碳组件及制造该碳组件的方法

文档序号:3413955阅读:113来源:国知局
专利名称:碳组件及制造该碳组件的方法
技术领域
本发明涉及一种碳组件以及制造该碳组件的方法,更具体而言,涉及用于具有气体导入用孔道的CVD基座且具有陶瓷涂层的碳组件以及制造该碳组件的方法。
背景技术
在用于外延生长硅或化合物半导体晶片的CVD系统中,基座用来在其上载放晶片。该基座中通常使用导电性石墨基材,从而通过感应加热来产生热量。由于石墨显示出较低的电阻、较高的耐热性和化学稳定性,其可优选用于此类CVD系统领域。然而,由于处理速率对外延生长是重要的,因此在CVD系统内部得到充分冷却之前甚至在相对较高的温度时就对晶片进行更换,从而使基座在仍然较热时暴露于空气中。因此,如果石墨在其原样用作基材,将产生下述问题该基材与空气反应并由此变得严重劣化。在使用CVD基座来进行氮化镓等的外延生长的系统中,使用氨气作为源气体。在受热分解时,氨气生成氢气和氮气。虽然氮气可用作氮化镓膜的源气体,但氢气在高温下会与石墨反应,从而产生烃气体,例如甲烷。石墨因此会受到腐蚀。所以,为了防止空气或氢气与石墨反应,使由石墨制成的基座被覆有如SiC等陶瓷(参见例如日本特许第4071919号公报或日本特开第 2004-200436 号公报)。另外,此类CVD系统的基座被构造为能够在其上载放多个晶片。尽管某些简单的基座具有用来直接在该基座上载放多个晶片的结构,但为了提高晶片的膜厚度的均勻度, 另一种基座具有用来在整个该基座转动(旋转)之外通过用气流使晶片或晶片载体在该基座上转动来使膜均勻的结构。在这种基座中,将气体从外部导入该基座内部,并从基本上形成于晶片或晶片载体载放面中心的垂直孔道(出口喷嘴)中排出该气体,由此在该气体离开的同时在晶片或晶片载体与该基座之间的空隙中产生涡流。此时,气体涡流向晶片提供转动能,从而使晶片能够在基座上转动。为了使气体能够通过,在基座中从形成于该基座侧面的进气部分到晶片载放面(或晶片载体)中心附近形成进气孔道。进气孔道是通过下述方法在基座侧面形成的用钻头钻出一个长孔,所述长孔穿过恰好位于晶片载放面(或晶片载体)中心附近下方的位置,并钻出一个垂直孔道来建立晶片载放面(或晶片载体)中心和所述长孔的连接,并且密封所述长孔的一端。除了钻出长孔外,对用作基座的基材(称为基座基材)进行另外的形状加工。此外,在该基座基材表面上形成陶瓷涂层(例如SiC-CVD膜、TaC-CVD膜和热解碳膜),由此完成能够用于外延生长用CVD系统中的基座。

发明内容
然而,在具有长孔的碳组件中难以在孔道内深处形成陶瓷涂层。具体而言,为了在碳组件表面形成陶瓷涂层,将基座基材载入涂层形成用CVD炉。例如对于SiC涂层,在对基材进行加热之后,将硅烷类源气体和烃类源气体导入该炉。应注意的是,此时所用的CVD炉用来在石墨基材上形成陶瓷涂层,其与外延生长用CVD炉完全不同。导入该CVD炉的源气
3体在接触热基材时会分解,从而在该基材上堆积并形成陶瓷涂层。陶瓷涂层在供给源气体的基材前表面上快速形成。然而,陶瓷涂层在后表面、凹部(孔道)内深处等源气体难以到达处的形成速度较慢,使涂层通常易于变薄。此外,陶瓷涂层用源气体从一个小孔进入基座的进气孔道,由此行进至深处一侧,同时接触并在长孔的壁表面上堆积。因此,所供给的源气体的浓度在长孔深处位置变低,并且源气体几乎不能到达该深处位置,从而可能不会形成陶瓷涂层。当碳组件在包含氧化性气体和分解性气体的气氛中使用时,具有上述长孔的碳组件的外表面受到陶瓷涂层的保护。然而,未受陶瓷涂层保护的长孔内表面会发生氧化和分解,并且从长孔内表面开始出现厚度减少,这将引起随时间在整个组件上延伸的损伤。如果碳组件是具有长孔的外延生长用基座,且如果未在整个长孔上形成涂层,则该基座在更换晶片时会接触外部空气,并且当使用氢气通过气体涡流来使晶片或晶片载体转动时,长孔的内壁会发生氧化、分解和劣化。由于石墨基材是多孔材料,该材料并不会从其表面均勻地劣化,使得劣化会伴随着颗粒脱落。因此,由此脱落的颗粒会作为石墨颗粒在整个外延生长用CVD炉内部扩散,并且该颗粒会附着至晶片上。如果外延膜形成在具有颗粒的晶片上,该颗粒会引起缺陷。如果颗粒在热区中浮动,该颗粒会在空气中将作为用于沉积源气体的晶核。随后,该晶核沉积在晶片上,从而引起晶体缺陷。鉴于上述情况而做出了本发明。因此,本发明的一个方面在于提供一种碳组件,所述碳组件甚至在含有氧化性气体或分解性气体的气氛中都可以进行使用而不发生劣化,而且特别的是,通过在该碳组件的长孔内表面上形成涂层,该碳组件能够防止从该长孔内部产生颗粒。本发明的说明性实施方式提供如下。(1) 一种碳组件,所述碳组件内部具有孔道并且外表面覆盖有陶瓷涂层,所述碳组件包括接合在一起的两个碳平板部件,其中所述孔道由形成在至少一个所述碳平板部件的配合表面上的凹槽和另一所述碳平板部件的与所述凹槽相对向的配合部分限定,其中,包含所述凹槽表面的所述孔道内表面全部被覆有陶瓷涂层。根据此碳组件,所述孔道由形成在至少一个所述碳平板部件的配合表面上的凹槽和另一所述碳平板部件的与所述凹槽相对向的配合部分限定。在所述碳部件彼此分开的状态下,所述孔道的内表面完全开放。因此,在所述碳部件接合在一起的状态下,甚至在所述长孔深处的位置都会可靠地形成陶瓷涂层。所以,不会从内部开始出现原本因氧化或分解而出现的孔道厚度的减少。此外,即使在氧化性气体或分解性气体的气氛中使用该碳组件时,孔道内壁的石墨颗粒也不会脱落,而且颗粒等也不会在CVD炉内扩散。(2)在(1)所述的碳组件中,所述碳平板部件通过耐热粘合剂接合在一起。根据此碳组件,通过耐热粘合剂使各碳平板部件的配合表面接合到一起。所以,粘附部分呈夹层状从而不暴露于被覆有陶瓷涂层的碳组件的外表面或内表面。因此,粘附部分和基材难以接触氧化性气体或分解性气体,因而碳基材的厚度几乎不可能减少。(3)在(1)或( 所述的碳组件中,所述孔道内表面上的陶瓷涂层形成为在整个配合表面上延展。根据此碳组件,即使当氧化性气体或分解性气体从孔道内表面进入该配合表面时,所述气体也不会接触碳基材,从而使该碳基材能够得到保护。
(4)在(1)或( 所述的碳组件中,所述孔道内表面上的陶瓷涂层形成在配合表面的与所述孔道相邻的一部分区域中。根据此碳组件,所述陶瓷涂层并不形成在整个配合表面上,而是所述陶瓷涂层形成在配合表面的与所述孔道相邻的一部分区域中。与陶瓷涂层形成在整个配合表面上的情况相比,当陶瓷涂层形成在配合表面的部分区域中时,通过耐热粘合剂能够使多孔石墨部件接合到一起。因此能够获得较强的粘合力。此外,因为陶瓷涂层形成在配合表面的与所述孔道相邻的一部分区域中,所以石墨基材难以接触反应性气体并具有耐侵蚀性。(5)在(1) 中任一项所述的碳组件中,所述陶瓷涂层包括SiC、热解炭、BN、 TaN和TaC中的至少一种。根据此碳组件,SiC涂层、BN涂层、TaN涂层或TaC涂层在对氢气和氮气的耐侵蚀性方面优于基材的碳。因此可优选采用这些涂层。虽然热解炭是由碳制成且在耐侵蚀性方面不如陶瓷涂层,但其在耐热性方面优于陶瓷涂层。因为热解炭是致密材料,所以热解炭在耐侵蚀性方面优于石墨基材,并且特别是在高温下使用碳组件的情况中优选使用。(6)在(1) (5)中任一项所述的碳组件中,碳平板部件的基材中的杂质含量为 20ppm以下。由于碳部件基材中的杂质含量为20ppm以下,碳组件不易受到因杂质的催化作用而产生氧化或分解的影响,并能够长期使用。(7)在(1) (6)中任一项所述的碳组件中,所述碳组件是外延生长用基座。因为该碳组件不会在CVD系统中产生碳颗粒,所以能够提供具有极少缺陷或没有缺陷的晶片。(8) 一种用于制造内部具有孔道并且外表面被覆有陶瓷涂层的碳组件的方法,所述方法包括制备两个碳平板部件,各部件都具有将要接合到一起的配合表面;在至少一个所述碳平板部件中的配合表面上形成凹槽;对所述碳平板部件进行净化,从而除去所述碳平板部件上的杂质;在至少一个所述碳平板部件的凹槽上、另一所述碳平板部件的与所述凹槽相对向的配合部分上以及所述碳平板部件至少除所述配合表面以外的外表面上形成陶瓷涂层;并且在所述配合表面彼此相对向的同时使所述碳平板部件接合到一起。根据此制造碳组件的方法,所述孔道由形成在至少一个所述碳平板部件的配合表面上的凹槽和另一所述碳平板部件的与所述凹槽相对向的配合部分限定。因此,可以在碳部件彼此分开的状态下,在一个碳部件的凹槽上和另一个碳部件的与所述凹槽相对向的配合表面上可靠地形成陶瓷涂层。具体而言,因为孔道的整个内表面都开放,在所述陶瓷涂层形成中所供给的源气体的浓度不会降低。所以,甚至在长孔内部深处的位置处也会可靠地形成陶瓷涂层。根据上述碳组件以及制造所述碳组件的方法,陶瓷涂层能够在长孔上可靠地形成,因此,即使在氧化性气体或分解性气体的气氛中也可以使用所述碳组件而不发生劣化。 另外,如果将本发明的碳组件用于具有气体供给孔道和晶片转动用机构的基座,则在外延生长用CVD系统中会减少或防止碳颗粒的产生,并因此能够提供具有极少缺陷或没有缺陷的晶片。


通过结合附图对本发明的说明性实施方式进行的以下描述,本发明的上述方面和其他方面将变得更加显而易见且更容易理解。其中图IA是本发明一个说明性实施方式的碳组件的平面图,图IB是沿图IA中显示的 A-A线获得的截面图;图2A是图1所示的碳组件的变形例的平面图,图2B是沿图2A中显示的B-B线获得的截面图;图3A 图3F是示出了本发明说明性实施方式的碳组件中孔道的示例性形状以及孔道和配合表面间的示例性位置关系的示意图;图4A 图4C是示出了本发明说明性实施方式的碳组件的示例性分离的示意图;图5A是本发明一个说明性实施方式的碳组件的示意图,其中陶瓷涂层形成在整个配合表面上,图5B是本发明一个说明性实施方式的碳组件的示意图,其中陶瓷涂层仅形成在配合表面的与孔道相邻的区域上,图5C是本发明一个说明性实施方式的碳组件的示意图,其中陶瓷涂层仅形成在配合表面的与孔道相邻的区域和配合表面的与碳组件外表面相邻的区域上,图5D是本发明一个说明性实施方式的碳组件的示意图,其中未在配合表面上形成陶瓷涂层;图6A 图6D是示出了用于制造本发明一个说明性实施方式的碳组件的方法工序的过程说明图;和图7是碳组件的示意图,其中以与陶瓷涂层的涂层厚度相等的量来减少的与凹槽相邻的配合表面的厚度。
具体实施例方式现将参照附图描述本发明的说明性实施方式。图IA是本发明一个说明性实施方式的碳组件的平面图,图IB是沿图IA中显示的 A-A线获得的截面图,图2A是图1所示的碳组件的变形例的平面图,而图2B是沿图2A中显示的B-B线取得的截面图。本发明一个说明性实施方式的碳组件100可以优选用作晶片保持部件(外延生长用基座),利用高频感应、加热器等方法来对该晶片保持部件进行加热,从而保持并加热半导体晶片。碳组件100在本文中亦称为基座100。如图IA和图IB所示,基座100具有多个晶片载放面31 (此说明性实施方式中有6个晶片载放面),该晶片载放面在碟形平板部件 21的一个表面上沿周向等间隔布置。基座100从外部导入气体,并且从各晶片载放面31的大致中心处设置的两个位置排出所述气体。在排出气体的同时,沿晶片载体39 (将稍后描述)和基座100间形成的半圆形凹槽40会产生涡流。晶片载体39置于晶片载放面31上, 同时保持多个晶片W(此说明性实施方式中有3个晶片)。在此情况下,在气体涡流和基座 100的转动对晶片载体39施加转动能量下,晶片W随着晶片载体39的转动而转动。为了使气体能够通过,用于导入气体的孔道11在基座100内部形成为从未图示出的气体导入装置延伸至晶片载放面31。每个孔道11与各晶片载放面31的两个大致中心的位置处的垂直孔道41连接,并且使各孔道11的一端密封,从而形成所述孔道。如图IA和图IB所示,孔道11形成为沿径向直线延伸的孔道11。然而,如图2A和图2B所示,孔道11可形成为与经过各晶片载放面31中心部分的环状孔道42相交。形成此类孔道11和孔道42使得各孔道11和孔道42中的气流量均勻,从而能够减少转动速度的变化。图3A 图3F是示出了本发明说明性实施方式的碳组件中孔道的示例性形状以及孔道和配合表面23间的示例性位置关系的示意图。基座100内部具有孔道11且其外表面13(见图幻被覆有陶瓷涂层(将稍后描述)。平板部件21是通过接合用石墨制成的两个碳平板部件19、19而形成的。孔道11由形成在至少一个碳平板部件19的配合表面23上的凹槽25和另一碳部件19的与凹槽25 相对向的配合部分27限定。陶瓷涂层被覆了包含凹槽25表面的孔道11的整个内表面。与该孔道的轴(延伸)线正交的孔道11的截面形状可以是图3A、图;3B和图3C所示的方形、图3D所示的圆形,或图3E和图3F所示的椭圆形。孔道11与配合表面23之间的位置关系可以是以下关系中的任何一种即,如图3A、图3C、图3D和图3F所示的第一种关系,其中孔道11由配合表面23对称地分割;如图:3B所示的第二种关系,其中孔道11 (即凹槽邪)仅形成在一个配合表面23中;以及如图3E所示的第三种关系,其中孔道11在形成时相对于配合表面23向一侧偏移。如上所述,凹槽25可以形成在两个分离的组件上或仅形成在一个分离的组件上。图4A、图4B和图4C是示出了本发明说明性实施方式的碳组件的示例性分离的示意图。如图4A和图4B所示,配合表面23优选为包括孔道11中轴的平面。只要配合表面 23是包括孔道11中轴的平面,分离的组件就关于配合表面23对称,并且因此会以对称的方式来施加因加热而产生的应力,从而能够减少或防止该组件的变形。如图4C所示,配合表面23优选位于将平板部件21的厚度分成两半的位置。在此情况下,因为各碳部件能够制成足够厚,所以能够减少该碳部件的翘曲,从而能够容易地将该碳部件接合到一起。如图4A和图4B所示,配合表面23还可以位于未将平板部件21的厚度分成两半的位置。在此情况下,当在碳部件19中因应力而发生诸如翘曲等变形时,在陶瓷涂层已在石墨基材上形成之后,可以使特别是较薄的碳部件的配合表面经表面处理来成为平面,从而校正翘曲并使该碳部件能够接合。孔道11可以在两端具有开口,即入口和出口,或者仅在一端开口。孔道11的深度 (长度L)相对于该孔道11的直径⑶的优选比率(L/D)可以是20以上。当深度(L)相对于直径⑶的比率(L/D)是20以上时,CVD的源气体将难以到达孔道11的深处位置(内部深处)。然而,通过采用本发明的构造,可以在所述孔道整个内表面上均勻地形成陶瓷涂层。孔道11的内径不限于均一的直径。孔道11可具有以下的形状具有内径较小的开口和内径较大的内部空间的形状,或具有狭窄中部的葫芦形状。当孔道11具有葫芦形状时,应予考虑距所述狭窄中部的深度。距所述狭窄中部的深度(长度L)相对于该狭窄中部的直径(D)的优选比率(L/D)可以是20以上。图5A是本发明一个说明性实施方式的碳组件的示意图,其中陶瓷涂层形成在整个配合表面上,图5B是本发明一个说明性实施方式的碳组件的示意图,其中陶瓷涂层仅形成在配合表面的与孔道相邻的区域上,图5C是本发明一个说明性实施方式的碳组件的示意图,其中陶瓷涂层仅形成在配合表面的与孔道相邻的区域和配合表面的与碳组件外表面相邻的区域上,图5D是本发明一个说明性实施方式的碳组件的示意图,其中未在配合表面上形成陶瓷涂层。图5A、图5B和图5C示出了配合表面上形成的陶瓷涂层的实例。碳部件19的外表面13和孔道11表面上形成的涂层是陶瓷涂层15,其包括例如 SiC涂层、热解炭涂层、BN涂层、TaN涂层和TaC涂层中的至少一种。特别的是,SiC涂层、 BN涂层、TaN涂层和TaC涂层在对氢气和氮气的耐侵蚀性方面优于基材37的碳,因此可以优选使用这些涂层。虽然热解炭在耐侵蚀性方面不如其余类型的陶瓷涂层15,但其在耐热性方面优于所述陶瓷涂层。热解炭是致密材料,因此在耐侵蚀性方面优于石墨基材。此外, 因为热解炭是由碳制成,所以热解炭可以优选在高温情况下使用。涂层可以被构造为单层或多层。在多层的情况下,这些层可以是单一类型或多种不同类型。可以用任何方法形成在孔道11表面上形成的涂层。但是,优选的是通过CVD方法形成的涂层。因为采用CVD方法能够形成致密涂层,所以能够使基材37的碳与氧化性气体或反应性气体相阻隔。在涂层包含多层的情况下,全部层都可以是CVD涂层或仅有一层可以是CVD涂层。在所述涂层仅含一层CVD涂层的情况下,通过CVR(化学气相反应)方法反应性地转化的层可以位于所述涂层的基材一侧上。在含有CVD层和CVR层的涂层由单一元素形成的情况下,CVR层能够起到所述CVD层和基材37之间的缓冲层的作用,从而能够形成不易剥离的陶瓷涂层15。由于CVR层源于石墨的反应性转化,所以该CVR层能够与石墨基材牢固地接合。此外,石墨基材与在涂层前表面层上形成的CVR层在热膨胀系数方面基本相同,因此,能够使得该涂层很难被剥离。基座100具有与孔道11的轴平行的配合表面23。因为该基座具有与孔道11的轴平行的配合表面23,所以可以通过在碳部件的配合表面一侧上进行浅开槽并使如此开槽后的碳部件接合到一起来制造长孔。因此,与用钻头钻出孔道的情况相比,能够容易地形成长孔而不致使孔道弯曲或刀具损坏。如图5D所示,可以从配合表面中省去陶瓷涂层15。然而,如图5A、图5B和图5C 所示,甚至在配合表面23上形成陶瓷涂层也可以是理想的,因为碳基材能够受到保护而不受从外表面13进入配合表面23的反应性气体的影响。此外,如图5B和图5C所示,陶瓷涂层15优选仅形成在配合表面的与孔道相邻的区域中或者在配合表面的与基座100外表面相邻的区域中,而不是形成在整个配合表面上。由于多孔的碳基材在各配合表面上保持裸露,所以耐热粘合剂能够渗入该基材内部,从而获得强粘合力。此外,因为陶瓷涂层仅形成在各配合表面的与孔道相邻的区域中或者在配合表面的与基座100外表面相邻的区域中, 石墨基材难以接触反应性气体,从而保护石墨基材不受反应性气体影响。因此,能够减少或防止颗粒的出现。利用耐热粘合剂使碳部件19接合到一起。由于利用耐热粘合剂使各碳部件19的配合表面23接合到一起,其结果是使接合部分夹在被覆有陶瓷涂层的碳部件之间,从而不会露出在外表面或内表面上。接合部分和基材几乎不会接触氧化性气体或分解性气体,从而发生厚度减少的可能性较小。可以优选使用碳类粘合层、SiC类粘合层等用于粘合剂。在于200°C 300°C进行热处理时,能够使所述耐热粘合剂固化。通过对粘合剂进行1000°C 1500°C的热处理可除去杂质(例如有机成分)而不会使陶瓷涂层受到损伤。碳部件的基材37中的杂质含量优选为20ppm以下。当杂质含量超过20ppm时,碳基材因杂质的催化作用而变得容易氧化和分解,并且会快速消耗。在将碳部件用于基座的
8情况下,当杂质含量超过20ppm时,杂质在CVD炉中扩散,而且因损耗而脱落的颗粒也会扩散,从而在外延生长中对晶片产生不利影响。基座100不限于特定应用,但是优选用于CVD系统来制造半导体。根据本发明的一个说明性实施方式,涂层膜甚至会形成在孔道中,因此孔道内表面不会因消耗而发生厚度减少,并且在该系统中几乎不会发生颗粒飞散。基座100可以优选用于硅、化合物半导体和SiC半导体的外延生长用CVD系统。 氢气通常用作外延生长用载气,并且其会高速扩散。因此,氢气容易进入长孔内部,因而必须使基材37与氢气相阻隔。然而,根据本发明的一个说明性实施方式,孔道表面上形成有陶瓷涂层。特别的是,在化合物半导体和SiC半导体的外延生长中,碳基材变得容易发生劣化。因此,对于这些系统可以优选使用本发明说明性实施方式的基座100。所以,本发明一个说明性实施方式的碳组件优选是基座100,因为基座100直接接触晶片,此外,在该组件中提供了用于使晶片载体漂浮的供气端口。因此,晶片很可能因孔道内部的磨损而受到不利影响。可以按照以下步骤制造本发明一个说明性实施方式的基座100。图6A 图6D是示出了用于制造本发明一个说明性实施方式的碳组件的方法工序的过程说明图。(配合表面的形成)由石墨材料制造(制备)出一组碳部件19,各部件19都具有配合表面23。各分离的碳部件19可以具有夹层结构,其中碳部件具有相同的尺寸。作为替代,所述碳部件可以具有嵌合结构(fitting structure),其中一个碳部件较大,另一个较小并嵌入至较大的碳部件中。(开槽)如图6A所示,凹槽25在用作基材37的碳部件19的至少一个配合表面23中形成。 该凹槽25可以具有任何形状。当利用球头立铣刀41对各碳部件19进行加工时,通过将碳部件接合到一起能够形成圆形或椭圆形孔道11。作为替代,当使用(平头)立铣刀时,通过将碳部件接合到一起能够形成矩形孔道11。在此情况下,可以对各分离的碳部件19的两侧都进行加工,或者可以通过使用分离的碳部件19的仅一侧来生成矩形孔道11。(净化)理想的是,在本阶段前将净化气体(氯气、卤素气体、卤素类气体等)供给至图6B 所示的净化炉43内部,从而除去碳部件19中的杂质以提高其纯度。其原因在于,如果在涂布步骤(将要描述)或任何后续步骤中对碳部件进行净化,作为净化的结果将除去所生成的涂层。可以在形成配合表面23的步骤之前(即在材料阶段)进行净化,但理想的是在开槽后进行净化。当在材料阶段进行净化时,在开槽步骤中会产生碳部件因加工机器而受到污染的问题。另外,加工步骤中碳部件可能频繁地接触基材37,从而污染了基材37。(第一涂布步骤)如图6C所示,将源气体(对于SiC涂层为硅烷类气体和烃类气体,对于TaC涂层为有机钽气体和烃类气体等)供给至净化炉43中,从而在由此形成的凹槽25的内表面上形成陶瓷涂层15。当仅在凹槽25内表面上形成涂层时,对配合表面23施加掩模M。当涂布配合表面23的与凹槽25相邻的区域时,在对配合表面23施加掩模M时使配合表面23的与凹槽25相邻的区域留出空白。当在整个配合表面23上形成涂层时,不需要对配合表面23施加掩模M。在此阶段或另一阶段可以对凹槽25和碳部件除配合表面之外的区域进行涂布。当在另一阶段对凹槽25和除配合表面之外的区域进行涂布时,还可以对所述凹槽 25和除配合表面之外的区域进行遮蔽或不遮蔽。当在第一涂层过程中对凹槽25和除配合表面之外的区域进行涂布时,不对所述区域进行遮蔽。当对凹槽25以及配合表面23的与凹槽25相邻的区域或配合表面的与基座100 外表面相邻的区域进行涂布时,如图7所示,最好通过预先以与陶瓷涂层的涂层厚度A相等的量来减少配合表面23的厚度而对待涂布的配合表面23进行加工。当在配合表面的部分区域中形成涂层时,则仅有涂布后的配合表面区域会相互接触,从而会在碳基材之间形成空隙,因此降低了接合强度。(接合步骤) 如图6D所示,使如上所述生成的两个分离的碳部件19接合到了一起,从而形成基座100。可以使用任何粘结剂。举例而言,在COPNA树脂的情况下,将该树脂涂在配合表面 23上,随后配合表面23在压力下会紧密接合。将由此接合的碳部件在150°C下固化60分钟,随后在惰性气氛中于1000°C 1500°C碳化。当在1000°C以上对碳部件进行碳化时,主要包含有机成分的杂质会散开,从而能够获得高度净化的粘合层。当温度超过1500°C时,涂层膜会发生劣化或热收缩,从而发生破裂。(第二涂布步骤)为了在碳部件19接合后对配合表面23进行平整,可以再次对配合表面进行涂布。 在第二涂布步骤中,在配合表面23上形成涂层,因此能够密封配合表面23,从而保护其不受来自基座100外表面的反应性气体的侵入。因此在上述制造方法中,可以在碳部件19彼此分离时,在一个碳部件19的凹槽25 上和另一碳部件19的与凹槽25相对向的配合部分27上可靠地形成陶瓷涂层15。具体而言,由于孔道11的整个内部都开放,所供给的源气体的浓度不会降低,所以即使在长孔的深度(长度)较大时,陶瓷涂层15也会均勻且可靠地形成。另外,在基座100中,陶瓷涂层一定会在长孔内部形成。所以,碳部件甚至能够在氧化性气体或分解性气体中使用而不发生劣化。因为在CVD系统内不会产生碳颗粒,所以能够获得具有极少缺陷或没有缺陷的晶片。
权利要求
1.一种碳组件,其内部具有孔道且外表面被覆有陶瓷涂层,所述组件包括 接合在一起的两个碳平板部件,其中,所述孔道由形成在至少一个所述碳平板部件的配合表面上的凹槽和另一所述碳平板部件的与所述凹槽相对向的配合部分限定,以及其中,包含所述凹槽表面的所述孔道的内表面全部被覆有陶瓷涂层。
2.如权利要求1所述的碳组件,其中,所述碳平板部件通过耐热粘合剂接合在一起。
3.如权利要求1或2所述的碳组件,其中,所述孔道内表面上的陶瓷涂层形成为在整个配合表面上延展。
4.如权利要求1或2所述的碳组件,其中,所述孔道内表面上的陶瓷涂层形成在所述配合表面的与所述孔道相邻的一部分区域中。
5.如权利要求1或2所述的碳组件,其中,所述孔道的长度相对于所述孔道的直径的比率为20以上。
6.如权利要求1或2所述的碳组件,其中,所述陶瓷涂层包括SiC、热解炭、BN、TaN和 TaC中的至少一种。
7.如权利要求1或2所述的碳组件,其中,所述碳平板部件的基材中的杂质含量为 20ppm以下。
8.如权利要求1或2所述的碳组件,其中,所述碳组件是外延生长用基座。
9.一种用于制造内部具有孔道且外表面被覆有陶瓷涂层的碳组件的方法,所述方法包括制备两个碳平板部件,各部件具有将要接合到一起的配合表面; 在至少一个所述碳平板部件的所述配合表面上形成凹槽; 对所述碳平板部件进行净化,从而除去所述碳平板部件上的杂质; 在至少一个所述碳平板部件的凹槽上、另一所述碳平板部件的与所述凹槽相对向的配合部分上以及所述碳平板部件的至少除所述配合表面以外的外表面上形成陶瓷涂层;以及在所述配合表面彼此相对向的同时使所述碳平板部件接合到一起。
全文摘要
本发明涉及碳组件及制造该碳组件的方法,所述碳组件内部具有孔道且外表面被覆有陶瓷涂层。所述碳组件包括接合在一起的两个碳平板部件。所述孔道由形成在至少一个所述碳平板部件的配合表面上的凹槽和另一所述碳平板部件的与所述凹槽相对向的配合部分限定。包含所述凹槽表面的所述孔道的内表面全部被覆有陶瓷涂层。
文档编号C23C16/458GK102234793SQ20111010039
公开日2011年11月9日 申请日期2011年4月20日 优先权日2010年4月21日
发明者伊藤敏树, 大桥纯, 小川史仁, 石田考二, 箕浦诚司 申请人:揖斐电株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1