金属部件、金属部件的制造方法、金属树脂接合体以及金属树脂接合体的制造方法与流程

文档序号:21278507发布日期:2020-06-26 23:26阅读:262来源:国知局
金属部件、金属部件的制造方法、金属树脂接合体以及金属树脂接合体的制造方法与流程

本发明涉及金属部件、金属部件的制造方法、金属树脂接合体以及金属树脂接合体的制造方法。



背景技术:

例如,在专利文献1以及专利文献2中提出有:将由金属构成的金属基材与由合成树脂构成的合成树脂基材接合而成的金属树脂接合体。

在下述专利文献1中,提出了如下方案:使含有细微气泡的液态氧化剂与金属基材的表面接触,在金属基材的表面形成与合成树脂基材氢键结合、苯酚键结合或者酯键结合的反应基团,从而提高金属基材与合成树脂基材之间的接合强度。

在下述专利文献2中,提出了如下方案:在金属基材的表面形成含有氧的含氧被膜,并将合成树脂基材接合在该含氧被膜上,从而提高金属基材与合成树脂基材之间的接合强度。

现有技术文献

专利文献

专利文献1:日本特开2014-60138号

专利文献2:国际公开2014/157289号



技术实现要素:

虽然在专利文献1以及专利文献2中提出的反应基团、含氧被膜在金属基材的表面作为对与合成树脂基材之间的接合起辅助作用的膜来发挥功能,虽然能够提高金属基材与合成树脂基材之间的接合强度,但对于接合强度的提高的需求高,故而希望进一步提高该接合强度。

此外,在上述专利文献2中,示出了最大能得到40mpa的接合强度。然而,在专利文献2中,由于是对金属基材与合成树脂基材之间的接合面平行地施加负荷而测定接合强度的,所以实际有效的接合强度较小,大概为测定值的一半左右,并非足够的接合强度。

本发明是鉴于上述点而提出的,其目的在于,提供能够提高由金属构成的金属基材与由合成树脂构成的合成树脂基材之间的接合强度的金属部件、金属树脂接合体以及金属树脂接合体的制造方法。

本申请的发明人为了实现更高的接合强度而进行了潜心研究,在研究的过程中发现了:在对金属基材和合成树脂基材进行接合时,提高对接合起辅助作用的膜与金属基材的接合强度极其有用,并据此发现而完成了本发明。

根据本实施方式,提供了下述[1]~[18]的方式。

[1]一种金属部件,其具备:由金属构成的金属基材;以及通过所述金属基材的表面熔融而形成在所述金属基材的表面的氧化膜,其中,通过下述方法测定的氧化膜相对于金属基材的接合强度为45mpa以上。该方法为:将pps树脂与所述氧化膜接合而制备iso19095-2所规定的a型的试验片,遵循iso19095-3而对所制备的试验片测定抗拉强度,将所测定的抗拉强度作为氧化膜相对于金属基材的接合强度。

[2]一种金属部件,其具备:由金属构成的金属基材;以及形成在所述金属基材的表面的氧化膜,其中,所述氧化膜具备:通过所述金属基材的表面局部熔融而形成的多个熔融部;以及在所述熔融部的周围由从所述熔融部飞散出的金属形成的多个周边部,多个所述熔融部错开位置而设置在所述金属基材的表面,在相邻的所述熔融部的周围形成的所述周边部至少部分重叠。

[3]在上述[1]或[2]所述的金属部件的基础上,所述金属基材的表面被离子化趋势比构成所述金属基材的金属大的金属所包覆。

[4]一种金属部件的制造方法,所述金属部件在由金属构成的金属基材的表面形成有氧化膜,该方法具备:第1工序,对所述金属基材的表面加热而在所述金属基材的表面形成所述氧化膜;以及第2工序,对所述氧化膜的至少一部分加热而提高所述氧化膜相对于所述金属基材的接合强度。

[5]在上述[4]所述的金属部件的制造方法的基础上,所述氧化膜具备:所述金属基材熔融而形成的熔融部;以及金属从所述熔融部飞散而形成的周边部,在所述第1工序中,通过所述金属基材的表面的局部加热,错开位置而形成多个所述熔融部,并且在所述熔融部的周围形成所述周边部,在所述第2工序中,对所述周边部的至少一部分加热而提高所述周边部相对于所述金属基材的接合强度。

[6]在上述[5]所述的金属部件的制造方法的基础上,所述第2工序包括如下工序:在所述第1工序中向所述金属基材的表面供给的热量通过热传导而对已经形成于所述金属基材的表面的所述周边部加热。

[7]在上述[6]所述的金属部件的制造方法的基础上,所述第1工序及所述第2工序通过照射脉冲状激光而对所述金属基材的表面以及所述周边部加热。

[8]在上述[7]所述的金属部件的制造方法的基础上,在所述第1工序中,以相邻的所述熔融部重叠的方式错开位置而形成多个所述熔融部。

[9]在上述[4]~[8]的任意一项所述的金属部件的制造方法的基础上,在所述第1工序之前包括前工序,在所述前工序中,利用离子化趋势比构成所述金属基材的金属大的金属来包覆所述金属基材的表面。

[10]一种金属树脂接合体,其具备:由金属构成的金属基材;形成在所述金属基材的表面的所述氧化膜;以及由合成树脂构成的合成树脂基材,所述合成树脂基材与所述氧化膜接合,其中,所述氧化膜具备:通过所述金属基材的表面局部熔融而形成的多个熔融部;以及在所述熔融部的周围由从所述熔融部飞散出的金属形成的多个周边部,多个所述熔融部错开位置而设置在所述金属基材的表面,在相邻的所述熔融部的周围形成的所述周边部至少部分重叠。

[11]在权利要求10所述的金属树脂接合体的基础上,所述金属基材的表面被离子化趋势比构成所述金属基材的金属大的金属所包覆。

[12]一种金属树脂接合体的制造方法,所述金属树脂接合体由金属基材与合成树脂基材接合而成,该金属基材由金属构成,该合成树脂基材由合成树脂构成,其中,该方法包括:第1工序,对所述金属基材的表面加热而在所述金属基材的表面形成氧化膜;第2工序,对所述氧化膜的至少一部分加热而提高所述氧化膜相对于所述金属基材的接合强度;以及第3工序,在所述第2工序之后,将所述合成树脂基材与所述氧化膜接合。

[13]在上述[12]所述的金属树脂接合体的制造方法的基础上,所述氧化膜具备:所述金属基材熔融而形成的熔融部;以及金属从所述熔融部飞散而形成的周边部,在所述第1工序中,通过所述金属基材的表面的局部加热,错开位置而形成多个所述熔融部,并且在所述熔融部的周围形成所述周边部,在所述第2工序中,对所述周边部的至少一部分加热而提高所述周边部相对于所述金属基材的接合强度。

[14]在上述[13]所述的金属树脂接合体的制造方法的基础上,所述第2工序包括如下工序:在所述第1工序中向所述金属基材的表面供给的热量通过热传导而对已经形成于所述金属基材的表面的所述周边部加热。

[15]在上述[14]所述的金属树脂接合体的制造方法的基础上,所述第1工序及所述第2工序通过照射脉冲状激光而对所述金属基材的表面以及所述氧化膜加热。

[16]在上述[15]所述的金属树脂接合体的制造方法的基础上,在所述第1工序中,以相邻的所述熔融部重叠的方式错开位置而形成多个所述熔融部。

[17]在上述[12]~[16]的任意一项所述的金属树脂接合体的制造方法的基础上,在所述第1工序之前包括前工序,在所述前工序中,利用离子化趋势比构成所述金属基材的金属大的金属来包覆所述金属基材的表面。

[18]在上述[12]~[17]的任意一项所述的金属树脂接合体的制造方法的基础上,所述第3工序具有如下工序:将所述金属部件装入注塑成型模具内,在所述注塑成型模具内朝向所装入的所述金属部件的所述氧化膜喷射熔融的树脂。

在本发明中,能够提高由金属构成的金属基材与由合成树脂构成的合成树脂基材的接合强度。

附图说明

图1是本发明的一实施方式所涉及的金属部件的剖视图。

图2是图1的金属部件的俯视图。

图3是变更例1所涉及的金属部件的俯视图。

图4是其他变更例1所涉及的金属部件的俯视图。

图5是变更例2所涉及的金属部件的俯视图。

图6是其他变更例2所涉及的金属部件的俯视图。

图7是变更例3所涉及的金属部件的俯视图。

图8是本发明的一实施方式所涉及的金属树脂接合体的剖视图。

图9a是示出本发明的一实施方式所涉及的金属部件的制造方法的图。

图9b是示出由图9a所示的工序形成的氧化膜的剖视图。

图9c是示出本发明的一实施方式所涉及的金属部件的制造方法的图。

图9d是示出由图9c所示的工序形成的氧化膜的剖视图。

图10是用于对本发明的一实施方式所涉及的金属树脂接合体成型的注塑成型模具的剖视图。

图11是比较例所涉及的金属部件的俯视图。

具体实施方式

下面,参照附图对本发明的一实施方式进行说明。本发明并不限定于下述实施方式。下述实施方式是作为示例而提出的,并不意图限定本发明的范围。新的实施方式能够以其他各种方式来实施,在不脱离发明主旨的范围内,能够进行各种省略、替换、变更。此外,虽然实际的氧化膜的厚度比较薄,但为了便于说明,在附图中是放大了其厚度而示出的。

(1)金属部件

本发明的一实施方式的金属部件10接合由合成树脂构成的合成树脂基材而构成了金属树脂接合体的一部分。如图1以及图2所示,该金属部件10具备:金属基材12和形成在该金属基材12的表面的氧化膜14。

金属基材12是将金属成型为块状、板状或线状等规定形状的部件。作为构成金属基材12的金属,能够举例示出铜(cu)、铁(fe)、铝(al)、钛(ti)镍(ni)、铬(cr)等。金属基材12也可以由合金构成,该合金是铜合金、铁合金(钢铁材料)、铝合金、不锈钢、钛合金、镍合金、铬合金等由2种以上的金属构成的合金。

对用于金属基材12的铜合金并无限制。能够使用日本工业标准(jish3000系列)所规定的c1020、c1100等纯铜系合金、c2600系列的黄铜合金、c5600系列的铜白系合金等全部的铜合金。

作为用于金属基材12的铁合金,例如能够使用冷扎钢材(spcc)、热轧钢材(sphc)、汽车结构用热轧钢板材料(saph)、汽车加工用热轧高张力钢板材料(spfh)、主要用于机械加工的钢材(ss材)等结构用钢铁材料等。另外,不限于上述铁合金,还能够使用通过日本工业标准(jis)、国际标准化组织(iso)等标准化的所有钢铁材料。

对用于金属基材12的铝合金并无限制。能够使用日本工业标准(jis)所规定的作为变形用铝合金的a1000系列~a7000系列(耐腐蚀铝合金、高强度铝合金、耐热铝合金等)、作为铸造用铝合金的adc1~adc12系列(压铸用铝合金)等全部的铝合金。

作为用于金属基材12的不锈钢,包括:在铁中添加铬的cr系不锈钢、或者作为组合添加有镍与铬的钢的cr-ni系不锈钢、以及其他被称为不锈钢的公知的耐腐蚀性铁合金。能够将由国际标准化组织(iso)、日本工业标准(jis)、美国材料实验协会(astm)等标准化的sus405、sus429、sus403等cr系不锈钢、sus301、sus304、sus305、sus316等cr-ni系不锈钢等用于金属基材12。

对用于金属基材12的钛合金并无限制。能够使用国际标准化组织(iso)、日本工业标准(jis)等所规定的纯钛系合金、α型钛合金、β型钛合金、α-β型钛合金等全部钛合金。

另外,对于金属基材12,可以利用由不同的金属构成的包覆层来包覆金属基材12的表面,并且在包覆层之上形成氧化膜14。包覆金属基材12的表面的包覆层能够通过化学镀、熔融镀、被覆、蒸镀、金属喷涂等方法来形成。另外,包覆层优选由离子化趋势比构成金属基材12的金属大的金属构成。

关于金属基材12的形状,能够根据用途等而采用所期望的形状。金属基材12的成型方法能够应用任意方法,能够使用将熔融的金属等流入到所期望形状的模具中的铸造、利用机床等进行的切削加工、利用冲压机等进行的冲孔加工等。

形成在金属基材12的表面的氧化膜14具有金属基材12的表面熔融而形成的氧化物。即,氧化膜14具有构成金属基材12的金属的氧化物。例如,在金属基材12由铜或铜合金构成的情况下,氧化膜14能够含有cu2o、cuo等。在金属基材12由铁、铁合金构成的情况下,氧化膜14能够含有feo、fe2o3等。在金属基材12由铝或铝合金构成的情况下,氧化膜14能够含有al2o3等。在金属基材12由镍或镍合金构成的情况下,氧化膜14能够含有nio等。在金属基材12由不锈钢构成的情况下,氧化膜14能够含有feo、fe2o3、cr2o3、cro2、cro3等。在金属基材12由铬或铬合金构成的情况下,氧化膜14能够含有cr2o3、cro2、cro3等。在金属基材12由钛或钛合金构成的情况下,氧化膜14能够含有tio3等。

作为优选的方式,氧化膜14能够具备:通过金属基材12表面的局部熔融而形成的多个熔融部14a;以及在熔融部14a的周围由从熔融部14a飞散出的金属形成的多个周边部14b。

如图2所示,多个熔融部14a在一个方向(以下,有时将该方向称为x方向)上错开位置而形成在金属基材12的表面。在相邻的熔融部14a的周围形成的周边部14b至少部分重合(以下,有时将周边部14b重合的部位称为重叠部14c)。

参照图2例示出各种尺寸时,能够将各熔融部14a在x方向上的长度lx1设为1μm~50μm,将熔融部14a在与x方向垂直的方向(以下,有时将该方向称为y方向)上的长度ly1设为1μm~50μm,将相邻的熔融部14a在x方向上的间隔mx1设为20μm以下,将从熔融部14a的边缘到周边部14b的边缘的距离p1设为10μm~100μm。

如上所述,在本实施方式的金属部件10中,以在相邻的熔融部14a的周围形成的周边部14b重合的方式,即以通过多个周边部14b来形成重叠部14c的方式,在金属基材12的表面形成有氧化膜14。在形成于金属基材12的表面的重叠部14c中,先形成在金属基材12的表面的周边部14b被接下来形成熔融部14a以及周边部14b时的热量进行再加热。通过该再加热,周边部14b在重叠部14c处与金属基材12的接合强度升高,从而氧化膜14整体相对于金属基材12的接合强度得到提高。因此,在本实施方式的金属部件10中,通过在氧化膜14上接合由合成树脂构成的合成树脂基材,能够得到接合强度高的金属树脂接合体。

另外,作为其他的优选方式,形成于金属基材12的表面的氧化膜14能够使其相对于金属基材12的接合强度达到45mpa以上。这里,相对于金属基材的接合强度是指如下抗拉强度:将由pps树脂(东丽株式会社制torelina(注册商标)a673m)构成的合成树脂基材接合到氧化膜12而制备iso19095-2所规定的a型的试验片,遵循iso19095-3而对所制备的试验片测定出的抗拉强度。

若通过上述方式测定出的氧化膜14相对于金属基材12的接合强度为45mpa以上,则通过在氧化膜14上接合由合成树脂构成的合成树脂基材,能够得到接合强度高的金属树脂接合体。

此外,如上所述,在本实施方式的金属部件10中,可以在金属基材12的表面设置镀层、被覆材料。该情况下,优选利用离子化趋势比构成金属基材的金属大的金属来构成镀层、被覆材料。通过像这样利用离子化趋势大的金属来覆盖金属基材12的表面,使得形成在其表面的氧化膜14不易被还原,从而提高耐用性。尤其是在构成金属基材12的金属如铜、银、铂、钯、金等那样离子化趋势比氢大的情况下,氧化膜不易被水还原,从而耐用性得到显著提高。

<变更例1>

在上述的实施方式中,对具备氧化膜14的金属部件10进行了说明,其中,该氧化膜14以周边部14b的一部分在x方向上重合的方式在x方向上隔开间隔设置有多个熔融部14a,但例如也可以为具备如图3所示的氧化膜114的金属部件110。也就是说,氧化膜114具备:在x方向以及y方向上隔开间隔而设置的多个熔融部114a;和设置在熔融部114a的周围的多个周边部114b。多个周边部114b的一部分在x方向以及y方向上重合而形成了重叠部114c。

参照图3来例示各种尺寸时,能够将各熔融部114a在x方向上的长度lx2设为1μm~50μm,将熔融部114a在y方向上的长度ly2设为1μm~50μm,将相邻的熔融部114a在x方向上的间隔mx2设为20μm以下,将从熔融部114a的边缘到周边部114b的边缘的距离p2设为10μm~100μm,将在y方向上相邻的熔融部114a的中心的间隔my2设为10μ~500μm。

另外,也可以为具备如图4所例示的氧化膜214的金属部件210。也就是说,氧化膜214具备:沿着x方向延伸的多个熔融部214a和设置在熔融部214a的周围的多个周边部214b。以多个周边部214b的一部分在y方向上重叠而形成重叠部214c的方式,在y方向上隔开间隔而设置熔融部214a。

参照图4来例示各种尺寸时,能够将各熔融部214a在x方向上的长度lx3设为1mm~20mm,将熔融部214a在y方向上的长度ly3设为1μm~50μm,将从熔融部214a的边缘到周边部214b的边缘的距离p3设为10μm~100μm,将在y方向上相邻的熔融部214a的中心的间隔my3设为20μ~500μm。此外,在该情况下,在y方向上相邻的熔融部214a的x方向端部可以在熔融部214a相连,另外,也可以分离。

即使是这样的变更例的金属部件110、210,在重叠部114c、214c处与金属基材12的接合强度也得到提高,从而氧化膜114、214整体相对于金属基材12的接合强度得到提高。

<变更例2>

在上述的实施方式中,对隔开间隔而在金属基材12的表面形成多个熔融部14a的情况进行了说明,但也可以像图5所例示的金属部件310那样,以在x方向上相邻的熔融部314a的一部分重叠的方式设置多个熔融部314a。此时,优选熔融部314a在相邻的方向(在图5中为x方向)上以熔融部314a重叠一半以上的方式错开位置而设置。

另外,像图6所例示的金属部件410那样,也可以以x方向上相邻的熔融部414a的一部分重叠的方式设置多个熔融部414a,并在y方向上排列设置多列该熔融部414a。此时,与图5所例示的金属部件310同样地,优选熔融部414a在相邻的方向(在图6中为x方向)上以熔融部414a重叠一半以上的方式错开位置而设置。另外,在如图6所示地在y方向上排列多排而设置多个熔融部414a的情况下,优选以周边部114b的一部分在y方向上重叠而形成重叠部114c的方式,在y方向上排列设置多个熔融部414a。

通过像图5所例示的金属部件310、图6所例示的金属部件410那样将熔融部314a、414a重合,能够在较宽的范围形成重叠部314c、414c,该重叠部314c、414c是在熔融部314a、414a的周围形成的周边部314b、414b重合而成的。因此,氧化膜314、414整体相对于金属基材12的接合强度得到提高。

尤其是,通过以在熔融部314a、414a相邻的方向上熔融部314a、414a重叠一半以上的方式设置多个熔融部314a、414a,能够在较宽的范围形成重叠部314c’、414c’,该重叠部314c’、414c’是将周边部314b、414b重合3次以上而成的。在该重叠部314c’、414c’,由于周边部314b、414b被再加热多次,所以与金属基材12的接合强度升高,氧化膜314、414整体相对于金属基材12的接合强度得到大幅度提高。

<变更例3>

在上述的实施方式中,对在规定的方向(x方向、y方向)上排列设置多个熔融部14a的情况进行了说明,但也可以像图7所例示的金属部件410那样,在周边部414b的至少部分重合而形成重叠部414c的范围内,设置使熔融部414a分散在金属基材12的表面的氧化膜314。

(2)金属树脂接合体

接下来,基于图8对本发明的一实施方式的金属树脂接合体20进行说明。

本实施方式的金属树脂接合体20具备上述(1)的金属部件10和由合成树脂构成的合成树脂基材22。

合成树脂基材22是将合成树脂成型为块状、板状或线状等规定的形状的部件。另外,合成树脂基材22也可以是合成树脂的涂膜、由合成树脂制的粘接剂构成的粘接层。作为构成合成树脂基材22的合成树脂,能够使用像热塑性树脂、热塑性弹性体、热固性树脂那样的主要将石油作为原料而制造的1种或2种以上的树脂。列举具体例,有如下树脂:聚丙烯树脂(pp树脂)、聚甲醛树脂(pom树脂)、聚苯硫醚树脂(pps树脂)、丙烯腈-丁二烯-苯乙烯共聚物树脂(abs树脂)、聚乙烯树脂(pe树脂)、聚对苯二甲酸丁二醇酯树脂(pbt树脂)、聚酰胺树脂(pa树脂)、环氧树脂、液晶聚合物(lcp树脂)、改性聚苯醚树脂(改性ppe)、反应器型软质聚丙烯系树脂(茂金属系反应器型tpo树脂)等。另外,合成树脂基材22可以是对如上所述的合成树脂混合了碳纤维、玻璃纤维、滑石粉等加强材料、阻燃材料、劣化抑制剂或弹性体成分的树脂基材。

合成树脂基材22通过热压接而接合在形成于金属基材12的表面的氧化膜14,构成如图8所示的金属树脂接合体20。

在本实施方式的金属树脂接合体20中,如上述(1)所示,形成在金属部件10的氧化膜14牢固地接合于金属基材12。而且,由于氧化膜14容易与树脂材料所具有的官能团化学键合,所以能够将合成树脂基材22牢固地接合于氧化膜14。因此,在金属树脂接合体20中,金属基材12与合成树脂基材22借助氧化膜14而牢固地接合在一起。

<变更例>

在本实施方式中,对将合成树脂基材22接合在图1以及图2所示的金属部件10而成的金属树脂接合体20进行了说明,但也可以是将合成树脂基材22接合在如图3所示的金属部件110、如图4所示的金属部件210、如图5所示的金属部件310、如图6所示的金属部件410、或者如图7所示的金属部件510而成的金属树脂接合体。

(3)金属部件的制造方法

接下来,基于图9a~图9d对上述(1)的金属部件10的制造方法进行说明。

能够通过对金属基材12的表面进行局部加热来得到金属部件10。在本实施方式中,在使激光的照射位置以恒定速度向x方向移动(扫描)的同时对金属基材12的表面间歇性地照射激光。即,对金属基板12的表面照射脉冲状的激光。由此,对金属基材12的表面的多个部位局部加热而在金属基材12的表面形成氧化膜12。

具体而言,如图9a所示,若在金属基材12的表面的规定位置照射第1次的激光r而对金属基材12的表面进行局部加热,则照射了激光r的部位q1的金属熔融。熔融的金属s与空气中的氧发生反应而生成金属氧化物。另外,熔融的金属s的一部分在与空气中的氧发生反应的同时向部位q1的周围飞散。在激光向部位q1的照射结束时,熔融的金属(金属氧化物)冷却而凝固,从而在部位q1形成熔融部14a。另外,由飞散出的金属在熔融部14a的周围形成周边部14b(参照图9b)。

这样的周边部14b由于是熔融的金属飞散而形成的金属氧化物,所以与金属基材12的接合强度较弱。

此外,以下有时将对金属基材12照射激光而形成熔融部14a和周边部14b的工序称为第1工序,将通过第1次激光照射而形成的熔融部14a以及周边部14b称为熔融部14a1以及周边部14b1,并将通过第n(n为2以上的整数)次激光照射而形成的熔融部14a以及周边部14b称为熔融部14an以及周边部14bn。

接下来,如图9c所示,从照射了第1次的激光的位置向x方向移动规定距离之后照射第2次的激光,从而对金属基材12的表面进行局部加热。金属基材12的表面通过照射该第2次的激光而被局部加热,照射了激光r的部位q2的金属熔融。熔融的金属s与空气中的氧发生反应而成为金属氧化物。另外,熔融的金属s的一部分在与空气中的氧发生反应的同时向部位q2的周围飞散。在激光向部位q2的照射结束时,熔融的金属(金属氧化物)冷却而凝固,从而在部位q2形成熔融部14a2。另外,由飞散出的金属在熔融部14a2的周围形成周边部14b2(参照图9d)。

这里,照射第2次的激光的位置被设定为:通过第1次激光照射而形成的周边部14b1与通过第2次激光照射而形成的周边部14b2至少部分重叠而形成重叠部14c。另外,照射第2次的激光的位置也可以与通过第1次激光照射而形成的熔融部14a1的一部分重叠。

另外,在第1次、第2次、…、以及第n次的各个位置上照射的激光可以是脉冲状激光的1个脉冲,或者也可以是多个脉冲。

这里,在第1次、第2次、…、以及第n次的各个位置上照射脉冲状激光的1个脉冲的情况下,若设激光的频率为c(hz)、设激光的输出为d(w)、设激光的移动速度为e(mm/sec),则能够将激光的移动速度e设定成满足下述式1。

e<(10×d×c)1/2(式1)

通过以形成重叠部14c的方式设定第2次的激光的照射位置,通过第1次激光照射而形成的周边部14b1中的位于重叠部14c的部分,利用由第2次激光照射所产生的热量的热传导和由于第2次激光照射而从熔融部14a2飞散出的金属的热量而被再加热,氧化膜14相对于金属基材12的接合强度得到提高。即,在本实施方式中,第2次激光照射兼顾了用于形成熔融部14a2和周边部14b2的第1工序、以及对通过第1次激光照射而形成的周边部14b1再次加热以提高相对于金属基材12的接合强度的工序(以下,有时将该工序称为第2工序)。

这之后,通过在向x方向移动的同时对金属部件10的表面间歇性地照射激光,在金属基材12的表面形成氧化膜14,从而得到如图2所示的金属部件10,该氧化膜14具备:在x方向上隔开间隔而设置的多个熔融部14a和以在x方向部分重合的方式设置的多个周边部14b。

在本实施方式中,通过第2次之后的也就是第n次的激光照射,通过紧之前的第(n-1)次的激光照射而形成的周边部14b(n-1)中的、位于重叠部14c的部分,利用由第n次激光照射所产生的热量的热传导和由于第n次激光照射而从熔融部14an飞散出的金属的热量而被再加热,从而提高了氧化膜14相对于金属基材12的接合强度。

另外,在本实施方式中,通过照射使激光脉冲振荡而得到的脉冲状激光而对金属基材12的表面进行局部加热,与照射使激光连续振荡而得到的连续性的激光的情况相比,能够瞬间照射高能量的激光。因此,在本实施方式中,熔融的金属容易从熔融部14a大量地飞散到远处,能够在熔融部14a的周围的比较宽的范围形成周边部14b,能够在较宽的范围形成重叠部14c。

<变更例1>

在上述的实施方式中,对在使激光的照射位置以恒定速度向x方向移动的同时对金属基材12的表面照射脉冲状激光,从而设置如图2所示沿着x方向延伸的氧化膜14的金属部件10的情况进行了说明,但通过适当地设定激光的脉冲宽度b、激光的频率c、激光的输出d、激光的移动速度e、激光的移动方向,能够制造如图3所示的金属部件110、如图4所示的金属部件210、如图5所示的金属部件310、如图6所示的金属部件410、或者如图7所示的金属部件510。

例如,在制造如图3所示的金属部件110时,首先,在使激光的照射位置以恒定速度向x方向的一侧移动的同时对金属基材12的表面间歇性地照射激光,从而沿着x方向形成多个熔融部114a以及多个周边部114b。然后,在将激光的照射位置向y方向移动距离my2之后,在使激光的照射位置以恒定速度向x方向的另一侧移动的同时对金属基材12的表面间歇性地照射激光,从而沿着x方向形成多个熔融部114a以及多个周边部114b。然后,通过重复进行向y方向移动激光的照射位置和形成多个熔融部114a以及多个周边部114b的操作,能够制造如图3所示的金属部件110。

此外,使激光的照射位置向y方向移动的距离my2能够被设定为:在y方向相邻的周边部114b至少部分重合而形成重叠部114c。例如,若将激光的输出设为d(w)、将激光的移动速度设为e(mm/sec),则能够将距离my2(mm)设定成满足下述式2。

my2<10×d/e(式2)

另外,在制造如图4所示的金属部件210时,在使激光的照射位置以恒定速度向x方向的一侧移动的同时对金属基材12的表面连续照射激光,形成沿着x方向延伸的不间断的熔融部214a和设置在熔融部214a的周围的周边部214b。然后,在使激光的照射位置向y方向移动规定距离my3之后,在使激光的照射位置以恒定速度向x方向的另一侧移动的同时对金属基材12的表面连续照射激光,形成沿着x方向延伸的不间断的熔融部214a和设置在熔融部214a的周围的周边部214b。然后,通过重复进行向y方向移动激光的照射位置和形成熔融部214a及周边部214b的操作,能够制造如图4所示的金属部件210。

此外,使激光的照射位置向y方向移动的距离my3能够被设定为:在y方向上相邻的周边部214b至少部分重合而形成重叠部214c。例如,若将激光的输出设为d(w)、将激光的移动速度设为e(mm/sec),则能够将距离my3(mm)设定为满足如下式3。

my3<10×d/e(式3)

在上述的两个变更例中,能够在金属基材12表面的较宽范围高效地形成与金属基材12牢固地接合的氧化膜114、214。

在制造如图5所示的金属部件310时,以利用第n次激光照射和第(n-1)次激光照射而形成的熔融部414a部分重叠的方式,在向x方向移动的同时对金属部件10的表面间歇性地照射脉冲状激光,由此能够得到如图5所示的金属部件410。

在制造如图6所示的金属部件410时,像图5所示的金属部件310那样,在向x方向移动的同时对金属部件10的表面间歇性地照射脉冲状激光,从而以在x方向上相邻的熔融部414a部分重叠的方式设置多个熔融部414a,并且在熔融部414a的周围设置周边部414b。

然后,在使激光的照射位置向y方向移动距离my2(参照上述式2)之后,在使激光的照射位置以恒定速度向x方向的另一侧移动的同时对金属基材12的表面间歇性地照射激光,从而以在x方向上相邻的熔融部414a部分重叠的方式设置多个熔融部414a以及周边部414b。然后,通过重复进行向y方向移动激光的照射位置和形成多个熔融部414a及周边部414b的操作,能够制造如图6所示的金属部件510。

<变更例2>

在上述的实施方式中,对在金属基材12的表面照射激光而进行第1工序及第2工序的情况进行了说明,但也可以在第1工序之前进行前工序,之后,进行第1工序及第2工序而在镀层等之上形成氧化膜14,其中,在该前工序中,通过化学镀、熔融镀、被覆、蒸镀、金属喷涂等方法在金属基材12的表面设置包覆层。

<变更例3>

在上述的实施方式中,对照射激光而局部加热金属基材12表面的情况进行了说明,但对金属基材12的表面局部加热的方法并无特别限定,例如也可以通过高频感应加热或电阻加热、或者这些加热方法中的几种方法的组合而对金属基材12的表面局部加热来形成氧化膜14。

<变更例4>

在上述的实施方式中,对形成新的熔融部14a以及周边部14b的第1工序兼顾对已经形成在金属基材12的表面的周边部14b进行再加热的第2工序的情况进行了说明,但也可以不形成新的熔融部14a以及周边部14b,而对已经形成的周边部14b再次照射激光而进行再加热,或者也可以通过高频感应加热或电阻加热而对已经形成的周边部14b进行再加热。

(4)金属树脂接合体的制造方法

接下来,对图8所示的金属树脂接合体20的制造方法进行说明。

金属树脂接合体20是通过进行如下工序(以下,有时将该工序称为第3工序)而得到的:通过热压接、注塑成型等将上述(2)的合成树脂基材22接合在利用上述(3)的方法制造出的金属部件10的氧化膜14。

在本实施方式中,如图10所示,在第3工序中,将形成有氧化膜14的金属部件10装入注塑成型模具30内,并在注塑成型模具30内向氧化膜14喷射熔融的合成树脂材料,由此在金属部件10上接合合成树脂基材22。

注塑成型模具30具备:下模31、上模32以及形成在下模31与上模32之间的腔33,将熔融的树脂材料从设置于上模32的注入口34向腔33注入。

下模31在将金属部件10配置(装入)为氧化膜14朝向腔33之后,将上模32合上,从注入口34向腔33注入熔融的树脂材料,由此朝向氧化膜14喷射熔融的树脂材料。由此,在腔33内形成合成树脂基材22,与此同时,金属基材12上的氧化膜14与合成树脂基材22接合,得到金属树脂接合体20。

在本实施方式中,由于能够通过氧化膜14的再加热而形成牢固地接合在金属基材12的表面的氧化膜14,所以能够将金属基材12与合成树脂基材22牢固地接合。

<变更例>

在本实施方式中,对将合成树脂基材22接合在图1所示的金属部件10而制造金属树脂接合体20的情况进行了说明,但也可以将合成树脂基材22接合在如图3所示的金属部件110的氧化膜114、将合成树脂基材22接合在如图4所示的金属部件210的氧化膜214、将合成树脂基材22接合在如图5所示的金属部件310的氧化膜314、将合成树脂基材22接合在如图6所示的金属部件410的氧化膜414、或者将合成树脂基材22接合在如图7所示的金属部件510的氧化膜514,从而制造金属树脂接合体。

(5)金属树脂接合体的评价

为了具体示出上述的实施方式的构成和效果,通过上述(4)的制造方法制备了实施例1~16以及比较例1~4的金属树脂接合体(试验片)并进行了性能评价。此外,制备的各金属树脂接合体的形状以及大小符合iso19095-2所规定的a型的试验片(buttweldedtestspecimens,对接焊缝试片)。激光的照射使用了激光打标机md-x1500((株)基恩士公司制,激光类型:yv04激光,波长:1064nm)。

实施例1~16是对金属部件210接合了合成树脂基材22的实施例,该金属部件210在金属基材12的表面设置有如图6所示的氧化膜414。此外,在实施例1~16中,将沿着x方向延伸的多个熔融部414a在y方向上排列设置有17列。

此外,实施例11以及实施例14在由铜(c1100)构成的金属基材的表面实施了镀锡(sn)处理,实施例12在由铁(spcc)构成的金属基材的表面实施了镀镍(ni)处理,实施例13在由铜(c1100)构成的金属基材的表面实施了镀镍(ni)处理,实施例16在由al(a1050)构成的金属基材的表面被实施了氧化铝膜处理。

比较例1是如下例子:金属基材的表面不存在氧化膜,合成树脂基材直接接合在金属基材的表面。

比较例2是如下例子:合成树脂基材22接合于在金属基材12的表面设置有如图11所示的氧化膜614的金属部件610。也就是说,在比较例2中,虽然构成金属部件的氧化膜具备在x方向以及y方向上隔开间隔而设置的多个熔融部614a和设置在熔融部614a的周围多个周边部614b,但在x方向以及y方向上相邻的周边部614b并不重叠。通过将树脂材料接合在这样的金属部件610而得到比较例2的金属树脂接合体。此外,在比较例2中,在y方向上排列设置有17列熔融部614a以及周边部614b。

在比较例3以及比较例4中,在按照与实施例1以及实施例2相同的条件向金属基材的表面照射激光而形成氧化膜之后,清洗形成有氧化膜的金属部件的表面而去除氧化膜,从而得到金属部件。此外,通过激光照射,在金属基材的表面形成氧化膜的同时还形成了凹凸,但在损坏形成在金属基材的表面的凹凸的情况下去除了氧化膜。在所得到的金属部件接合树脂材料而得到比较例3~4的金属树脂接合体。在比较例3中使用的清洗液是金属焊斑去除剂(日文:エスピュア)sj400(佐佐木化学药品株式会社制),在比较例4中使用的清洗液是硫酸水溶液(10wt%)。

实施例1~16以及比较例2的氧化膜的各种尺寸以及实施例1~16以及比较例2~4中的激光的照射条件如表1以及表2所示。

另外,在实施例1~16以及比较例1~4中,用于金属树脂接合体的金属基材、构成合成树脂基材的材料、以及对金属部件接合合成树脂基材时的注塑成型的条件如下述表1以及表2所示。表1以及2中的树脂材料的各成分的详细内容如下所示。

·pps树脂:东丽株式会社制torelina(日语:トレリナ,注册商标)a673m

·lcp树脂:宝理塑料株式会社laperos(日语:ラペロス,注册商标)e525t

·pom树脂:宝理塑料株式会社duracon(日语:ジュラコン,注册商标)m90-57

·改性ppe树脂:旭化成株式会社xyron(日语:ザイロン)ev103

·pp树脂:日本聚丙烯株式会社wintec(日语:ウィンテック)wmh02

·tpo树脂:日本聚丙烯株式会社welnex(日语:ウェルネクス)rfx4v

对于上述实施例1~16以及比较例1~4的金属树脂接合体评价了下述(a)以及(b),对于上述实施例2的金属树脂接合体评价了下述(c),对于上述实施例2以及实施例16的金属树脂接合体评价了下述(d)。具体的评价方法如下所示。

(a)接合强度测定

对于实施例1~16以及比较例1~4的金属树脂接合体,使用精密万能试验机autograph(岛津制作所制:ag-1),遵照iso19095-3而测定了抗拉强度(tensilestrength)。

(b)破坏方式

对于上述实施例1~16以及比较例1~4,在测定接合强度之后,用肉眼观察破坏部位,评价破坏是在金属基材与氧化膜之间的界面产生的破坏(膜剥离),还是在合成树脂基材中产生的破坏(树脂破坏),亦或是在金属基材与合成树脂基材之间的界面产生的破坏(界面破坏)。

(c)热冲击试验

对于实施例2的金属树脂接合体,使用冷热冲击装置(espec株式会社制:tsa71s-a),进行1000个循环的加热-冷却处理之后,利用上述(a)的方法测度了接合强度。此外,将如下加热-冷却处理作为1个循环:以120℃加热0.5个小时,之后,降温至-40℃而冷却0.5个小时,然后再升温至120℃。

(d)耐水性试验

将实施例2及16的金属树脂接合体放置在113℃的温度、59kpa的计示压力的饱和水蒸气气氛中10个小时,之后,利用上述(a)的方法测定了接合强度。

结果如表1以及表2所示。

[表1]

[表2]

在比较例1中,由于金属基材的表面并不存在通过熔融而形成的氧化膜,所以金属基材并没有与合成树脂基材接合。

在比较例2中,在10mpa的抗拉负荷下,以氧化膜从金属基材剥离的方式在金属基材与氧化膜之间的界面发生了破坏。在比较例2中,金属基材的表面存在有通过熔融形成的氧化膜。然而,设置在熔融部的周围的多个周边部并未相互重合,周边部未被再加热。因此,氧化膜相对于金属基材的接合强度较低。

在比较例3以及4中,在9mpa以及11.1mpa的抗拉负荷下,在金属基材与合成树脂基材之间的界面发生了破坏。在比较例3以及4中,在照射激光之后,清洗金属部件的表面,从而金属基材的表面不存在氧化膜。然而,通过激光的照射,在金属基材的表面形成有凹凸。虽然金属基材通过该凹凸所引起的锚固效果而与合成树脂基材进行了接合,但其接合强度较低。

在实施例1~16中,氧化膜不从金属基材剥离,每一个实施例的合成树脂基材都发生了断裂。

在将由pps树脂构成的合成树脂基材与金属基材接合的实施例1、2、3、4以及13~16中,即使在45mpa以上的抗拉负荷下,形成在金属基材的表面的氧化膜也都没有发生剥离。另外,在这些实施例中,在氧化膜发生剥离之前,合成树脂基材发生了断裂。由此可知,在由不锈钢、铜、铝、铁以及钛构成的金属基材、或者在铜的表面实施镀镍或镀锡而得到的金属基材、或者在铝的表面实施氧化铝膜处理的金属基材中,形成在各金属基材的氧化膜至少以45mpa以上的强度与金属基材接合。

另外,在实施例2中,热冲击试验後的接合强度为试验前的77.5%,维持了较高的接合强度。此外,一般认为热冲击试验造成的接合强度的降低是因为合成树脂基材(pps树脂)的强度发生降低的缘故。

另外,在金属基材为铜(c1100)的情况下、在金属基材的表面未设置镀层的实施例2中,在耐水性试验前后,接合强度从48.8mpa降低到14.3mpa,耐水性试验後的接合强度为试验前的29.3%。另一方面,在金属基材的表面上设置有镀层的实施例13中,在耐水性试验前后,接合强度从45.4mpa降低到30.8mpa,耐水性试验之后的接合强度为试验前的67.8%,与没有设置镀层的实施例2相比,大幅度提高了耐水性。

附图标记说明

10…金属部件;12…金属基材;14…氧化膜;14a…熔融部;14b…周边部;14c…重叠部;20…接合体;22…合成树脂基材;30…注塑成型模具;31…下模;32…上模;33…腔;34…注入口;110…金属部件;114…氧化膜;114a…熔融部;114b…周边部;210…金属部件;214…氧化膜;214a…熔融部;214b…周边部。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1