O.lmm)的主要成分FeO含量为27.13%、 6203含量为48.43%、 Ti02含量为12.72%、 丫205含量为0.39%、 Si02含量为 2.5%、 MgO含量为3.7。/。、 CaO含量为2.0。/。和余量杂质(杂质是指微量的S、 P)。
用铁精矿制取块铁和钒钛铝合金的工业化生产制备步骤为
步骤一釆用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为20mm 的球团;
所述压球机制球团时所需的压力为25MPa。
用量每1000g的铁精矿中加入250g的煤粉、30g的氟化钙和15g的木质素 磺酸钠。
煤粉的主要成分(质量百分比)为灰分含量为11.25%、挥发份含量为8.62% 固定碳含量为80.13%。煤粉的粒径为lmm,其中60%的粒径在0.3mm。 步骤二流动制干燥球团
通过传送带将制得的球团在传输速度30m/h的条件下经过温度为20(TC的干 燥箱后制得干燥球团;所述干燥箱的长度L为150m。 步骤三转底炉还原熔分出铁
干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物; 所述转底炉转动一周的时间30min。
转底炉在预还原区的温度设置为800°C。还原熔分区的温度设置为1380°C。
冷却区的温度设置为ioocrc。
步骤四冷却、筛分块铁
从转底炉排出的熔分产物在35(TC的冷却温度下进行冷却50min,获得块铁和 釩钛氧化物渣的混合物,然后釆用筛分方式将块铁筛选出来;
在此步骤中,筛子孔径为0.5mm,块铁为筛上物,钒钛氧化物渣为筛下物。 步骤五铝热还原制钒钛铝合金
将单质铝(5mm)和氟化钙与钒钛渣混匀后装入真空感应炉中;抽真空使真空 感应炉内的真空度达到5xlO^Pa以下,然后充氩气,将真空感应炉内的气压充到 0.5xl05Pa;接通电源,待温度升到熔炼温度1600。C时,铝热反应60min后生成
液态钒钛铝合金和氧化铝;经冷却得到钒钛铝合金。
用量1000g的钒钛渣中添加400g的单质铝和3000g的氟化钙。实施例 5 :
采用陕西汉中地区的钒钛磁铁岩矿提取得到的铁精矿。
该铁精矿(粒径小于0.2mm)的主要成分FeO含量为28.13。/。、 Fe203含量为 47.43%、 1102含量为13.4%、 ¥205含量为0.80%、 SiOs含量为2.0%、 MgO含 量为3.7%、 CaO含量为1.5。/。和余量杂质(杂质是指〗敖量的S、 P)。
用铁精矿制取块铁和钒钛铝合金的工业化生产制备步骤为:
步骤一釆用压球机制球团
将铁精矿、煤粉、氟化转、木质素磺酸钠搅拌均匀后,经压球机制得直径为50mm 的球团;
所述压球机制球团时所需的压力为25MPa。
用量每1000g的铁精矿中加入250g的煤粉、20g的氟化钙和15g的木质素
磺酸钠。
煤粉的主要成分为灰分含量为11.25%、挥发份含量为8.62。/。固定碳含量为 80.13%。煤粉的粒径为lmm,其中60%的粒径在0.3mm。 步骤二流动制干燥^^团
通过传送带将制得的球团在传输速度50m/h的条件下经过温度为20(TC的干 燥箱后制得干燥球团;所述干燥箱的长度L为200m。 步骤三转底炉还原熔分出铁
干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物; 所述转底炉转动一周的时间为30min。
转底炉在预还原区的温度设置为socrc。还原熔分区的温度设置为138crc。 冷却区的温度设置为ioocrc。
步骤四冷却、筛分块铁
从转底炉排出的熔分产物在35(TC的冷却温度下进行冷却50min,获得块铁和
钒钛氧化物渣的混合物,然后采用筛分方式将块铁筛选出来;
在此步骤中,筛子孔径为0.5mm,块铁为筛上物,钒钛氧化物渣为筛下物。 步骤五铝热还原制钒钛铝合金
将单质铝和氟化牵丐与钒钛渣混匀后装入真空感应炉中;抽真空使真空感应炉内 的真空度达到5xlO_3Pa以下,然后充氩气,将真空感应炉内的气压充到0.5X 105Pa;接通电源,待温度升到熔炼温度160(TC时,保温反应lOOmin后生成液态 钒钛铝合金和氧化铝;经冷却后得钒钛铝合金。
用量1000g的钒钛渣中添加400g的单质铝和3000g的氟化i丐。实施例 6 :
釆用内蒙阿拉善地区的钒钛磁铁岩矿提取得到的铁精矿。
该铁精矿(83。/。的粒径小于0.1mm)的主要成分FeO含量为28.13%、 Fe2〇3 含量为46.13%、 1102含量为19.5%、 V2(Ds含量为0.75%、 Si02含量为1.3%、 MgO含量为2.0。/。、 CaO含量为2.0。/。和余量杂质(杂质是指微量的S、 P)。
用铁精矿制取块铁和钒钛铝合金的工业化生产制备步骤为
步骤一采用压球机制球团
将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为20mm 的球团;
所述压球机制球团时所需的压力为25MPa。
用量每1000g的铁精矿中加入100g的煤粉、20g的氟化钙和15g的木质素
磺酸钠。
煤粉的主要成分为灰分含量为11.25%、挥发份含量为8.62。/。固定碳含量为 80.13%。煤粉的粒径为lmm,其中60%的粒径在0.3mm。 步骤二流动制干燥球团
通过传送带将制得的球团在传输速度30m/h的条件下经过温度为20CTC的干 燥箱后制得干燥球团;所述干燥箱的长度L为150m。 步骤三转底炉还原熔分出铁
干燥球团随传送带连续进入转底炉内,在转底炉内转动一周后排出熔分产物; 所述转底炉转动一周的时间为30min。
转底炉在预还原区的温度设置为130CTC。还原熔分区的温度设置为1380°C。
冷却区的温度设置为ioocrc。
步骤四冷却、筛分块铁
从转底炉排出的熔分产物在35(TC的冷却温度下进行冷却50min,获得块铁和 钒钛氧化物渣的混合物,然后采用筛分方式将块铁筛选出来;
在此步骤中,筛子孔径为0.5mm,块铁为筛上物,钒钛氧化物渣为筛下物。 步骤五铝热还原制钒钛铝合金
将单质铝和氟化钙与钒钛渣混匀后装入真空感应炉中;抽真空使真空感应炉内 的真空度达到5xPa以下,然后充氩气,将真空感应炉内的气压充到0.5xlOSPa; 接通电源,待温度升到熔炼温度160CrC时,铝热反应60min后生成液态钒钛铝合 金和氧化铝;经冷却后得钒钛铝合金。
用量1000g的钒钛渣中添加400g的单质铝和4000g的氟化牵丐。
权利要求
1、一种从铁精矿中直接制取块铁和钒钛铝合金的工业化生产方法,其特征在于包括有下列生产步骤步骤一采用压球机制球团将铁精矿、煤粉、氟化钙、木质素磺酸钠搅拌均匀后,经压球机制得直径为20~60mm的球团;所述压球机制球团时所需的压力为20~30MPa;用量每1000g的铁精矿中加入100~250g的煤粉、10~40g的氟化钙和5~20g的木质素磺酸钠;步骤二流动制干燥球团通过传送带将步骤一制得的球团在传输速度为15~80m/h的条件下,经过温度为150℃~200℃的干燥箱后制得干燥球团;所述干燥箱的长度L为50~200m;步骤三转底炉还原熔分出铁将步骤二制得的干燥球团随传送带进入转底炉内,在转底炉内转动一周后排出熔分产物;该转底炉转动一周所需时间为20min~50min;该转底炉中预还原区的温度为800℃~1300℃,还原熔分区的温度为1300℃~1380℃,冷却区的温度为800℃~1300℃;步骤四冷却、筛分块铁,渣铁分离将步骤三从转底炉中排出的熔分产物在300℃~350℃的冷却温度下进行冷却20min~50min后,获得块铁和钒钛渣的混合物,然后采用筛分机将块铁筛分出来;步骤五铝热还原制钒钛铝合金将单质铝粉和氟化钙与步骤四得到的钒钛渣混合均匀后装入真空感应炉中;抽真空使真空感应炉内的真空度达到5×10-3Pa,然后充氩气至真空感应炉内真空度至0.5×105Pa;接通电源,待炉内温度升到熔炼温度1600℃~1700℃时,铝热还原反应40min~120min后生成液态钒钛铝合金和氧化铝;钒钛渣、单质铝和氟化钙在发生铝热还原反应过程中,单质铝参与了钒钛渣中的二氧化钛和五氧化二钒的还原反应,并生成液态钛钒铝合金和氧化铝,其中液态钛钒铝合金穿过液态氟化钙熔剂沉入真空感应炉底部,而氧化铝渣溶解在氟化钙溶剂中,浮于液态钛钒铝合金上方;经冷却后,除去钛钒铝合金上方的氧化铝渣,而得到纯净的钛钒铝合金;用量1000g的钒钛渣中添加100~400g的单质铝粉和2000~4000g的氟化钙;单质铝粉的粒径为5mm。
2、 根据权利要求1所述的从铁精矿中直接制取块铁和钒钛铝合金的工业化生产方 法,其特征在于从铁精矿中制取的铁回收率为90%,釩回收率为85%,钛回 收率为85%。
3、 根据权利要求1所述的从铁精矿中直接制取块铁和钒钛铝合金的工业化生产方 法,其特征在于所述铁精矿是从钒钛磁铁岩矿中提取得到的。
全文摘要
本发明公开了一种从铁精矿中直接制取铁和钒钛铝合金的工业化生产方法,该方法是对从钒钛磁铁岩矿中提取的铁精矿进行制球团,然后对球团进行干燥处理、还原熔分、筛分提取块铁,最后对钒钛渣采用铝热还原法得到钛钒铝合金。本发明生产方法获得的块铁含量为95%左右,铁、钒和钛的回收率分别为90%、85%和85%。本发明的铁钒钛综合回收利用率高,生产效率高,无环境污染,易于工业化推广,社会效益和经济效益显著。
文档编号C21B11/00GK101487066SQ20091007876
公开日2009年7月22日 申请日期2009年3月3日 优先权日2009年3月3日
发明者卢惠民 申请人:北京金坤宏宇矿业科技有限公司;北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1