冷轧高强度低合金钢的制作方法

文档序号:11528918阅读:268来源:国知局
本发明涉及一种高强度低合金钢带材、片材或坯料。本发明还涉及用于制造这种高强度低合金钢带材的方法。高强度低合金钢(hsla钢)在本领域中是众所周知的。hsla钢通常用在汽车工业中。例如在verbandderautomobilindustrie(vda)的规范中定义了hsla钢。参考2011年8月的vda239-100材料规范。根据vda,用钢种号例如cr420la表示冷轧的hsla钢,其中cr表示冷轧的,号420表示在纵向方向上的屈服强度rp0.2的下限,和la表示低合金。vda的规范给出了hsla钢的化学组成,其除了标准合金化元素碳、锰、硅、铝还含有ti和nb以提供高强度。薄的hsla钢带材、片材或坯料通常涂覆有铝涂层或锌涂层。如果使用锌涂层,通常以热浸镀锌或热浸锌镀退火涂层的形式施加所述涂层。冷轧hsla钢在较高强度水平下具有归因于它们的高强度的缺点,热轧钢带材难以以宽的尺寸冷轧到相对薄的规格(gauge)。本发明的目的是提供一种hsla钢带材,其可以以宽尺寸冷轧到相对薄的规格,并制作成具有所需强度的hsla片材和坯料。本发明的另一个目的是提供一种这样的hsla钢带材、片材或坯料,其具有所需的延伸率。本发明的另一个目的是提供生产这样的hsla钢带材的方法。根据本发明,采用涂有锌或锌合金的具有(以重量%计)以下组成的高强度低合金钢带材、片材或坯料实现了这些目的中的至少一个:c:0.03-0.07,mn:0.70-1.60,si:0.01-0.2,al:0.005-0.1,cr:≤0.1,cu:≤0.2,n:≤0.008,p:≤0.03,s:≤0.025,o:≤0.01,ti:0.02-0.07,v:0.04-0.15mo:≤0.03,nb:≤0.03,ca:≤0.05,余量为铁和不可避免的杂质,其中所述钢带材、片材或坯料具有至少420mpa的屈服强度rp0.2。本发明人已经发现,当将钛和钒用作合金化元素的组合代替从vda规范已知的ti和nb的组合时,生产了提供较低的轧机负荷的钢。ti和v的水平必须与c、mn和si的特定水平组合使用,如根据本发明所指定的那样。在本发明的范围内时,有可能达到至少420mpa的屈服强度rp0.2。优选地,根据本发明的hsla钢不包含添加的铬、铜、钼和铌。不需要这些元素来提供具有所需屈服强度的hsla钢。钒提供析出强化以及一些晶粒细化。在低于0.04重量%v的浓度下,钒碳化物析出物的体积不足以提供足够的额外析出强化以达到420mpa的强度(对于rp0.2)。在高于0.15重量%v的浓度下,在退火期间抑制了再结晶。这限制了延伸率。钛还提供析出强化以及一些晶粒细化。在大于0.07重量%ti的浓度下,在冷轧过程中加工硬化将显著升高,限制高压下率。另一方面,发明人已经发现,低于0.02重量%ti的浓度会降低钢带材、片材或坯料的总延伸率。适量的ti和v的组合似乎产生特定的显微组织从而提供高的强度和延伸率。碳对于增加固溶强化从而获得更大的强度是有用的。因此,应添加至少0.03重量%c。然而,过高的浓度会限制冷轧和降低延伸率。出于这个原因,碳的量被限制在0.07重量%。锰也用于固溶强化,并具有与c类似的效果,但具有较少的强烈度。因此,为了响应强度增加,所需的最小量为0.7重量%的mn。此外,高的添加会影响表面品质和提高成本。因此,要使用的上限为1.60重量%的mn。氮具有类似于c的效果。该元素将与al和ti优先结合以形成aln和tin析出物。在高温下已经在再加热炉中形成tin析出物,而且在热轧期间和在卷取期间也形成。它们是大的析出物(数微米),不提高强度。aln也可在高温下形成。然而,采用快速冷却和低于650℃的卷取温度,它们的析出可以部分停止,在固溶体中保持al和n的源,其在连续退火期间析出并可有助于析出强化。如果加入大量的n(>0.008wt%),延伸率变差和发生板坯开裂。硅用于固溶强化,但在高浓度(>0.2重量%硅)下它会劣化表面品质。如果浓度低于0.01重量%的si,除去si的冶炼成本变得过高。磷用于固溶强化,但高浓度会劣化钢的延展性。因此,该浓度应低于0.03重量%p。将铝用作钢中的脱氧剂,且其最小量应为0.005重量%的al以确保脱氧。在高于0.1重量%al的浓度下,由氧化铝团簇导致的表面缺陷的发生率增加。将铌保持尽可能低和甚至避免它,因为它将会显著增加加工硬化,因而限制了宽带材的冷压下率。此外,在高于0.03重量%nb的浓度下,它对再结晶温度具有大的影响,这使得有必要使用高退火温度(高于800℃)以得到合理的再结晶的hsla。cr、cu、s、o、mo和ca都应该是低的。例如,如本领域中已知的,高的s水平会劣化钢的延展性。根据一个优选的实施方案,可以以有限的量存在一种或多种合金化元素,如下:c:0.04-0.06和/或mn:0.80-1.40和优选mn:0.80-1.30和/或si:0.01-0.1和优选si0.01-0.05和/或al:0.015-0.055和/或cr:≤0.05和/或cu:≤0.05和/或n:0.002-0.008和/或o:≤0.005和/或ti:0.02-0.06和/或v:0.05-0.15和/或mo:≤0.01,优选0<mo≤0.01和/或nb:≤0.02,优选nb:≤0.01和/或ca:≤0.01。本发明的一个目的是在给定强度水平下使延伸率最大化,另一个目的是在给定强度水平下对于给定规格尽可能宽地轧制。缩窄碳范围对于给定强度水平提供了最佳的延伸率。增加最小c水平增大了材料的屈服应力。减少上限c水平使冷轧负荷最小化,且在该较高强度水平下达到了最大宽度和延伸率的最佳组合。锰有助于再结晶,以及提供固溶强化。通过增加mn的最低水平,实现了强度和延展性的更好组合。太多的mn对于表面状态是坏的并提高了mns发纹的机会,其可有害于延展性。因此,降低锰的最高水平也具有好处。降低的硅水平对表面品质有益。缩窄铝范围改善了脱氧和限制了表面缺陷的风险。钛延缓再结晶。对于给定的强度水平,使最大ti水平最小化可以有助于优化延伸率。钒延缓再结晶。对于给定的强度水平,使最大v水平最小化可以有助于优化延伸率。在冷轧和退火产品的给定强度水平下,使铌水平最小化进一步有助于能够更宽。使剩余的元素最小化进一步有助于改善在给定的强度水平下的延伸率。优选地,该钢带材、片材或坯料在纵向方向具有至少460mpa的屈服强度rp0.2,更优选至多580mpa的屈服强度rp0.2。按照vda规范,汽车工业优选使用具有这样的屈服强度的hsla钢。根据一个优选的实施方案,钢带材、片材或坯料在纵向方向具有至少15%的延伸率a80mm。这是根据vda规范cr460la钢种应具备的延伸率。优选地,该钢带材、片材或坯料在纵向方向具有至少480mpa的拉伸强度rm,更优选至少520mpa的拉伸强度rm,更优选至多680mpa的拉伸强度rm。按照vda规范,这些拉伸强度对于汽车工业是优选的。根据一个优选的实施方案,锌或锌合金涂层是热浸镀锌或热浸镀锌退火的涂层。这些是在汽车工业中通常使用的锌涂层。根据另一个优选的实施方案,锌合金涂层包含0.5至4重量%的al和0.5-3.2重量%的mg,余量为锌和痕量的其他元素。该涂层优选在每侧具有5-15μm的厚度,更优选每侧6-13μm的厚度。这是所谓的almgzn涂层,其提供比通常的锌涂层改进的防腐蚀保护。其他可以存在的元素是pb或sb、ti、ca、mn、sn、la、ce、cr、ni、zr或bi。通常添加pb、sn、bi和sb以形成锌花。这些元素可以每者少于0.5重量%,通常小于0.2重量%,经常总共小于0.2重量%的少量存在。根据本发明的第二个方面,提供了一种用于制造高强度低合金钢带材的方法,包括以下步骤:生产具有根据本发明的第一方面的组成的熔融钢,在铸造装置铸造熔融钢,以至少880℃的最终温度将铸件热轧成带材,在500℃和650℃之间的卷取温度下卷取热轧的钢带材,以50-75%的总压下率冷轧钢带材,在750℃和820℃之间的退火温度下连续退火该带材。由于根据本发明的第二方面的方法的带材的卷取温度,压下率和退火温度,可提供根据本发明的第一方面的组成的hsla带材,其具有至少420mpa的屈服强度rp0.2。卷取温度影响ⅴ(且主要是vc)的析出。在550℃下存在少量的vc,其有助于冷轧(较少的加工硬化)。在较高的卷取温度下,vc析出物的量将会增加,增加了加工硬化,因而使冷轧更加困难,这最终将待冷轧的带材宽度限制到定义的冷压下率。高于650℃时,vc析出物会开始粗化,然后在冷轧退火端部材料中的析出强化的益处将会降低。在低于500℃的卷取温度下,在热轧板卷材中有贝氏体形成的机会。贝氏体会增加冷轧负荷。优先避免贝氏体,因此不推荐低于500℃的温度。关于冷压下率,原则上这不是一个限制因素,只要具有冷轧高达90%的强大轧机。而且,冷压下率越高,钢种的再结晶就会越容易。高的冷压下率将允许使用低的退火温度。因此,在冷压下率和退火温度之间存在二元性。如上所述,较高的冷压下率将允许较低的退火温度。退火温度的上限由vc析出物的粗化/溶解所支配。该上限应低于vc析出物的溶解度温度至少20℃。vc析出物的溶解度取决于v(和c)的浓度。在计数器部分,vc析出物的体积会影响钢的再结晶;在vc体积越大,再结晶温度越高。对钢组成中的v浓度的各种变化,应在冷轧压下率和c、mn、n和ti的浓度之间找到平衡,以限定退火温度。优选地,用锌或锌合金涂层热浸涂覆退火的带材。一般地,连续退火直接继之以用锌或锌合金热浸涂覆。根据一个优选实施方案,以0.1-3.0%,优选0.2-2.0%的压下率在平整机中冷轧该涂覆的带材。平整轧制对带材提供了改善的表面品质。在较高的平整轧制水平下,见到增加的屈服强度以及屈服点延伸率(吕德斯线)的去除。优选地,在至少1400毫米,优选至少1600毫米带材,更优选至少1800毫米的宽度下,以0.7-2.0毫米的规格冷轧该带材。这是可能的,因为具有ti和v的hsla与具有ti和nb或具有nb和v的hsla相比具有改进的延展性.根据一个优选的实施方案,热轧带材的卷取温度为550℃-600℃和/或整体的冷轧压下率是60-70%和/或退火温度为760℃-800℃。在所需的步骤中使用这些有限范围中的一个或多个提供了冷轧和镀锌后的优化性能,从而达到优化的延展性。这使得更容易冷轧到所需的规格和宽度。优选地,在该方法中使用的钢具有如由根据本发明的第一方面的组成的优选实施方案所提供的组成。根据一个优选的实施方案,生产的钢带材具有至少420mpa的屈服强度rp0.2,优选至少460mpa的屈服强度rp0.2,更优选至多580mpa的屈服强度rp0.2。优选地,所生产的钢带材具有至少15%的延伸率a80mm。本发明将参照下列实施例进行阐述。已生产一些带材作为完整的生产材料。用数字1、2、3和4表示这些带材的样品。对于每个样品,测试变体a和b,其中每次变体a和b具有相同的组成,参见表1,但对于所述变体a和b使用不同的卷取温度和不同的平整轧制压下率。在表2中给出了关于卷取温度和平整轧制压下率,连同冷压下率和退火温度的信息。表1:以重量%计的组成样品cmnpssialtivnbmon1a0.0450.9150.0120.0040.0220.0270.0470.06100.0030.00391b0.0450.9150.0120.0040.0220.0270.0470.06100.0030.00392a0.0451.2960.010.0040.0250.0310.0480.0820.0010.0030.00472b0.0451.2960.010.0040.0250.0310.0480.0820.0010.0030.00473a0.0450.9150.0120.0040.0220.0270.0470.06100.0030.00393b0.0450.9150.0120.0040.0220.0270.0470.06100.0030.00394a0.0451.2960.010.0040.0250.0310.0480.0820.0010.0030.00474b0.0451.2960.010.0040.0250.0310.0480.0820.0010.0030.0047表2显示了对于根据本发明的组成,对于60%的冷压下率,可达到至少420mpa的屈服强度rp0.2,并且对于组成、卷取温度和退火温度的正确选择,甚至可达到至少460mpa的屈服强度rp0.2,参看样品2、3和4。这些样品的平整轧制压下率一直为至多1%。表2还示出了对于所测试的样品,延伸率a80mm通常为至少15%。仅对于具有最高屈服强度rp0.2的样品4a,延伸率a80mm略低于15%。这里应提到的是,对于样品1a-2b,已在带材的轧制方向上测量了延伸率a80mm,但对于样品3a-4b已在带的横向方向上测量了延伸率。这说明在一定程度上为什么延伸率a80mm对于样品3a-4b较低,虽然较高的屈服强度rp0.2通常意味着较低的延伸率a80mm。表2:加工数值和所得强度和延伸率表3示出了来自如用于样品1a和1b的生产材料的实验室样品5和6,其中已用接近根据本发明提供的极限或超出根据本发明提供的范围的退火温度加工样品5和6。样品5表明,对于过高的退火温度,rp0.2将会过低。样品6表明,当退火温度相当低时,延伸率a80mm比期望的低。样品5和6由此表明,退火温度对于达到所需的性能相当重要。表3:加工值数和所得强度和延伸率样品卷取温度冷压下率退火温度平整轧制rp0.2rma80(℃)(%)(℃)(%)(mpa)(mpa)(%)555060830040245024.4655060760062752712.2作为比较,已测试了包含比根据本发明所需更多ti但(几乎)无v的实验室样品。在表4中示出组成。没有测量p和s的量,但是没有添加这些元素,并且它们因此落入本发明规定的范围内。表4:比较例在表5中给出了加工条件。虽然所选择的退火温度高于根据本发明的上限,但该比较例中显示了非常低的屈服强度rp0.2,表明使用ti而无v不会导致所需的屈服强度。表5:用于比较例的加工数值和所得强度和延伸率还已生产了更多的带材作为完整的生产材料。这些带材的样品用数字1表示,当它们具有与上述样品1相同的组成时。其他的实施例用样品7至14表示。对样品1,测试了变体c、d和e,其中每次变体具有相同的组成,参见表6,但对于其变体使用不同的卷取温度和不同的平整轧制压下率。对于样品7、8、9和10,测试了变体a和b,其中每次变体a和b具有相同的组成,但在大多数情况下,使用不同的卷取温度,退火温度或平整轧制压下率。对于样品11-14,每次只测试一个变体。在表7中给出了关于卷取温度和回火轧制压下率,连同冷压下率和退火温度的信息。表6:以重量%计的组成样品cmnpssialtivnbmon1c0.9150.0120.0040.0220.0270.0470.06100.0030.00391d0.0450.9150.0120.0040.0220.0270.0470.06100.0030.00391e0.0450.9150.0120.0040.0220.0270.0470.06100.0030.00397a0.0620.8920.0130.0030.0280.0320.0490.1050.0010.0060.00297b0.0620.8920.0130.0030.0280.0320.0490.1050.0010.0060.00298a0.050.880.010.0030.020.0340.0510.1030.0010.0060.00388b0.050.880.010.0030.020.0340.0510.1030.0010.0060.00389a0.0570.8910.0140.0030.030.0370.0450.0630.0010.0050.00459b0.0570.8910.0140.0030.030.0370.0450.0630.0010.0050.004510a0.0470.9090.0150.0030.0210.0360.0530.0620.0010.0040.004110b0.0470.9090.0150.0030.0210.0360.0530.0620.0010.0040.0041110.0570.8910.0140.0030.030.0370.0450.0630.0010.0050.0045120.0470.9090.0150.0030.0210.0360.0530.0620.0010.0040.0041130.0620.8920.0130.0030.0280.0320.0490.1050.0010.0060.0029140.050.880.010.0030.020.0340.0510.1030.0010.0060.0038表7:加工数值和所得强度和延伸率样品卷取温度冷压下率退火温度平整轧制rp0.2rma80(℃)(%)(℃)(%)(mpa)(mpa)(%)1c60060780146555617.51d550607800.546054725.01e600607800.246354228.57a54065790146657216.27b54065790147057720.38a560657901.446356518.98b530657801.448449616.49a543657831458561209b53965790143253920.710a53065770144154720.110b56065783145556120.51154365783151459615.31253065770152958717.2135406579015526101414560657901.452859713.8表7还示出了对于根据本发明的组合物,对于60或65%的冷压下率可达到至少420mpa的屈服强度rp0.2,并且对于组成、卷取温度和退火温度的正确选择,甚至可达到至少460mpa的屈服强度rp0.2,参看样品1c、1d、1e和样品7a、7b、8a、8b、11、12、13和14。对大多数这些样品,平整轧制压下率为至多1%;仅对样品8a,8b和14,平整轧制压下率1.4%。表7还示出了对于测试的样品,延伸率a80mm通常是至少15%。只对具有非常高的屈服强度rp0.2的样品13和14,延伸率a80mm略低于15%。这里应该提到的是,对于样品1c-1e和7a-10b,已在带材的轧制方向上测量了延伸率a80mm,但对于样品11-14,已在带材的横向方向上测量了延伸率。这在一定程度上说明了为什么延伸率a80mm对于样品11-14较低,虽然较高的屈服强度rp0.2通常意味着较低的延伸率a80mm。在表1、4和6的组合物中没有添加钼。在这些表中提到的钼的量是作为残余元素存在的钼的量,因而作为不可避免的杂质。在1、4和6中未提及铬和铜,且也没有向钢添加这些元素,但是这些元素也作为残余元素存在,因此作为不可避免的杂质。从上面的钢组合物的讨论中可以清楚,可以向钢添加mo、cr和/或cu。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1