涂布的基材的制作方法

文档序号:18524294发布日期:2019-08-24 10:05阅读:323来源:国知局
涂布的基材的制作方法

本公开涉及涂布的基材,特别是用于改善燃气涡轮机翼的耐氧化性的涂层。



背景技术:

铝化钛机翼,诸如在燃气涡轮发动机中发现的那些,在高温环境中操作,该高温环境促进氧化和腐蚀。这不利于零件的完整性。为了减轻这种氧化和腐蚀,已经提出了涂层系统。在这些系统中,可以通过物理气相沉积(pvd)方法将涂层施加到要保护的零件上。

然而,这种涂层本身可能由于其脆性而降低了系统的完整性,或者可能仅提供有限的能力来承受腐蚀性物质向下面基材中的扩散。在发现基材的过度氧化之前,通常涂层仅具有有限的温度耐久性。此外,已观察到在暴露于高温期间发生表面开裂。

因此,仍存在如何提供能够提供有效的氧化保护同时还能承受高温环境的物理严酷性的基材涂层的问题。

高功率脉冲磁控溅射(hipims)是一种已知的pvd技术—例如gb2,450,950考虑了用于机器工具的hipims涂层。它提出将hipims结合到涂层提供中的技术,诸如由lembke等人在"significanceofyandcrintiainhardcoatingsfordryhighspeedcutting(y和cr在用于干法高速切割的tiain硬涂层中的重要性)",surfaceengineering17(2)153-158页(2001)中提出的那些,其中使用电弧放电将涂层材料cr植入到界面中。它提到在p.eh.hovsepian,c.reinhard和a.p.ehiasarian在surfaceandcoatingstechnology201(2006)4105-4110页中题为“cralyn/crnsuperlatticecoatingsdepositedbythecombinedhighpowerimpulsemagnetronsputtering/unbalancedmagnetronsputteringtechnique(通过组合的高功率脉冲磁控溅射/不平衡磁控溅射技术沉积的cralyn/crn超晶格涂层)”的论文中给出的hipims技术。该篇参考文献描述了在清洗/蚀刻处理的意义上通过用由hipims技术生成的cr离子轰击金属基材来预处理该基材,等等。gb2,450,950继续使用hipims技术在基材上提供hipims超晶格结构。



技术实现要素:

本发明人已经确定,使用hipims涂布机翼可以比供选的pvd工艺更有利。与供选的pvd工艺相比,hipims可以生产更高密度的涂层。所实现的较高密度使涂层中的柱间孔隙率最小化,这是腐蚀性物质从环境中传输穿过涂层并侵蚀基材的途径。此外,hipims可用于提供涂层结构,该涂层结构由多个层组成,所述多个层通过多个界面提供对氧化和腐蚀性物质的有效屏障并且改善涂层韧性。特别是,通过hipims产生的多层界面非常清晰和平坦。这使得它们由于有限的原子失配而特别有效地作为扩散的屏障。

发明人还已经确定了有效的涂层的特定组合物。通过选择用于涂层的特定元素,可以控制涂层以a)形成抑制进一步氧化和腐蚀的致密氧化物皮,和b)稳定该氧化物皮,以防止其剥落和暴露未反应的涂层或基材。认为现有技术涂层中的裂缝是由于由涂层和基材的热膨胀系数的差异而施加在涂层上的拉伸应力。该裂缝产生疲劳缺陷并降低涂层抑制进一步的氧化和腐蚀的有效性。发明人已经确定了可以至少部分地缓解这些问题的特定组合物。

根据一个方面,本发明提供一种涂布的基材,包括金属或金属合金诸如高速钢、tial基合金或ni基合金或导电陶瓷材料,其中所述涂层包含硬质材料保护涂层,所述硬质材料保护涂层包含不同组合物的交替层,其中所述交替层的第一组合物包含硅si,和/或所述交替层的第二组合物包含硼b。这样的涂层在耐氧化性和开裂方面表现出改进的保护。认为提供包含si和b的交替层抑制氧沿晶界的快速扩散。

交替层的第一组合物可包含铝和硅。附加地或替代地,交替层的第二组合物可包含铝和硼。例如,交替层的第一组合物可包含alsi,和/或交替层的第二组合物可包含alb。

任选地,所述包含硅的层是包含硅的金属氮化物层,诸如tialsin、cralsin、alsin、zralsin、tialsiyn、cralsiyn、alsiyn、zralsiyn。

任选地,所述包含硅的层包含0.5至30原子%的si。

任选地,所述包含硼的层是还包含一定比例的一种或多种稀土元素诸如钇的包含硼的金属氮化物层,例如tialcrbyn、cralbyn、zrcralbyn、tialcrbn、cralbn或zrcralbn。

任选地,所述包含硼的层包含0.1至20原子%的b。

任选地,交替层的双层厚度在1至20nm的范围内,优选在2至5nm的范围内。认为该厚度范围利用超晶格效应来为涂层提供改善的物理性质。

任选地,涂布的基材还包括与基材相邻的界面层,所述界面层是包含一定比例的一种或多种稀土元素任选钇的无氮金属间层。

任选地,所述基材是用于燃气涡轮发动机的机翼。

根据本发明的第二方面,提供了一种燃气涡轮机翼,包括硬质材料保护hipims涂层。hipims涂层比供选的pvd工艺的涂层更致密,且通过hipims生产的多层界面非常清晰和平坦。这使得hipims涂层由于其致密的晶界而特别有效地作为扩散的屏障。

根据本发明的第三方面,提供了一种包括第一方面的涂布的基材(其中所述基材是机翼)或根据第二方面的燃气涡轮机翼的燃气涡轮发动机。

根据本发明的第四方面,提供了一种用于在基材上制造硬质材料保护涂层的方法,所述基材包括金属或金属合金诸如高速钢、tial基合金或ni基合金或导电陶瓷材料,所述方法包括:沉积不同组合物的交替层,其中所述交替层的第一组合物包含硅si,和/或所述交替层的第二组合物包含硼b。

任选地,所述沉积可通过hipims涂布、电弧蒸发涂布和磁控溅射中的任何一种进行。

任选地,所述交替层的双层厚度在1至20nm的范围内,优选在2至5nm的范围内。

任选地,在沉积靶的前面的磁场的水平分量的强度优选在100至1500高斯,更优选在200至1000高斯,并且还更优选在300至500高斯的范围内且最优选为约400高斯。

根据本发明的第五方面,提供了hipims用于提供具有硬质材料保护涂层的燃气涡轮机翼的用途。

技术人员将理解,除非相互排斥,否则关于任何一个上述方面所描述的特征可以在必要的变更后应用于任何其他方面。此外,除非相互排斥,否则本文描述的任何特征可以应用于任何方面和/或与本文描述的任何其他特征组合。

附图说明

现在将参考附图仅通过示例的方式描述实施方案,其中:

图1是燃气涡轮发动机的剖面侧视图;

图2是基材上的层状涂层的示意性横截面;

图3是显示热重分析试验的结果的图表;

图4是热重分析试验之后涂层的显微照片;和

图5是热重分析试验之后另一个涂层的显微照片。

具体实施方式

参考图1,燃气涡轮发动机笼统地用10表示,具有主旋转轴11。发动机10在轴向流动串列中包括进气口12、推进鼓风机13、中压压缩机14、高压压缩机15、燃烧设备16、高压涡轮17、中压涡轮18、低压涡轮19和排气喷嘴20。机舱21通常围绕发动机10并限定进气口12和排气喷嘴20。

燃气涡轮发动机10以常规方式工作,使得进入进气口12的空气被鼓风机13加速以产生两股气流以提供推进推力:进入中压压缩机14的第一气流和通过旁路管22的第二气流。中压压缩机14压缩导入其的空气流,之后将该空气输送到高压压缩机15,在那里发生进一步压缩。

将从高压压缩机15排出的压缩空气导入燃烧设备16中,在那里它与燃料混合并且混合物燃烧。然后,所得到的热燃烧产物膨胀通过并从而驱动高压涡轮机17、中压涡轮机18和低压涡轮机19,之后通过喷嘴20排出以提供额外的推进推力。高压涡轮机17、中压涡轮机18和低压涡轮机19各自通过合适的互连轴分别驱动高压压缩机15、中压压缩机14和鼓风机13。

本公开可以应用的其他燃气涡轮发动机可以具有供选的配置。举例来说,这样的发动机可具有供选数量的互连轴(例如,两个)和/或供选数量的压缩机和/或涡轮机。此外,发动机可包括设置在从涡轮机到压缩机和/或鼓风机的驱动串列中的齿轮箱。

高压涡轮机17、中压涡轮机18和低压涡轮机19具有通常包括铝化钛等的机翼。

现在将参考图2讨论用于涂布tial基合金基材或其他基材诸如高速钢、ni基合金或导电陶瓷材料的系统。

图2的涂布的基材30包括具有交替的涂层34、35的基材层31。还可存在界面层32和基底层33。这样的结构可遵循基于gb2,450,950的改进的技术来制备,gb2,450,950在此引入作为参考。因此,本文仅详细讨论了与发现有利的特定要素选择和工艺参数有关的相对于现有技术的差异。

交替层34、35优选地包括不同的组合物的交替层。优选地,所述层交替地包含硅si和硼b。即,交替层中的一个包括硅但基本上没有硼,而另外层包含硼但基本上没有硅。然而,涂层可包括交替且不同的组合物,其中一种组合物包含硅,而另一组合物基本上不含硅,不一定还包含硼。类似地,涂层可包括两种交替且不同的组合物,其中一种组合物包含硼,而另一组合物基本上不含硼,不一定还包含硅。

所述交替层可以是:包含si或b的金属层,诸如alsi;或包含si或b的金属层,其还包含一定比例的一种或多种稀土元素诸如钇,诸如cralby;或包含si或b的金属氮化物层,诸如tialsin、cralsin、zralsin、alsin、tialbn、cralbn、zralbn或albn;或包含si或b的金属氮化物层,其还包含一定比例的一种或多种稀土元素诸如钇,例如tialcrbyn、cralbyn、tialcrsiyn、cralsiyn。其他稀土金属也可以代替钇,例如sc、la或ce。在一组交替层不包含si或b的情况下,它们可包括金属氮化物诸如crn、craln或cralyn。

硅可以0.5-30原子%,任选5-25原子%,进一步任选10-15原子%且优选约12原子%的范围存在于交替层的组合物中。硼可以0.1-10原子%,任选2-8原子%,进一步任选4-6原子%且优选约5原子%的范围存在于交替层的组合物中。钇可以0.1-10原子%,任选0.5-6原子%,进一步任选1-3原子%且优选约2原子%的范围存在于交替层的组合物中。铬可以20-80原子%的范围存在于交替层的一种或多种组合物中;且铝可以20-80原子%的范围存在于交替层的一种或多种组合物中。

交替层34、35可以通过任何物理气相沉积(pvd)方法生产,诸如hipims涂布、电弧蒸发涂布和直流磁控溅射(dcms)。但是,优选hipims涂布,或者hipims源与例如三个dcms源的组合,因为这可以在交替层之间提供清晰和平坦的界面,并且这被认为有助于它们作为屏障涂层的有效性。hipims可以在纳米尺度上提供不同的层,优选具有1至20nm,更优选在2至5nm的范围内的双层厚度(即,不同组合物的两个相邻层的厚度)。

在沉积期间,在沉积靶的前面的磁场的水平分量的强度优选在100至1500高斯,更优选在200至1000高斯,并且还更优选在300至500高斯的范围内且最优选为约400高斯。

在沉积期间,hipims脉冲放电的功率密度优选大于50w/cm2,更优选大于200w/cm2且还更优选为300w/cm2或更多。

在沉积期间,hipims脉冲持续时间优选在10至10,000μs,更优选在40至1,000μs,还更优选在60至100μs的范围内,且最优选约80μs。

在沉积期间,hipims脉冲间隔优选在0.2ms至1000s,更优选在1ms至1s,还更优选在1.5ms至500ms的范围内,并且甚至更优选约2.5ms。

界面层32和基底层33用于将交替层34、35粘合到基材31。具体地,与基材31相邻的界面层32可以是包含一定比例的一种或多种稀土元素的无氮金属间层。特别地,钇可以用于界面层中,优选在0.1-10原子%的范围内。界面层还可以任选地包含其他元素诸如硼。

基底层33可以具有与交替层之一相同的组成,但是具有更大的厚度以帮助将交替层粘附到下面的基材31和/或界面32。例如,基底层可以为与包含硼的交替层相同的组合物。

实施例

图3是显示使用setaramsetsys仪器在干燥空气中运行且温度攀升速率为1kmin-1以确保平衡条件的热重分析测试结果的图。样品是经研磨的γ-tial圆盘,直径为15mm,厚度为1mm,通过样品边缘附近的1mm直径的孔悬挂。对提供有不同涂层的四种不个样品进行热重分析测试,同时得到未涂布的γ-tial基材的结果。

样品按照gb2,450,950的方法生产,在“方案2”、“方案3”和“方案4”的涂层的交替层结构的沉积期间的操作条件存在以下差异:

-使用一个hipims源和三个常规的直流磁控溅射(dcms)源;

-测得在钯前面的磁场的水平分量的强度约为400高斯;

-hipims脉冲放电的功率密度为约300w/cm2

-hipims脉冲持续时间为约80微秒;

-hipims脉冲间隔为2.5毫秒

-整个过程中沉积温度为约400℃。

为不同的样品提供不同的涂层。“方案1”的涂层包括交替的cralyn和crn层,双层厚度为2.7nm,组成为19原子%的cr、29原子%的al、2原子%的y和50原子%的n。“方案2”的涂层包括交替的cralyn和alsin层,双层厚度为2.9nm,组成为14原子%的cr、22原子%的al、2原子%的y、12原子%的si和50原子%的n。“方案3”的涂层包括交替的cralbyn和alsin层,双层厚度为2.6nm,组成为12原子%的cr、19原子%的al、2原子%的y、12原子%的si、5原子%的b和50原子%的n。“方案4”的涂层包括交替的cralby和alsi层,双层厚度为5.2nm,组成为24原子%的cr、38原子%的al、4原子%的y、24原子%的si、10原子%的b。

图3说明与未涂布的样品相比,所有涂层都有改善(即质量增加方面的减少)。此外,包括金属氮化物交替层的所有方案都比方案4进行得更好,而方案4则没有。尽管如此,与未涂布的样品相比,在交替层中包含b和si的方案4仍然提供了改进。

此外,与方案1相比在方案2和3的涂层实现的改进之间观察到令人意外的差异。这些方案都涉及交替的氮化物层,但方案1在交替层中不包括b或si。高温下的改进特别显著,这为在高温下操作的部件诸如燃气涡轮机翼提供了益处。

图4是热重分析试验后方案1样品表面的显微照片。图5是热重分析试验后方案3样品表面的显微照片。从这两个图中可以看出,方案1样品在涂层中显示了不希望的裂缝和基材氧化物。相比之下,方案3样品没有显示裂缝或基材氧化物,证明它仍然是良好的扩散屏障,如热重分析测试所预期的那样。预期对于其他基材金属或金属合金诸如高速钢、其他tial基合金或ni基合金,将观察到类似的结果。

不希望受理论束缚,认为用于在纳米尺度上产生的双层厚度在1至20nm、更优选在2至5nm范围内的不同层的工艺条件通过利用超晶格效应提供改善的物理性质。该双层厚度允许剪切以产生层内位错,但防止该位错跨越层边界,并因此阻止移动。这导致硬度增加。在更大的厚度下,层之间的相互作用减小,并且位错可以通过层蔓延,从而降低硬度。在更小的厚度下,完全阻止了位错形成。

仍然不希望受理论束缚,认为涂层的不同元素提供了不同的优点,当组合时,有助于涂层的所观察的性能。已知cr、al和si形成致密的氧化物皮,其提供更好的防止氧向内扩散的保护。致密氧化物与通过燃烧航空燃料产生的侵蚀性熔融盐诸如na2so4、nacl以及v2o5和so2反应较慢。因此,认为包含这些元素有助于实现更长的防热腐蚀侵蚀的保护。钇对氧具有高亲和力,因此在高温下产生稳定的氧化物。认为包含钇改善了氧化物皮与基材的粘附性并减少了氧化物皮剥落。此外,通过在基材和层状涂层之间的界面中包含具有较大原子的钇,认为在界面中产生可承受水平的压缩应力,这会阻碍疲劳裂缝形成。本体钛基合金中的少量硼可改善其延展性,所以认为包含硼可以帮助减少涂层由于热膨胀系数不匹配而裂开,以及在循环(疲劳)负载条件下减少涂布基材中的裂缝形成的概率。硼化物也显示出高耐热腐蚀性。此外,所有的cr、al、si、y和b是具有小原子半径的相对轻的元素,这意味着它们在离子辅助沉积条件中在冷凝表面上具有高ad-atom迁移率。认为这改善了涂层密度。还认为在晶界处具有元素诸如b和si以抑制氧沿这些途径的快速扩散是有利的。通过从交替的溅射靶依次递送这些元素,可以提供多个清晰的用于扩散和位错移动的屏障。

应当理解,本发明不限于上述实施方案,并且在不偏离本文描述的概念的情况下可以进行各种修改和改进。除非相互排斥,否则可以单独地或与任何其他特征组合地使用这些特征,并且本公开延伸到并包括本文描述的一个或多个特征的所有组合和子组合。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1