原位金属基体复合材料的分层构造的制作方法

文档序号:15204647发布日期:2018-08-21 07:18阅读:163来源:国知局

本申请要求于2015年11月2日提交的美国临时申请序列号62/249,642的权益。

本发明涉及合金和金属基体复合材料以及以分层方式制备独立的金属基体复合材料的方法。



背景技术:

铁类合金在许多应用中用作涂层,例如钻杆加硬带、矿用卡车床内衬和锅炉管道,其中涂层对相对不耐磨的零件提供磨损和磨蚀耐受性。这些耐磨涂层可以是金属或金属基体复合材料,且可以通过各种技术如hvof或双丝电弧热喷涂、ptaw或gmaw堆焊而施加于基材。

耐磨损铁类涂层通常具有相对低的成本和相对高的表面硬度,这使材料具有耐磨性并保护下面的基材。用作耐磨损涂层的材料被设计成粘附于基材并提供所需的表面性能,因此就非表面性质如强度和韧性而言很大程度上取决于基材。用于耐磨损性的铁类金属涂层的实例包括碳化铬、复合碳化物、碳化钛、碳化钒和工具钢。当涂层的厚度增加超过临界厚度时,它们通常因涂层材料的低韧性和基材对基材/涂层材料体系的韧性的降低作用而开裂。这种开裂严重限制了涂层材料在逐层构造独立部件方面的能力。

在本文中可以将分层构造理解为其中将材料层逐层地堆积(builtup)或铺设以制造独立零件而非涂层的工艺。通常将分层构造称为增材制造或3d打印。分层构造的实例包括采用激光器(pbf-l)或电子束(pbf-e)能量源的粉末床熔融、定向能量沉积(ded)、粘合剂喷射(bj)、片材层压、材料挤出、材料喷射和容器光聚合(vatphotopolymerization)。与金属一起使用的主要分层构造工艺包括pbf-l、pbf-e、ded和bj。

分层构造工艺具有从各种延性金属(包括不锈钢合金、铝合金、钛合金、镍基合金和钴铬合金)构建独立的整体零件而非涂层的优异能力。在用于金属的液相分层构造工艺如pbf-l、pbf-e和ded中,构造材料从固相转变为液相(熔化),然后变回固相(凝固)。用于熔化的能量源可以聚焦到要熔化的材料表面的相对小的区域,并且因此可以将熔化中的材料的体积控制到相对小的体积。与大固体体积接触的小熔融体积具有以相对快速的方式凝固的能力。与锻造金属的性能相比,这种快速凝固造成晶粒尺寸的细化、过饱和以及机械性能的匹配或增加。

尽管以这种方式构造的零件的机械性能通常等于或高于锻造工艺,但是上述材料都不具有相对高的耐磨损性和韧性的组合,并且具有最高耐磨损性的那些通常需要侵蚀性热处理工艺例如淬火和回火,或固溶和时效,以生产相对高的耐磨损性。这种侵蚀性热处理通常导致增大的产量损失和零件变形,这是不希望的。

对于许多应用来说,期望零件中的高耐磨损性和韧性以增加使用中的零件(例如泵、阀、模具、轴承、过滤器和筛网)的耐久性(寿命)。本发明现在确定了合金和相应的制造工序,其提供了通过逐层堆积制备的层状金属性材料,该材料提供相对高的耐磨损性和韧性的独特组合。此外,本文的性能不需要淬火和/或回火,而是需要不依赖于加热和冷却速率的、低畸变的热处理。



技术实现要素:

将逐层构造应用于合金以生产具有相对高耐磨损性和韧性的独立材料。该合金包含至少50.0重量%的fe连同b、cr、si和ni以及任选的c和mn。以逐层方式与合金构造的部件具有初始水平的硼化物相。逐层结构允许形成可用于诸如泵、泵部件、阀、模具、轴承、切割工具、过滤器或筛网等应用的金属性部件。

该方法可以更具体地包括金属性部件的逐层构造,包括:提供颗粒形式的合金,其包含以下元素:至少50.0重量%fe、以及b、cr、si和ni与任选的c和/或mn,并提供基材。然后,可以通过将合金熔化成熔融状态并冷却和形成凝固层来将一个或多个合金层施加于基材上,其中每个固体层具有5.0至200.0微米形成状态的厚度。随后热处理合金并任选地除去基材以形成独立金属性部件,其中一个或多个固体层显示出由astmg65-04(2010)工序a测量的小于或等于175mm3的耐磨蚀性。此外,冷却后的凝固层包括限定初级枝晶奥氏体相的经鉴定(identified)元素和具有小于0.1微米的层片宽度的初始水平的相对小的枝晶间层片硼化物相,并且在加热时,枝晶间层片硼化物相固结并生长,包括通过元素从初级相扩散到相对小(直径范围从约0.2微米到5微米)的球化(球状形状)的硼化物相。

本公开还涉及层形式的合金,其包含以下元素:50.0-76.0重量%fe,0.5至3.0重量%b,15.0-22.0重量%cr,2.0至5.0重量%si和5.0至15.0重量%ni,任选地含有0.3至3.0重量%mn和至多0.5重量%水平的c。该合金初始包括初级枝晶奥氏体相和具有小于0.1微米的层片间宽度的相对小枝晶间层片硼化物相。然后,该合金进一步包括由初始存在于该层中的相对小的硼化物相生长的次生球化硼化物相,其直径范围为约0.2微米至5微米,其中合金因而显示出由astmg65-04(2010)工序a测量的小于或等于175mm3的耐磨蚀性。

附图的简要说明

结合附图,参考本文实施方案的以下描述,本公开的上述和其他特征以及获得它们的方式将变得更加明白和更好理解,其中:

图1是铁类合金a5粉末颗粒的sem横截面显微照片。

图2是铁类合金a6粉末颗粒的sem横截面显微照片。

图3是在构建条件下的经由pbf-l加工的铁类合金a5的sem显微照片。

图4是在构建条件下的经由pbf-l加工的铁类合金a6的sem显微照片。

图5由在构建条件下的经由pbf-l加工的合金a5的sem图像和eds谱组成。

图6由在构建条件下的经由pbf-l生产的合金a5的sem图像和eds元素图组成,其显示了包含在各相中的主要元素fe、ni、si、b、cr、o和mn。

图7由在构建条件下的经由pbf-l生产的合金a6的sem图像和eds元素图组成,显示了包含在各种相中的主要元素fe、ni、si、b、cr、o和mn。

图8是经由pbf-l加工然后在1100℃热处理8小时的铁类合金a5的sem显微照片。

图9是经由pbf-l加工然后在1100℃热处理8小时的铁类合金a6的sem显微照片。

图10由经由pbf-l加工然后在1100℃热处理8小时的合金a5的sem图像和eds谱组成。

图11由经由pbf-l加工然后在1100℃热处理8小时的合金a6的sem图像和eds谱组成。

图12由经由pbf-l然后在1100℃下热处理8小时生产的合金a5的sem图像和eds元素图组成,其显示了包含在各相中的主要元素fe、ni、si、b、cr、o和mn。

图13由经由pbf-l然后在1100℃下热处理8小时生产的合金a6的sem图像和eds元素图组成,其显示了包含在各相中的主要元素fe、ni、si、b、cr、o和mn。

图14显示了在(a)构建的,(b)在1100℃热处理3小时和(c)在1100℃热处理8小时的条件下的经由pbf-l加工的合金a6的显微照片。

详细说明

本发明涉及一种构造独立且相对耐磨损和延性和/或韧性的铁基金属性材料的方法,从而通过在初始基材上逐层堆积连续的金属层来提供构建的金属性结构。逐层构建是指这样的一般工序:熔化金属合金并冷却和凝固以形成材料层,该材料层变成用于随后施加额外的熔融合金层的下方固体层,然后再次冷却。基材可能包括或可能不包括在由逐层工序形成的构建结构中。因此,在本文提及的独立的金属性材料应理解为这样的情况,其中在基材上采用逐层堆积以形成给定的构建(built)结构,该结构可以在各种应用中用作金属性部件零件。

用于引发逐层堆积的合适基材可以包括奥氏体钢、铁素体钢和马氏体钢,并且可以具有3mm-100mm范围内的厚度。如上所述,通常不包括基材作为最终结构的一部分,并且在构建该结构之后,可以经由各种技术包括放电机加工(edm)和机械锯切来分离基材和该结构。

这里的逐层工序考虑了各自具有在3.0微米至200.0微米范围内的厚度的单个层的堆积。然后逐层工序可以提供总厚度在3微米到大于50.0毫米,并且更典型大于250.0毫米范围内的堆积。因此,堆积层的合适厚度范围为3.0微米以上。然而,更常见的是,该厚度范围为从3.0微米到250.0毫米。

在本文所用的分层结构中,优选地,在材料表面上方扫描能量源(典型为激光或电子束),从而导致由能量源照射的局部区域的材料层的至少部分熔化。如果需要,可以调整能量源以熔化下方材料的一定深度。例如,可以调节能量源从而以至多250微米的范围内的深度熔化。熔融材料与下方材料冶金结合并随着能量源移开而迅速凝固。向凝固的材料添加额外的材料,然后用能量源照射以引起熔化和凝固。随着重复该过程,构造中的部件的厚度增加。

优选地,以颗粒形式提供用于本文的逐层构造的合金,这意味着存在的颗粒具有1.0微米至200.0微米,更优选15.0微米至70.0微米,并且最优选20.0微米至45.0微米范围内的直径。

这里的合金优选由合金a5和a6生产。合金a5具有以下组成:55.5至71.5重量%fe;0.5至3.0重量%b;15.0至20.0重量%cr;2.0至5.0重量%si;0.0至0.5重量%c;11.0至15.0重量%ni。合金a6具有以下组成:55.5至75.2重量%fe;0.5至3.0重量%b;17.0至22.0重量%cr;0.3至3.0重量%mn;2.0至5.0重量%si;0.0至0.5重量%c;和5.0至10.0重量%ni。合金a7具有以下组成:54.5至69.5重量%fe;0.5至3.0重量%b;16.5-20.5重量%cr;1.0-2.5重量%mn;2.0至5.0重量%si;0.0至0.5重量%c;和10.5至14.0重量%ni。

因此可以理解,本文的合金含有至少50.0重量%fe、以及b、cr、si和ni,其中c和mn是任选的。优选地,fe以50.0至76.0重量%的水平存在,b以0.5至3.0重量%存在,cr以15.0-22.0重量%存在,si以2.0至5.0重量%存在且ni以5.0至15.0重量%存在。c和mn都是任选的,其中c可以以0.0至0.5重量%存在,且如果存在的话mn以0.3-3.0重量%的水平存在。

本文的铁基合金是这样的,当在升高的温度下形成液相并允许快速冷却和凝固时,该结构包含过饱和的固溶体奥氏体枝晶,该固溶体奥氏体枝晶优选在枝晶间区域中含有初始水平的分布的次生硼化物相,其是原位形成(即在冷却过程中)的。冷却速率可以在103至108k/秒的范围内。更优选地,冷却速率可以在104至107k/秒的范围内,甚至更优选在104至105k/秒的范围内。

图1和图2分别示出了示例性铁类合金a5和a6中的粉末显微组织的sem图像。纳米尺度的枝晶间层片暗色相是被初级钢奥氏体枝晶基体相包围的初始次生m2b硼化物相,其中m代表fe和cr的混合物。

值得注意的是,上述铁类合金初始具有相对低的耐磨损性,其中合金a5、a6和a7分别在astmg65-04(2010)工序a耐磨蚀性测试中测试时测得466mm3,391mm3和412mm3的体积损失。如本文所讨论的,在逐层工序中触发次生硼化物相的生长时,现在意外地提供了显著改善的耐磨损性能。

图3和4分别显示了经由pbf-l加工后的铁类合金a5和a6的代表性sem显微照片。暗色的次生枝晶间m2b硼化物相与在相同合金的快速凝固的粉末颗粒中所见的大小和形态大致相同。相尺寸可以通过具有能谱学(eds)的扫描电子显微镜(sem)和/或光学显微镜来确定。

图5显示了从sem图像上定义为谱1(暗色相)和谱2(浅色相)的两个不同位置取得的pbf-l加工的合金a5的sem图像和eds谱。谱1处的eds谱显示在硼峰处的拐点,表明在暗色相中存在硼。对于谱2,eds谱中不存在硼“拐点”,表明在浅色相中具有较少的硼。

图6和图7各自分别显示了(a)经由pbf-l生产的合金a5和a6的sem图像和元素图,其显示了包含在各相中的主要元素(b)铁、(c)镍、(d)硅、(e)硼、(f)铬、(g)氧和(h)mn的相对百分数。在具有4kev加速电压,14μa探针电流和240s活动时间的jeoljsm-7001ffieldemissionsem和oxfordincaeds系统中用能谱法产生元素图。元素图定性地以像素亮度描绘了每个相中存在的元素的较高百分比,其中数字图中给定像素的灰度值对应于进入x射线检测器以显示元素分布的x射线的数量。元素分布图显示了元素的均匀分布,具有低的相偏析或没有相偏析,表明元素在快速凝固的逐层构造部件的晶格结构中过饱和或者太小而不能用eds分辨。过饱和结构是亚稳态结构,其中金属性晶格结构内的元素原子超过晶格在正常平衡条件下可保持的量。

过饱和结构可处于高应力状态,因此韧性有限。在逐层构造过程中产生的分布的相对硬次生硼化物相的精细尺度(<1微米)被设想为允许在具有低或高韧性的材料中的组分的无裂纹构造,这归因于这些相所影响的相对小的区域。由于大面积的材料性能的不匹配,构造期间产生的大的次生相可导致次生相周围的高应力集中。当包围次生相的材料具有有限的韧性时,来自次生相的高应力在构造期间或之后可导致零件开裂。因此,设想通过在逐层构造工艺中保持相对小的枝晶间次生硼化物相和快速冷却而在本发明的铁类合金中避免裂纹。

对于在金属基体复合材料中提供相对高的耐磨蚀性和韧性方面,相对小的次生硼化物相对低效。逐层构造的金属基体复合结构可优选通过单级高温、不依赖于加热和冷却速率的热处理转化成相对高的耐磨蚀和韧性的结构。在所述热处理过程中,相对硬的次生硼化物相固结并通过扩散生长。构成次生硼化物相的一些元素从过饱和的初级相扩散,消耗了所述元素的初级相。所述元素从初级相的消耗产生了更稀薄、更延性和更韧性的初级相,从而形成更延性和更韧性的复合材料。

优选地,关于本文的层形式的合金,上述热处理因此可以生长并且形成优选包含fe-cr-b的富集硼化物相,其促进层状结构的降低的耐磨损性以及有助于延性的另一fe-ni-si的富集相。

触发上述双相生长的热处理可优选在800-1200℃的温度范围内持续30-1000分钟的时间,其中时间是整个零件体积处于限定的热处理温度的时间量。热处理可以在空气中进行,但是为了减少表面氧化,炉气氛可以是真空、惰性气体(例如氩、氦和氮)、还原气体(例如氢)或惰性气体和还原气体的混合物。

图8和图9分别显示了在1100℃下热处理8小时后的经由pbf-l生产的合金a5和a6的sem图像。暗色的次生硼化物相已经明显地转变成球化结构并从初始的形状和尺寸生长,如图3和4所示。

图10和11分别显示了在1100℃下热处理8小时后,pbf-l加工的合金a5和a6的sem显微照片和eds谱。图10和11在谱1的暗色相中显示了非常明确的硼峰,而在谱2的浅色相中没有硼峰。

图12和13显示了(a)分别在1100℃热处理8小时的pbf-l加工的合金a5和a6的sem以及对于在可适用情况下包含在各相中的主要元素(b)铁、(c)镍、(d)硅、(e)硼、(f)铬、(g)氧和(h)mn的元素图。在具有4kev加速电压、14μa探针电流和240s的活动时间的jeoljsm-7001ffieldemissionsem和oxfordincaeds系统中用能谱法产生元素图。该图显示次生相主要富含硼、铬和氧,并且初级基体相富含fe、ni、si和mn。将图6和图7中的预热处理合金的元素图与图12和13中的热处理后的合金的图比较,看出构成次生硼化物相的元素从基体相中消耗并已富集次生相。

图14显示了在(a)构建状态的,(b)在1100℃热处理3小时和(c)在1100℃热处理8小时的条件下的经由pbf-l加工的合金a6的显微照片。硼化物相在高温下随着时间的增加而明显增长,表明生长是通过扩散进行的。

表1示出了在构建和热处理(1100℃持续8小时)条件下的pbf-l加工的合金a5、a6和a7的拉伸伸长率、冲击韧性和耐磨蚀损性数值。拉伸伸长率和冲击韧性是材料韧性的量度。根据astme8-13a测量拉伸样品,根据astme23-12c(2012)测量无缺口冲击韧性,并且通过astmg65-04(2010)工序a测量耐磨损性(体积损失)。可以看出热处理增加了拉伸伸长率、冲击韧性和耐磨蚀性。热处理该逐层构造的材料已经使合金a5的耐磨蚀性提高到2.8倍,使合金a6的耐磨蚀性提高到3.6倍,使合金a7的耐磨蚀性提高到2.6倍,并且使合金a5的延伸率提高到2.7倍,合金a6提高到34.5倍,合金a7提高到14.7倍。

表1:热处理对本发明的pbf-l逐层构造合金的冲击韧性和耐磨损性的影响

表2示出了本发明合金的示例性实施例和pbf-l中使用的常规合金的pbf-l热处理的合金的拉伸伸长率、冲击韧性和耐磨损性的比较。根据astme8-13a测量拉伸伸长率,根据astme23-12c(2012)测量冲击韧度,并且根据astmg65-04(2010)工序a测量耐磨蚀性。在测量中使用无缺口冲击韧性样品,除非另有说明。

表2:本发明的pbf-l逐层构造合金与传统合金的冲击韧性和耐磨损性能

*夏比v型缺口样品

尽管已经描述了本公开的优选实施方案,但应该理解,在不脱离本公开的精神和所附权利要求的范围的情况下,可以在本文中进行各种改变、调整和修改。因此,本公开的范围不应参考以上描述来确定,而是应该参考所附权利要求连同其全部等同物的范围来确定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1