一种具有耐高温涂层的3D玻璃热弯模具及其制备方法与流程

文档序号:18462467发布日期:2019-08-17 02:09阅读:294来源:国知局

本发明涉及3d玻璃热弯技术领域,具体涉及一种具有涂层的3d玻璃热弯模具及其制备方法。



背景技术:

随着手机外壳“去金属化”的进程加快,5g通信及无线充电技术的快速发展。单从技术上而言,没有电磁屏蔽效应的玻璃和陶瓷等非金属材料取代金属材料作为手机壳将是行业大趋势;双面玻璃+金属中框已成为当下手机外壳设计的主流;3d玻璃盖板凭借散热性、光泽度和耐磨方面的优异性能和舒适手感,成为近年来众多品牌旗舰手机的首选。目前国内全行业拥有的3d玻璃盖板产能已突破3亿片,全行业的3d热弯机保有量已接近3000台的水平,而3d热弯模具是3d玻璃加工中不可或缺的一部分,并且属于耗材;3d玻璃热弯模具中最常用的材料为石墨材料,石墨因其具有耐腐蚀、良热导、耐高温以及与玻璃接近的热膨胀系数等特性,所以成为了3d玻璃热弯模具的首选材料;然而石墨成型后表面疏松多孔,柔软不耐磨损等特性,使得一块石墨热弯模具可加工的3d玻璃非常有限,通常单块石墨热弯模具可加工的3d玻璃不足2000片,并且随着加工次数的增加,模具表面氧化、孔隙中的杂质颗粒析出、模具磨损带来的杂质麻点、尺寸超差等问题导致3d玻璃热弯后合格率一直处在较低的水平;并且石墨模具生产周期长、产能有限;所以目前石墨模具已正在成为3d玻璃行业的瓶颈。鉴于上述情况,现有的3d薄膜热压模具基体表面性能存在很大的改进空间;公开号为cn109385597a的发明申请,公开了一种耐磨无氢dlc镀层的压缩压缩机滑片及其制备方法,包括滑片基体和附着在滑片基体表面的薄膜,薄膜由内到外依次为附着于滑片基体表面的氮化层、金属过渡层和无氢dlc层机滑片。

改变材料表面特性的手段非常多,真空镀膜技术是常见的一种方法;在一些基材上,镀一层薄薄的涂层,就能使基体材料特性发生巨大变化,增加许多新的物理和化学性能。可以增加基体材料表面硬度的涂层常见的有tin、tinc、altin等硬质涂层,但是这些材料的表面摩擦系数高,容易与玻璃黏连;另外3d玻璃热弯的模具的工作环境恶劣,通常需要在接近800℃温度下工作,这些常见的硬质涂层在高温时会发生氧化脱落,失去原来的特性。因此,对3d玻璃热弯模具表面性能进行优化,增加其表面的硬度、洁净度及延长模具使用寿命成为一种3d玻璃热弯行业的迫切得需要。



技术实现要素:

本发明所要解决的技术问题是提供一种表面摩擦系数低、硬度高、光洁度高以及致密性好的3d玻璃热弯模具及其制备方法。

为了解决上述技术问题,本发明采用的技术方案是:一种具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的耐高温涂层;所述耐高温涂层从内到外依序为附着于模具基体表面的耐高温附着层、附着于耐高温附着层上的无氢dlc层。

本发明的关键点在于:经过多次的试验测试验证,找到了一种连接无氢dlc层和模具基体的耐高温附着层,使3d热弯模具上的无氢dlc层能够承受住950℃(氮气保护环境)的高温不氧化分解、脱落;传统的类金刚石涂层膜系中,通常以金属ti、cr、w或者它们的碳、氮化合物来作为与基材相连的附着层,但是在3d玻璃热弯模具中若以这些材料作为打底层,当温度接近400℃时类金刚石涂层便会开始出现碳化和脱落;本发明中的耐高温附着层,与模具基体表面以及无氢dlc层都有超强的附着力,不仅能使无氢dlc层牢固地附着在模具基体上,而且提升了无氢dlc层能承受的温度极限;本发明中的耐高温附着层,膜层硬度适中、表面光洁,无氢dlc层沉积在该附着层上,可使整个涂层的应力大大降低,涂层不会因为工作温度急剧升高,模具膨胀和膜层应力改变而脱落;正是由于这层耐高温附着层的存在,使得无氢dlc这种高硬度、低摩擦系数、耐腐蚀、抗磨损的涂层能在3d玻璃热弯的高温环境中使用并发挥优势作用。

耐高温附着层:为非金属陶瓷薄膜,是利用si、sial等靶材,通过磁控溅射镀膜技术,在靶材溅射过程中通入乙炔、氮气等反应气体而生成的陶瓷薄膜;耐高温附着层,不具备太高的耐磨性,但它硬度和应力适中,与模具基体附着力非常好;耐高温附着层,表面光滑、应力小,无氢dlc层在其上面容易生长,两者有非常好的结合力,可以保证模具上的涂层在3d玻璃热弯工作条件下不脱落,不发生性能改变。

无氢dlc层:dlc层即类金刚石涂层(diamond-likecarbon,dlc),它是一种亚稳态长程无序的非晶碳薄膜,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键(在含氢dlc薄膜中还存在一定数量的c-h键),正因为这种特殊的构型使它兼具了金刚石和石墨的优良特性。dlc薄膜,按照制备工艺的不同,可分为无氢dlc薄膜和含氢dlc薄膜两类;无氢dlc薄膜,大多以物理气相沉积的方式制备,常见的制备方式有真空阴极电弧沉积和脉冲激光沉积。含氢dlc薄膜大多以化学气相沉积的方法制备而成,通常在沉积过程中会通入c2h2气体,所以其构型中会含有一定数量的c-h键;无氢类金刚石薄膜有a-c碳膜(主要由sp3和sp2键碳原子相互混杂的三维网络构成)和非晶四面体碳膜(tetrahedralcarbon,简称ta-c,主要由超过80%的sp3键碳原子为骨架构成)两种;含氢类金刚石薄膜(a-c:h),其三维网络结构中含有一定数量的c-h键,以sp2键占据主要数量,相对ta-c通常会柔软些;并且c:h键在高温下容易分解,所以含氢dlc薄膜比无氢dlc薄膜的耐温性能和抗氧化性能一般要差。

本发明还提供上述具有耐高温涂层的3d玻璃热弯模具制备方法,包括以下步骤:

(1)模具基体表面清洁处理:对模具基体表面利用机械力擦拭或溶剂清洗处理;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空腔室中,利用等离子体对其进行辉光清洗;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入工艺气体,开启中频磁控溅射电源,调整中频磁控溅射电源电流,完成耐高温附着层的沉积;

(4)沉积无氢dlc层:利用阴极真空电弧镀膜技术或脉冲激光沉积(pld)技术使碳靶蒸发形成碳原子团和碳离子团,碳离子向加载负偏压的基底加速运动,最终碳离子附着沉积在模具表面的耐高温附着层上,形成无氢的非晶碳薄膜。

本发明的优点和有益效果:

1、本发明的3d热弯模具,基体首先经过表面清洁处理,然后在基体表面沉积一层耐高温附着力层,耐高温附着层能提高基体于涂层间的结合强度;紧接着在耐高温附着层上沉积一层高硬度的无氢dlc层;与不带涂层的3d热弯模具相比,本发明中的模具工作面表面硬度提升了100倍,同时由于氢dlc层的硬度高,增强了模具的抗磨损能力,使模具的使用寿命延长了2.5倍;模具上覆盖涂层后能够封住模具基材的孔隙,增加了模具表面的光洁度,模具表面的杂质颗粒大大减少,减少了3d玻璃热弯时的麻点、凹坑等不良,3d玻璃热弯良率提高10%。

2、与传统的3d玻璃热弯模具相比,本发明的3d玻璃热弯模具表面因为具有无氢dlc涂层,所以本发明模具具备自润滑特性,热弯时玻璃片不会与模具黏连,容易脱模。普通3d玻璃热弯模具使用寿命为2000次左右,本发明中的3d玻璃热弯模具使用寿命达到5000次以上。

具体实施方式

为详细阐述本发明的技术内容,所实现的目的及效果,下面结合具体实施方式进一步予以说明。

实施例1:

具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的涂层,模具基体为石墨材料,所述涂层自模具基体表面起,第一层为sic耐高温附着层,第二层为附着在sic层上的无氢dlc层。

上述模具基体表面上的涂层制备方法包括以下具体步骤:

(1)模具基体表面清洁:用酒精超声清洗30分钟,然后放入45℃的真空烤箱干燥1hr;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空镀膜设备工件夹具上,通入氩气30cssm,先后开启负偏压电源和阳极层离子源,偏压电压设定为100v,离子源功率设定为600w,模具基片在等离子体辉光中清洗30min;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入氩气200sccm、乙炔100sccm,开启si靶源体上的中频磁控溅射电源,调整中频磁控溅射电源电流到15a,沉积70min,后关闭溅射电源,停止气体通入,形成耐高温附着层;

(4)沉积无氢dlc层:

调整偏压电压到1000v,开启阴极电弧源,调节电流到100a,沉积300min后关闭电弧源和偏压电源,无氢dlc层沉积结束;阴极电弧源的靶材为碳靶,阴极电弧使碳蒸发产生碳原子和碳离子,碳离子在磁场和基体负偏压的共同作用下,高速撞击到模具基体表面,沉积成无氢dlc层。

上述模具上涂层的耐高温附着层为sic薄膜,厚度0.5μm,硬度840hv;无氢dlc层厚度3.0μm,硬度3530hv,摩擦系数0.09;

所使用到的设备有:酒精清洗槽、真空干燥箱、pic镀膜机;pic镀膜机主要包括真空抽气机系统,装载工件的可移出式转架系统、工艺气体供应系统、等离子体清洗部件、中频磁控溅射沉积部件、阴极电弧沉积部件;

上述模具经测试性能如下:

(1)耐高温测试:在氮气保护条件下,950℃高温烘烤2hr;

测试结果:涂层表面光洁,涂层颜色无明显改变,百格5b;

(2)摩擦磨损测试:5750橡皮测试机,000#钢丝棉,负重1000g,行程12.7mm;

测试结果:摩擦10000回合无划痕;

(3)使用寿命测试:3d玻璃热弯机,热弯模具室温度710℃,氮气保护氛围;

测试结果:连续使用5000次,模具表面无碳化、无涂层脱落。

实施例2

具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的涂层,模具基体为石墨材料,所述涂层自模具基体表面起,第一层为sic耐高温附着层,第二层为附着在sic层上的无氢dlc层。

上述模具基体表面上的涂层制备方法包括以下具体步骤:

(1)模具基体表面清洁:用酒精超声清洗30分钟,然后放入45℃的真空烤箱干燥1hr;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空镀膜设备工件夹具上,通入氩气30cssm,先后开启负偏压电源和阳极层离子源,偏压电压设定为100v,离子源功率设定为600w,模具基片在等离子体辉光中清洗30min;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入氩气200sccm、乙炔100sccm,开启si靶源体上的中频磁控溅射电源,调整中频磁控溅射电源电流到15a,沉积280min后关闭溅射电源,停止气体通入,形成耐高温附着层;

(4)沉积无氢dlc层:

开启阴极电弧源,调节电流到100a,沉积80min后关闭电弧源,无氢dlc层沉积结束;阴极电弧源的靶材为碳靶,阴极电弧使碳蒸发产生碳原子和碳离子,碳离子在磁场和基体负偏压的共同作用下,高速撞击到模具基体表面,沉积成无氢dlc层。

上述模具上涂层的耐高温附着层为sic薄膜,厚度2.0μm,硬度900hv;无氢dlc层厚度0.5μm,硬度5100hv,摩擦系数0.11;

所使用到的设备有:酒精清洗槽、真空干燥箱、pic镀膜机;pic镀膜机主要包括真空抽气机系统,装载工件的可移出式转架系统、工艺气体供应系统、等离子体清洗部件、中频磁控溅射沉积部件、阴极电弧沉积部件;

上述模具经测试性能如下:

(1)耐高温测试:在氮气保护条件下,950℃高温烘烤2hr;

测试结果:涂层表面光洁,涂层颜色无明显改变,百格5b;

(2)摩擦磨损测试:5750橡皮测试机,000#钢丝棉,负重1000g,行程12.7mm;

测试结果:摩擦10000回合无划痕;

(3)使用寿命测试:3d玻璃热弯机,热弯模具室温度710℃,氮气保护氛围;

测试结果:连续使用5000次,模具表面无碳化、无涂层脱落。

实施例3:

具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的涂层,模具基体为石墨材料,所述涂层自模具基体表面起,第一层为sic-sin-sic耐高温附着层,第二层为附着在sic-sin-sic层上的无氢dlc层。

上述基体表面上的涂层制备方法包括以下具体步骤:

(1)模具基体表面清洁:用酒精超声清洗30分钟,然后放入45℃的真空烤箱干燥1hr;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空镀膜设备工件夹具上,通入氩气30cssm,先后开启负偏压电源和阳极层离子源,偏压电压设定为100v,离子源功率设定为600w,模具基片在等离子体辉光中清洗30min;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入氩气200sccm、乙炔100sccm,开启si靶源体上的中频磁控溅射电源,调整中频磁控溅射电源电流到15a,沉积100min,然后通入氮气80sccm,停止通入乙炔,沉积80min,再接着通入乙炔100sccm,停止通入氮气,沉积60min后关闭溅射电源,停止气体通入,形成耐高温附着层;;

(4)沉积无氢dlc层:

开启阴极电弧源,调节电流到100a,沉积50min后关闭电弧源,无氢dlc层沉积结束;阴极电弧源的靶材为碳靶,阴极电弧使碳蒸发产生碳原子和碳离子,碳离子在磁场和基体负偏压的共同作用下,高速撞击到模具基体表面,沉积成无氢dlc层。

上述模具上涂层的耐高温附着层为sic-sin-sic薄膜,厚度5.0μm,硬度1000hv;无氢dlc层厚度0.3μm,硬度5100hv,摩擦系数0.12;

所使用到的设备有:酒精清洗槽、真空干燥箱、pic镀膜机;pic镀膜机主要包括真空抽气机系统,装载工件的可移出式转架系统、工艺气体供应系统、等离子体清洗部件、中频磁控溅射沉积部件、阴极电弧沉积部件;

上述模具经测试性能如下:

(1)耐高温测试:在氮气保护条件下,950℃高温烘烤2hr;

测试结果:涂层表面光洁,涂层颜色无明显改变,百格5b;

(2)摩擦磨损测试:5750橡皮测试机,000#钢丝棉,负重1000g,行程12.7mm;

测试结果:摩擦10000回合无划痕;

(3)使用寿命测试:3d玻璃热弯机,热弯模具室温度710℃,氮气保护氛围;

测试结果:连续使用5000次,模具表面无碳化、无涂层脱落。

实施例4:

具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的涂层,模具基体为碳化硅材料,所述涂层自模具基体表面起,第一层为sialc耐高温附着层,第二层为附着在sialc层上的无氢dlc层。

上述基体表面上的涂层制备方法包括以下具体步骤:

(1)模具基体表面清洁:用酒精超声清洗30分钟,然后放入45℃的真空烤箱干燥1hr;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空镀膜设备工件夹具上,通入氩气30cssm,先后开启负偏压电源和阳极层离子源,偏压电压设定为100v,离子源功率设定为600w,模具基片在等离子体辉光中清洗30min;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入氩气200sccm、乙炔110sccm,开启sial靶源体上的中频磁控溅射电源,调整中频磁控溅射电源电流到15a,沉积270min后关闭溅射电源,停止气体通入,形成耐高温附着层;

(4)沉积无氢dlc层:

开启阴极电弧源,调节电流到100a,沉积80min后关闭电弧源,无氢dlc层沉积结束;阴极电弧源的靶材为碳靶,阴极电弧使碳蒸发产生碳原子和碳离子,碳离子在磁场和基体负偏压的共同作用下,高速撞击到模具基体表面,沉积成无氢dlc层。

上述模具上涂层的耐高温附着层为sialc薄膜,厚度2.0μm,硬度940hv;无氢dlc层厚度0.5μm,硬度5100hv,摩擦系数0.10;

所使用到的设备有:酒精清洗槽、真空干燥箱、pic镀膜机;pic镀膜机主要包括真空抽气机系统,装载工件的可移出式转架系统、工艺气体供应系统、等离子体清洗部件、中频磁控溅射沉积部件、阴极电弧沉积部件;

上述模具经测试性能如下:

(1)耐高温测试:在氮气保护条件下,950℃高温烘烤2hr;

测试结果:涂层表面光洁,涂层颜色无明显改变,百格5b;

(2)摩擦磨损测试:5750橡皮测试机,000#钢丝棉,负重1000g,行程12.7mm;

测试结果:摩擦10000回合无划痕;

(3)使用寿命测试:3d玻璃热弯机,热弯模具室温度710℃,氮气保护氛围;

测试结果:连续使用5000次,模具表面无碳化、无涂层脱落。

实施例5:

具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的涂层,模具基体为石墨材料,所述涂层自模具基体表面起,第一层为sic耐高温附着层,第二层为附着在sic层上的无氢dlc层。

上述基体表面上的涂层制备方法包括以下具体步骤:

(1)模具基体表面清洁:用酒精超声清洗30分钟,然后放入45℃的真空烤箱干燥1hr;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空镀膜设备工件夹具上,通入氩气30cssm,先后开启负偏压电源和阳极层离子源,偏压电压设定为100v,离子源功率设定为600w,模具基片在等离子体辉光中清洗30min;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入氩气200sccm、乙炔100sccm,开启si靶源体上的中频磁控溅射电源,调整中频磁控溅射电源电流到15a,沉积280min后关闭溅射电源,停止气体通入,形成耐高温附着层;

(4)沉积无氢dlc层:

调整偏压电压到100v,开启脉冲激光电源,使激光聚焦到碳靶上,沉积20min后结束沉积,无氢dlc层制备完成;脉冲激光沉积原理是:在激光的高能量密度的作用下使碳靶蒸发产生碳原子和碳离子,碳离子在磁场和基体负偏压的共同作用下,高速射向模具基体表面附着沉积,形成dlc薄膜;

上述模具上涂层的耐高温附着层为sic薄膜,厚度2.0μm,硬度1000hv;无氢dlc层厚度0.3μm,硬度5800hv,摩擦系数0.13;

所使用到的设备有:酒精清洗槽、真空干燥箱、pid镀膜机;pid镀膜机主要包括真空抽气机系统,装载工件的可移出式转架系统、工艺气体供应系统、等离子体清洗部件、中频磁控溅射沉积部件、脉冲激光沉积部件;

上述模具经测试性能如下:

(1)耐高温测试:在氮气保护条件下,950℃高温烘烤2hr;

测试结果:涂层表面光洁,涂层颜色无明显改变,百格5b;

(2)摩擦磨损测试:5750橡皮测试机,000#钢丝棉,负重1000g,行程12.7mm;

测试结果:摩擦10000回合无划痕;

(3)使用寿命测试:3d玻璃热弯机,热弯模具室温度710℃,氮气保护;

测试结果:连续使用5000次,模具表面无碳化、无涂层脱落。

实施例6:

具有耐高温涂层的3d玻璃热弯模具,包括模具基体和附着在模具基体表面上的涂层,模具基体为石墨材料,所述涂层自模具基体表面起,第一层为sialc耐高温附着层,第二层为附着在sialc层上的无氢dlc层。

上述基体表面上的涂层制备方法包括以下具体步骤:

(1)模具基体表面清洁:用酒精超声清洗30分钟,然后放入45℃的真空烤箱干燥1hr;

(2)模具基体等离子体清洗:将步骤(1)得到的模具基体放入真空镀膜设备工件夹具上,通入氩气30cssm,先后开启负偏压电源和阳极层离子源,偏压电压设定为100v,离子源功率设定为600w,模具基片在等离子体辉光中清洗30min;

(3)沉积耐高温附着层:步骤(2)完成后,关闭离子源电源,通入氩气200sccm、乙炔100sccm,开启sial靶源体上的中频磁控溅射电源,调整中频磁控溅射电源电流到15a,沉积280min后关闭溅射电源,停止气体通入,形成耐高温附着层;

(4)沉积无氢dlc层:

调整偏压电压到100v,开启脉冲激光电源,使激光聚焦到碳靶上,沉积20min后结束沉积,无氢dlc层制备完成;脉冲激光沉积原理是:在激光的高能量密度的作用下使碳靶蒸发产生碳原子和碳离子,碳离子在磁场和基体负偏压的共同作用下,高速射向模具基体表面附着沉积,形成dlc薄膜;

上述模具上涂层的耐高温附着层为sialc薄膜,厚度2.0μm,硬度1100hv;无氢dlc层厚度0.3μm,硬度5765hv,摩擦系数0.11;

所使用到的设备有:酒精清洗槽、真空干燥箱、pid镀膜机;pid镀膜机主要包括真空抽气机系统,装载工件的可移出式转架系统、工艺气体供应系统、等离子体清洗部件、中频磁控溅射沉积部件、脉冲激光沉积部件;

上述模具经测试性能如下:

(1)耐高温测试:在氮气保护条件下,950℃高温烘烤2hr;

测试结果:涂层表面光洁,涂层颜色无明显改变,百格5b;

(2)摩擦磨损测试:5750橡皮测试机,000#钢丝棉,负重1000g,行程12.7mm;

测试结果:摩擦10000回合无划痕;

(3)使用寿命测试:3d玻璃热弯机,热弯模具室温度710℃,氮气保护;

测试结果:连续使用5000次,模具表面无碳化、无涂层脱落。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1