室温原位控制合成氧化银半导体薄膜材料的方法
【专利摘要】本发明涉及室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:将表面覆盖有单质银薄膜的基底材料放入UV-O3反应器中,保持体系的相对湿度为30~90%,在氧气或空气存在的条件下,10~40℃反应1~2小时,即可在基底表面原位制得AgxO(AgO或Ag2O)半导体薄膜材料,所述的UV-O3反应器即UV-O3清洗机。该方法反应过程不需要使用任何溶剂、表面活性剂或其它化学添加剂,操作简单,低能耗,制作成本低,具有广阔的工业应用前景。
【专利说明】室温原位控制合成氧化银半导体薄膜材料的方法
【技术领域】
[0001]本发明属于材料化学【技术领域】,尤其涉及室温原位控制合成氧化银半导体薄膜材料的方法。
【背景技术】
[0002]IB族金属银的氧化物有多种,包括Ag2O, Ag2O3, Ag3O4, AgO等,其中Ag2O的热学性质最稳定,其热分解的临界温度在200-400°C附近。它是一种具有独特光学和电学性质的P型直接带隙半导体材料;该材料的光谱吸收范围较宽,可以从紫外区延伸至红外区,是潜在的太阳能电池材料。目前,该材料在光储存、磁光储存、摄影术、探测器、电池电极等方面均有被应用的报道。而AgO是一种混合价态的化合物Ag1Ag111O2,与CuO同晶型,其热稳定性在金属银的氧化物中相对较弱,临界分解温度在160°C附近,但因其在光电开关、智能玻璃、光热转换、屏蔽等领域有潜在的应用前景,近些年来这种η型半导体材料引起了越来越多的关注。
[0003]目前,制备AgxO半导体材料的方法很多,常用的方法有溅射法、热蒸镀法、电子束蒸镀法、阳极氧化法、电沉积法,化学沉积法等。2008年,Tsutomu Shinagawa课题组在Chemistry of Materials 上发表题目为 Direct Electrodeposition of 1.46eV BandgapSilver (1) Oxide Semiconductor Films by Electrogenerated Acid 的文章,该课题组米用
0.20M的AgNO3和0.73M的氨水作为阳极的电解液,直接利用电沉积的方法成功的在FTO导电玻璃基底表面制备出Ag2O纳米薄膜材料。2010年,Douglas B.Chrisey课题组利用脉冲准分子激光技术成功制备出Ag2O半导体材料,采用KrF准激光束对含有纯度为4N的银靶和聚山梨醇80的溶液进行消融20-80分钟,所得到的沉淀物即是Ag2O半导体材料;他们还通过改变消融溶液的比例和种类(聚山梨醇20、40)得到了不同形貌的Ag2O材料。2012年,Young-Duk.Huh课题组利用沉淀的方法制备了 Ag2O半导体材料,采用不同浓度的AgNO3,批P定和NaOH合成出了不同形貌的Ag2O半导体材料。由于AgO是一种混合价态的半导体材料,合成较为复杂,有关它的合成方法报道的不多。1994年,M.Samy El_shall课题组在扩散云室采用激光蒸发和控制冷凝的方法合成了多种金属氧化物纳米粒子,其中包括AgO半导体材料。同年 Jay A.Switzer 课题组在 Journal of Electrochemical Society 上发表题目为 Electrodeposition of Silver (II) Oxide Films 的文章,以 50mM 醋酸银和 25mM 的醋酸钠为电解液,在N2保护作用下把电流密度控制在0.25mA/cm2成功的在不锈钢基底上电沉积出AgO半导体材料。虽然采用这些方法均成功制备出AgxO半导体材料,但是考虑到这些方法所要求的高温,高压,高真空,电场、气氛保护、或高能耗等苛刻条件,反应过程需要的设备复杂,而且合成出的产品基本上均为AgxO粉末,在后续器件的制备过程中需要进一步成膜等不足。
[0004]基于AgxO薄膜材料众多的优异物理性质和很好的工业应用前景,研究一种低能耗、反应迅速、生产成本低、绿色环保的制备AgxO半导体薄膜材料的方法必将具有十分重要的意义,并可很好地满足当前社会对节能减排的要求。
【发明内容】
[0005]本发明所要解决的技术问题是针对目前制备氧化银半导体材料制备过程中存在的依赖电场、高真空、高能耗、反应过程复杂以及只能生成粉末等缺点,提供一种室温原位控制合成氧化银半导体薄膜材料的方法,该方法反应过程不需要使用任何溶剂、表面活性剂或其它化学添加剂,操作简单,低能耗,制作成本低,具有广阔的工业应用前景。
[0006]为解决上述技术问题,本发明所采取的技术方案是:
[0007]室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:将表面覆盖有单质银薄膜的基底材料放入UV-O3反应器即UV-O3清洗机(紫外臭氧清洗机)中,保持体系的相对湿度为30~90%,在氧气或空气存在的条件下,10~40°C反应I~2小时,即可在基底表面原位制得AgxO (AgO或Ag2O)半导体薄膜材料。
[0008]上述方案中,所述单质银薄膜的厚度为60_100nm。
[0009]上述方案中,所述基底材料表面的单质银薄膜成膜的成膜方法为直流磁控溅射、电镀或热蒸镀。
[0010]上述方案中,所述的UV-O3反应器即UV-O3清洗机(紫外臭氧清洗机)中UV灯管发光功率为20-30mW/cm2,表面覆盖有单质银薄膜的基底材料与UV灯管的距离保持在
6.0-10.0cm0
[0011]上述方案中,所述的基底材料为不易氧化的材料,包括但不限于ITO导电玻璃或磨砂玻璃。
[0012]上述方案中,所述的UV-O3反应器即UV-O3清洗机可市购获得,其可使用Navascan Technologies,` Inc.厂家生产的 PSD-UV4 型号的 UV-O3 清洗机或 NavascanTechnologies, Inc.厂家生产的PSD-UV8型号的UV-O3清洗机,但并不限于此。
[0013]上述方案中,所述反应进行时,可将UV-O3反应器即UV-O3清洗机的进气口(进气孔)和出气口(出气孔)封住。如此以避免O3的散出对环境的危害。
[0014]上述方案中,所述反应在氧气存在条件下进行时,可由UV-O3反应器即UV-O3清洗机的进气口通入氧气,然后将UV-O3反应器即UV-O3清洗机的进气口和出气口封住进行反应。
[0015]本发明的优点:
[0016]1、室温反应,条件温和,对氧化物等导电基底无影响,反应过程可控,操作方便,反应所需时间短,能耗低,有利于低成本大规模生产制作AgxO半导体薄膜材料,具有很好的实验室大批量制备及工业规模化生产前景。
[0017]2、工艺简单,能够在基底表面直接成膜,不需要后处理,克服了高真空热蒸发反应、脉冲激光成膜、电化学成膜等制备方法的高真空、高能耗、反应和成膜过程复杂等缺点。
[0018]3、所制备薄膜宏观几何形状可控,利用掩膜版控制溅射或热蒸镀单质银薄膜的几何形状,可以实现对产物AgxO半导体薄膜宏观几何形状的控制。
[0019]4、通过控制成膜方式、单质银薄膜厚度、反应时间、温度、相对湿度以及不同基底等条件,可以很好地控制AgxO半导体薄膜材料的种类、形貌、尺寸、厚度、晶相以及优势生长
晶面等。【专利附图】
【附图说明】
[0020]图1、实施例1制备的AgO半导体光电薄膜材料的扫描电子显微照片
[0021]图2、实施例1制备的AgO半导体光电薄膜材料的XRD图谱
[0022]图3、实施例2制备的AgO半导体光电薄膜材料的扫描电子显微照片
[0023]图4、实施例2制备的AgO半导体光电薄膜材料的XRD图谱
[0024]图5、实施例3制备的AgO半导体光电薄膜材料的扫描电子显微照片
[0025]图6、实施例3制备的AgO半导体光电薄膜材料的XRD图谱
[0026]图7、实施例3制备的AgO半导体光电薄膜材料的紫外可见吸收光谱图谱
[0027]图8、实施例4制备的AgO半导体光电薄膜材料的扫描电子显微照片
[0028]图9、实施例4制备的AgO半导体光电薄膜材料的XRD图谱
[0029]图10、实施例5制备的AgO半导体光电薄膜材料的扫描电子显微照片
[0030]图11、实施例5制备的AgO半导体光电薄膜材料的XRD图谱
[0031]图12、实施例6制备的Ag2O半导体光电薄膜材料的扫描电子显微照片
[0032]图13、实施例6制备的Ag2O半导体光电薄膜材料的XRD图谱
[0033]图14、实施例6制备的Ag2O半导体光电薄膜材料的紫外可见吸收光图谱
[0034]图15、实施例7制备的Ag2O半导体光电薄膜材料的扫描电子显微照片
[0035]图16、实施例7制备的Ag2O半导体光电薄膜材料的XRD图谱
[0036]图17、实施例8制备的Ag2O半导体光电薄膜材料的扫描电子显微照片
[0037]图18、实施例8制备的Ag2O半导体光电薄膜材料的XRD图谱
[0038]图19、实施例9制备的Ag2O半导体光电薄膜材料的扫描电子显微照片
[0039]图20、实施例9制备的Ag2O半导体光电薄膜材料的XRD图谱
【具体实施方式】:
[0040]下面通过实施例进一步说明本发明的
【发明内容】
。
[0041]实施例1:
[0042]1、准备工作:将ITO导电玻璃依次用洗洁精、去离子水超声清洗20min,然后用浓氨水(质量百分数25%)/双氧水(质量百分数30%)/去离子水(体积比为1:2:5)的混合溶液80°C处理30min,最后用去离子水超声清洗20min,处理好的ITO导电玻璃在80°C条件下干燥,保存在洁净的干燥器中待用。利用直流磁控溅射方法在ITO导电玻璃基底上溅射一层厚度为60nm的单质银薄膜层,以膜厚监控(FTM)控制银层厚度,所得具有单质银薄膜层的ITO导电玻璃保存在干燥器中待用。
[0043]2、反应步骤:控制反应条件即温度保持在10°C,相对湿度保持在30%,把具有单质银薄膜层表面的ITO导电玻璃直接放入UV-O3反应器中,由进气口通入氧气,然后把UV-O3反应器的进气口和出气口封住。反应I小时后取出样品,所得产物为棕灰色薄膜。把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。所述的UV-O3反应器即UV-O3清洗机为Novascan Technologies, Inc.厂家生产的PSD-UV4型号的UV-O3清洗机(紫外臭氧清洗机),其中UV灯管发光功率为20-30mW/cm2即每平方厘米灯管的面积内所消耗的能量是20-30mW,表面覆盖有单质银薄膜的ITO导电玻璃与UV灯管的距离保持在8.0cm0图1为所得样品的SEM照片。图2为所得样品的XRD图,经XRD表征得到:本实施例所得的为AgO半导体薄膜材料,图中(200 )、( 002 )、( 111)、( -202 )、( -311)均是AgO不同晶面的衍射峰。
[0044]实施例2:
[0045]1、准备工作:采用和与实施例1相同的方法,在ITO导电玻璃基底上溅射厚度为IOOnm的单质银薄膜层。
[0046]2、反应步骤:控制反应条件即温度保持在22°C,相对湿度保持在40%,把上述表面覆盖有单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入5L氧气,然后把UV-O3反应器的进气口和出气口封住。反应SOmin后取出样品,所得产物为棕灰色薄膜。把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图3为所得样品的SEM照片。图4为所得样品的XRD图,经XRD表征得到:本实施例所得的为AgO半导体薄膜材料,图中(200 )、( 002 )、( 111)、( -202 )、(-311)均是AgO不同晶面的衍射峰,另与实施例1相比,衍射峰(200)、(111)晶面的相对强度较实施例1有所增强。[0047]实施例3:
[0048]1、准备工作:采用和实施例1相同的方法,在ITO导电玻璃基底上溅射厚度为IOOnm的单质银薄膜层。
[0049]2、反应步骤:控制反应条件即温度保持在22°C,相对湿度保持在50%,把上述表面覆盖有单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入氧气,然后把反应器的进气口和出气口封住,反应SOmin后取出样品,所得产物为棕灰色薄膜。把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图5为所得样品的SEM照片。图6为所得样品的XRD图,经XRD表征得到:本实施例所得的为AgO半导体薄膜材料,另由图可知,随着反应温度和体系相对湿度的增大,AgO的衍射峰(200)、(111)晶面的相对强度较实施例1明显增强。图7为所得样品的紫外可见吸收光谱图,由图可知,AgO纳米颗粒薄膜在可见光区和近红外光区均有吸收。
[0050]实施例4:
[0051]1、准备工作:采用和实施例1相同的方法,在ITO导电玻璃基底上溅射厚度为IOOnm的单质银薄膜层。
[0052]2、反应步骤:控制反应条件即温度保持在22°C,相对湿度保持在60%,把表面覆盖有一层IOOnm的单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,直接利用空气反应Ih后取出样品,所得产物为棕灰色薄膜。把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图8为所得样品的SEM照片。图9为所得样品的XRD图,经XRD表征得到:本实施例所得的为AgO半导体薄膜材料,图中(200 )、( 002 )、( 111)、( -202 )、(-311)均是AgO不同晶面的衍射峰。另由图可知,随着温度和体系相对湿度的增大AgO的衍射峰(200)、(111)晶面的相对强度较实施例1也明显增强。所得样品的紫外可见吸收光谱图同图7。
[0053]实施例5:
[0054]1、准备工作:将磨砂玻璃依次用洗洁精、去离子水超声清洗20min,然后用浓氨水(质量百分数25%)/双氧水(质量百分数30%)/去离子水(体积比为1:2:5)的混合溶液80°C处理30min,最后用去离子水超声清洗20min,处理好的磨砂玻璃在80°C条件下干燥,保存在洁净的干燥器中待用。利用直流磁控溅射方法在磨砂玻璃基底上溅射厚度为IOOnm的单质银薄膜层,以膜厚监控(FTM)控制银层厚度,所得具有单质银薄膜层的磨砂玻璃保存在干燥器中待用。
[0055]2、反应步骤:控制反应条件即温度保持在22°C,相对湿度保持在50-60%之间,把表面溅射有单质银薄膜层的磨砂玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入氧气,把UV-O3反应器的进气口和出气口封住。反应Ih后取出样品,所得产物为棕灰色薄膜。把所得具有氧化银薄膜的磨砂玻璃放入干燥器中保存。图10为所得样品的SEM照片。图11为所得样品的XRD图,经XRD表征得到:本实施例所得的为AgO半导体薄膜材料,图中(200)、(002)、(111)、(-202)、(-311)均是AgO不同晶面的衍射峰。
[0056]实施例6:
[0057]1、准备工作:利用直流磁控溅射方法在ITO导电玻璃基底上溅射一层厚度为60nm的单质银薄膜层。
[0058]2、反应步骤:控制反应条件即温度保持在32°C,相对湿度保持在60%,把上述表面溅射有单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入氧气,把UV-O3反应器的进气口和出气口封住。反应Ih后取出样品,所得产物为棕灰色薄膜,把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图12为所得样品的SEM照片。图13为所得样品的XRD图,经XRD表征得到:本实施例所得的为Ag2O半导体薄膜材料,图中(111)、(200)、(220)均是Ag2O不同晶面的衍射峰。图14为所得样品的紫外可见吸收光谱图,由图可知=Ag2O纳米颗粒薄膜在紫外,可见光区及近红外光区均有吸收。
[0059]实施例7:
[0060]1、准备工作:采用`同实施例1的方法,在ITO导电玻璃基底上溅射厚度为IOOnm的
单质银薄膜层。
[0061]2、反应步骤:控制反应条件即温度保持在28°C,相对湿度保持在70%,把上述表面溅射有单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入氧气,把UV-O3反应器的进气口和出气口封住。反应SOmin后取出样品,所得产物为棕灰色薄膜,把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图15为所得样品的SEM照片。图16为所得样品的XRD图,经XRD表征得到:本实施例所得的为Ag2O半导体薄膜材料,图中(111)、(200)、(220)均是Ag2O不同晶面的衍射峰,衍射峰(200)晶面的相对强度较实施例6明显增强。所得样品的紫外可见吸收光谱图同图14。
[0062]实施例8:
[0063]1、准备工作:采用同实施例1的方法,在ITO导电玻璃基底上溅射厚度为60nm的
单质银薄膜层。
[0064]2、反应步骤:控制反应条件即温度保持在25°C,相对湿度保持在90%,把溅射有单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入氧气,把UV-O3反应器的进气口和出气口封住。反应SOmin后取出样品,所得产物为棕灰色薄膜,把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图17为所得样品的SEM照片。图18为所得样品的XRD图,经XRD表征得到:本实施例所得的为Ag2O半导体薄膜材料,图中(111)、( 200 )、( 220 )均是Ag2O不同晶面的衍射峰,衍射峰(111)晶面的相对强度较实施例7明显增强,而(200)晶面的相对强度明显减弱。
[0065]实施例9:
[0066]1、准备工作:将ITO导电玻璃依次用洗洁精、去离子水超声清洗20min,然后用浓氨水(质量百分数25%)/双氧水(质量百分数30%)/去离子水(体积比为1:2:5)的混合溶液80°C处理30min,最后用去离子水超声清洗20min,处理好的ITO导电玻璃在80°C条件下干燥,保存在洁净的干燥器中待用。利用热蒸镀蒸40cm的银丝,所得具有单质银薄膜层的ITO导电玻璃保存在干燥器中待用。
[0067]2、反应步骤:控制反应条件即温度保持在35°C,相对湿度保持在70%,把上述热蒸镀有单质银薄膜层的ITO导电玻璃直接放入UV-O3反应器即UV-O3清洗机中,由UV-O3反应器即UV-O3清洗机的进气口向反应器内通入氧气,把UV-O3反应器的进气口和出气口封住。反应SOmin后取出样品,所得产物为棕灰色薄膜,把所得具有氧化银薄膜的ITO导电玻璃放入干燥器中保存。图19为所得样品的SEM照片。图20为所得样品的XRD图,经XRD表征得到:本实施例所得的为Ag2O半导体薄膜材料,图中(111)、(200)均是Ag2O不同晶面的衍射峰,衍射峰(200)晶面的相对强度较实施例7明显增强。
【权利要求】
1. 室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:将表面覆盖有单质银薄膜的基底材料放入UV-O3反应器中,保持体系的相对湿度为30~90%,在氧气或空气存在的条件下,10~40°C反应I~2小时,即可在基底表面原位制得AgxO半导体薄膜材料,所述的UV-O3反应器即UV-O3清洗机,所述的AgxO为AgO或Ag2O。
2.根据权利要求1所述的室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:所述单质银薄膜的厚度为60-100nm。
3.根据权利要求1所述的室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:所述基底材料表面的单质银薄膜成膜的成膜方法为直流磁控溅射、电镀或热蒸镀。
4.根据权利要求1所述的室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:所述的UV-O3清洗机中UV灯管发光功率为20-30mW/cm2,表面覆盖有单质银薄膜的基底材料与UV灯管的距离保持在6.0-10.0cm0
5.根据权利要求1所述的室温原位控制合成氧化银半导体薄膜材料的方法,其特征在于:所述的基底材料为不易氧化的材料,包括但不限于ITO导电玻璃或磨砂玻璃。
【文档编号】C23C14/22GK103602945SQ201310578315
【公开日】2014年2月26日 申请日期:2013年11月15日 优先权日:2013年11月15日
【发明者】郑直, 魏杰, 雷岩, 贾会敏, 王捷, 葛素香 申请人:许昌学院