一种碳纤维基复合材料及其制备方法与流程

文档序号:20371851发布日期:2020-04-14 13:18阅读:355来源:国知局
一种碳纤维基复合材料及其制备方法与流程

本发明涉及碳纤维复合材料技术领域,具体涉及一种碳纤维基复合材料及其制备方法。



背景技术:

碳纤维诞生于1950s末期,由于其无与伦比的优异性能,如高比强度、高比模量、密度小、耐高温、耐辐射、韧性好、导电导热性好、热膨胀系数小等,而引起人们的广泛关注。然而,与金属材料的优良的导电性、较高的耐磨性、抗高温氧化以及表面可加工性相比,碳纤维复合材料这方面性能就相差很多。因此目前碳纤维的主要用途是作为增强材料,与树脂、金属、陶瓷及炭等复合,制造先进复合材料。碳纤维与金属材料复合,既继承了碳纤维的高比强度、高比模量和良好的韧性等优良性能,又能保持金属的特性;但碳纤维与许多金属的润湿性很差,当复合材料承受一定载荷时,容易造成碳纤维剥落和脱离。因此,如何解决碳纤维与金属之间的界面结合问题就是制备金属基碳纤维复合材料的关键。在解决界面问题上,现有的办法主要是金属基体合金化和碳纤维表面金属化。其中,碳纤维表面金属化是目前研究最多的一类方法,其主要的方式有电镀和化学镀,其他还有气相沉积法和离子溅射等方法。电镀法制备碳纤维镀层具有设备简单、镀速快、成本较低、污染小等优点,是一种传统的表面处理方法,而化学镀法具有经济合理、操作性强等优点,是一种新型的表面改性方法。

然而,上述碳纤维表面金属化技术仍存在以下问题:

(1)碳纤维具有疏水性,每束碳纤维都有数千根单丝,当外层纤维率先沉积上金属后,碳纤维外层形成屏蔽电场,使内部纤维难以镀上金属,因此造成碳纤维表面电镀层黑心,影响复合材料的均匀性和粘结强度,从而限制材料的应用。

(2)碳纤维表面化学镀,成本高、工艺繁琐、效率低,而且会在一定程度上对环境产生污染。由于化学镀所得的渡层往往容易受到镀液成本、操作条件等因素影响,工业生产中,镀层品质不稳定。

(3)实际应用中,碳纤维以板材或管材的形状应用较多,现有公开信息显示碳纤维表面金属化主要以在单根线性的碳纤维上的研究居多,离实际应用的距离较远。

(4)不论是电镀还是化学镀,在碳纤维上沉积的镀层厚度都非常有限,一般不超过5μm,难以满足工程应用。

基于目前的碳纤维表面金属化技术存在的问题,有必要设计一种厚度可变、成分可变的管型或板型碳纤维复合材料结构及其制备方法,不仅解决了金属层与碳纤维结合力差的问题,还使金属化后表面沉积的涂层厚度及成分可变,满足工程化需求。



技术实现要素:

本发明的目的在于克服现有技术的不足之处而提供一种碳纤维基复合材料及其制备方法,该碳纤维基复合材料中碳纤维基体与铜涂层具有良好的结合力,且金属化后表面沉积的涂层厚度及成分可变,满足工程化需求。

为实现上述目的,本发明采取的技术方案如下:

一种碳纤维基复合材料,依次包括碳纤维基体、底涂层和面涂层;所述碳纤维基体为碳纤维管或碳纤维板,所述底涂层为采用电弧离子镀沉积的铜涂层,所述面涂层为金属涂层或金属陶瓷涂层。

本发明的碳纤维基复合材料采用底涂层+面涂层的设计,以铜涂层作为底涂层,确保了碳纤维基复合材料的界面结合力稳定,以金属涂层或金属陶瓷涂层作为面涂层,面涂层的成分、厚度和工艺根据实际需要进行选择,确保了复合材料的功能性,最终实现多样化应用。

本发明采用电弧离子镀工艺在碳纤维基体表面沉积铜涂层,电弧离子镀工艺对碳纤维基体的形状限制小,碳纤维基体可以为碳纤维管或碳纤维板,铜涂层均能均匀沉积在其表面,有效提高了碳纤维复合材料界面结合力,且沉积效率较高,可镀工件形状大小取决于镀膜设备腔体体积。

优选地,所述金属涂层为金属基导电涂层或金属基高温抗氧化涂层。

本发明还提供了上述碳纤维基复合材料的制备方法,包括以下步骤:

(1)对碳纤维基体进行去胶处理;

(2)将去胶后的碳纤维基体置于真空阴极电弧离子镀机,并固定在工件架上,对碳纤维基体表面进行离子源轰击清洗,采用电弧离子镀在碳纤维基体表面沉积铜涂层,电弧离子镀的工艺参数为:靶材为cu靶;辅助气体为惰性气体,气压为2-6pa,纯度不低于99.9%;电磁线圈电压为10-30v,靶电流为50-200a,负偏压为20-100v,工件架的公转速度为2-5r/min,镀膜时间为400-600min,铜涂层厚度为10-15μm;

(3)在铜涂层的表面制备金属涂层或金属陶瓷涂层,得到所述碳纤维基复合材料。

本发明采用电弧离子镀工艺,并优化相关工艺参数选择,在碳纤维基体表面沉积铜涂层,电弧离子镀工艺对碳纤维基体的形状限制小,铜涂层能均匀沉积在其表面,效率较高,可镀工件形状大小取决于镀膜设备腔体体积。

优选地,所述步骤(2)中,所述惰性气体为n2和ar,气压为3-4pa,电磁线圈电压为15-25v,靶电流为100-150a,负偏压为50-80v,工件架的公转速度为3-4r/min,镀膜时间为420-480min。

优选地,所述步骤(1)中,去胶处理的温度为350℃-400℃,保温时间不超过30min。

优选地,所述步骤(3)中,采用高压气体动力喷涂工艺在铜涂层的表面制备金属基导电涂层,其过程为:在室温条件下,惰性压缩气体通过管道与喷枪连接,从喷枪中通过,同时向喷枪中注入原料粉末,惰性气体与原料粉末在喷枪中混合和加热后,加热至一定温度后,经过喷嘴原料粉末借助压缩气体以高速、完全固态的状态碰撞修复面,原料粉末与电极体同时发生剧烈的塑性变形后沉积在电极体的表面,进而通过粉末的堆积效应形成具有高致密性、高热稳定性和高强结合的涂层;喷涂过程中,喷枪和电极体保持匀速相对移动,每沉积一层,称为一个循环或一遍;

其中,高压气体动力喷涂工艺中的粒子氧化程度、撞击基体后的变形程度,是影响涂层结合强度的关键因素;加热温度过高,造成粉末氧化,加热温度过低,粉末难以变形;粉末粒径、喷嘴尺寸、喷枪距离、压缩气体压力等参数选择,均影响粒子撞击基体的速度,从而影响粒子的变形程度。综合考虑上述因素,本发明高压气体动力喷涂工艺的工艺参数优选为:原料粉末为铜粉或银粉,原料粉末的粒径为5-63μm,压缩气体为氩气或氮气,压缩气体的压力为2-7mpa,压缩气体和原料粉末的加热温度为200-800℃,喷嘴的类型为标准喷涂喷嘴,出口直径为6-12mm,喷枪枪口与电极体表面的距离为10-70cm,粉末沉积速率为100-700μm/每循环,有利于提高涂层结合强度。

优选地,所述步骤(3)中,原料粉末的粒径为10-30μm,压缩气体和原料粉末的加热温度为250-350℃,粉末沉积速率为300-400μm/每循环,有利于提高涂层结合强度。

优选地,所述步骤(3)中,采用大气等离子喷涂工艺在铜涂层的表面制备金属基高温抗氧化涂层。其中,大气等离子喷涂工艺中的粒子氧化、熔化程度、撞击基体后的变形程度,是影响涂层结合强度的关键因素;加热温度过高,造成粉末氧化,加热过低,粉末熔化不充分;粉末粒径、喷嘴尺寸、喷枪距离、压缩气体压力等,均影响粒子撞击基体的速度,从而影响粒子的变形程度。因此,大气等离子喷涂工艺的具体参数如下:喷涂原料为ni基合金或co基合金,喷涂原料的粒度为50-200μm,电流为450-550a,电压为65-75v,工作气体为ar,工作气体速度为30-70slpm,热源气体为h2,热源气体速度为4-8slpm,喷涂距离为80-150mm,金属基高温抗氧化涂层的厚度为150-200μm,有利于提高涂层结合强度。

优选地,所述步骤(3)中,采用大气等离子喷涂工艺在铜涂层的表面制备金属陶瓷涂层,大气等离子喷涂工艺的具体参数为:喷涂原料为wc或sin,电流为550-700a,工作气体为ar,工作气体速度为30-70slpm,热源气体为h2,热源气体速度为4-8slpm,喷涂距离为80-150mm,金属陶瓷涂层的厚度为150-300μm,有利于提高涂层结合强度。

与现有技术相比,本发明的有益效果为:

(1)本发明的碳纤维基复合材料采用底涂层+面涂层的设计,以铜涂层作为底涂层,确保了碳纤维基复合材料的界面结合力稳定,以金属涂层或金属陶瓷涂层为面涂层,面涂层的成分、厚度和工艺根据实际需要进行选择,确保了复合材料的功能性,最终实现多样化应用。

(2)本发明采用电弧离子镀工艺在碳纤维基体表面沉积铜涂层,电弧离子镀工艺对碳纤维基体的形状限制小,碳纤维基体可以采用碳纤维管或碳纤维板,铜涂层均能均匀沉积在其表面,铜涂层组织结构均匀,且与基体结合强度高。

(3)本发明的制备工艺简单易实现,重复性好,可生产性强,涂层品质稳定,厚度可变,解决了传统复合材料制备工艺镀层质量、厚度受限的问题。

附图说明

图1为本发明所述的碳纤维基复合材料的结构示意图,图中1-碳纤维基体、2-底涂层和3-面涂层。

具体实施方式

为更好地说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明进一步说明。本领域技术人员应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

实施例1

一种碳纤维基复合材料,如图1所示,依次包括碳纤维基体1、底涂层2和面涂层3;所述碳纤维基体1为碳纤维板,所述底涂层2为采用电弧离子镀沉积的铜涂层,所述面涂层3为银导电涂层。

本实施例的碳纤维基复合材料的制备方法,包括以下步骤:

1)对碳纤维板进行高温加热去胶处理:将箱式电炉升温为350度,将碳纤维板置于炉中,保温30min,随炉冷却;

2)将上述碳纤维板置于真空阴极电弧离子镀机中,固定在工件架上,工件架可以公转,也可以自转,随后进行炉内清洗,利用离子在高负偏压下对碳纤维板表面轰击进行清洗,采用电弧离子镀在碳纤维基体表面沉积厚度为10~15μm的铜涂层,电弧离子镀的具体参数如下:靶材为cu靶,辅助气体为n2和ar,气压为3pa,纯度99.99%,电磁线圈电压为20v,靶电流为100a,负偏压为50v,工件公转速度为3r/min,镀膜时间为420min,沉积膜厚控制在10-15μm;

3)保持上述铜涂层表面洁净,采用高压气体动力喷涂工艺在铜涂层的表面制备银导电涂层,具体工艺参数如下:

使用日本等离子会社ps-1000空气动力喷涂系统,安装laval喷嘴后,以氮气压缩气体作为工作载气,工作压力为6mpa;喷涂原材料为银粉,粉末粒径为25-30μm;喷枪枪口与电极表面的距离为40cm,银粉沉积速率控制在120μm/每循环,根据涂层厚度预估喷涂循环为8循环;用于带动银粉的载气的工作温度控制在250-300℃;喷涂8循环后停止喷涂,涂层厚度为200μm。

本实施例碳纤维基复合材料的界面结合强度>30mpa。

实施例2

一种碳纤维基复合材料的结构和制备方法与实施例1基本相同,不同之处在于,本实施例的碳纤维基复合材料的制备方法的步骤2)中:

电弧离子镀的具体参数如下:靶材为cu靶,辅助气体为n2和ar,气压为4pa,纯度99.99%,电磁线圈电压为25v,靶电流为150a,负偏压为80v,工件公转速度为4r/min,镀膜时间为480min,沉积膜厚控制在10-15μm。

本实施例碳纤维基复合材料的界面结合强度>30mpa。

实施例3

一种碳纤维基复合材料的结构和制备方法与实施例1基本相同,不同之处在于,本实施例的碳纤维基复合材料的制备方法的步骤2)中:

电弧离子镀的具体参数如下:靶材为cu靶,辅助气体为n2和ar,气压为2pa,纯度99.99%,电磁线圈电压为10v,靶电流为50a,负偏压为20v,工件公转速度为3r/min,镀膜时间为400min,沉积膜厚控制在10-15μm。

本实施例碳纤维基复合材料的界面结合强度为<10mpa。

实施例4

一种碳纤维基复合材料的结构和制备方法与实施例1基本相同,不同之处在于,本实施例的碳纤维基复合材料的制备方法的步骤2)中:

电弧离子镀的具体参数如下:靶材为cu靶,辅助气体为n2和ar,气压为6pa,纯度99.99%,电磁线圈电压为30v,靶电流为200a,负偏压为100v,工件公转速度为5r/min,镀膜时间为600min,沉积膜厚控制在10-15μm。

本实施例碳纤维基复合材料的界面结合强度为<10mpa。

实施例5

一种碳纤维基复合材料,依次包括碳纤维基体1、底涂层2和面涂层3;所述碳纤维基体1为碳纤维板,所述底涂层2为采用电弧离子镀沉积的铜涂层,所述面涂层3为金属基高温抗氧化涂层。

本实施例的碳纤维基复合材料的制备方法,包括以下步骤:

1)对碳纤维板进行高温加热去胶处理:将箱式电炉升温为350度,将碳纤维板置于炉中,保温30min,随炉冷却;

2)将上述碳纤维板置于真空阴极电弧离子镀机中,固定在工件架上,工件架可以公转,也可以自转,随后进行炉内清洗,利用离子在高负偏压下对碳纤维板表面轰击进行清洗,采用电弧离子镀在碳纤维基体表面沉积厚度为9~10μm的铜涂层,电弧离子镀的具体参数如下:靶材为cu靶,辅助气体为n2和ar,气压为3pa,纯度99.99%,电磁线圈电压为20v,靶电流为100a,负偏压为50v,工件公转速度为3r/min,镀膜时间为420min,沉积膜厚控制在10-15μm;

3)保持上述铜涂层表面洁净,采用大气等离子喷涂工艺在铜涂层的表面制备金属基高温抗氧化涂层,具体工艺参数如下:

使用大气等离子喷涂设备喷涂过渡层,喷涂原料为ni2cr,粉末粒度为50~100μm,电流:550a,电压为65~75v,工作气体为ar,速度为55slpm,热源气体为h2,速度为6slpm,喷枪距离工件表面为120mm,喷涂至涂层厚度为160μm停止。

本实施例碳纤维基复合材料的界面结合强度>30mpa。

实施例6

一种碳纤维基复合材料,依次包括碳纤维基体1、底涂层2和面涂层3;所述碳纤维基体1为碳纤维板,所述底涂层2为采用电弧离子镀沉积的铜涂层,所述面涂层3为金属陶瓷涂层。

本实施例的碳纤维基复合材料的制备方法,包括以下步骤:

1)对碳纤维板进行高温加热去胶处理:将箱式电炉升温为350度,将碳纤维板置于炉中,保温30min,随炉冷却;

2)将上述碳纤维板置于真空阴极电弧离子镀机中,固定在工件架上,工件架可以公转,也可以自转,随后进行炉内清洗,利用离子在高负偏压下对碳纤维板表面轰击进行清洗,采用电弧离子镀在碳纤维基体表面沉积厚度为10~15μm的铜涂层,电弧离子镀的具体参数如下:靶材为cu靶,辅助气体为n2和ar,气压为3pa,纯度99.99%,电磁线圈电压为20v,靶电流为100a,负偏压为50v,工件公转速度为3r/min,镀膜时间为420min,沉积膜厚控制在10-15μm;

3)保持上述铜涂层表面洁净,采用大气等离子喷涂工艺在铜涂层的表面制备金属陶瓷涂层,具体工艺参数如下:

金属陶瓷涂层:喷涂原料为wc-10co,粉末粒度为20~100μm,电流:650a,工作气体:工作气体为ar,速度为40slpm,热源气体为h2,速度为9slpm,喷枪距离工件表面为120mm,喷涂至涂层厚度为300μm停止。

本实施例碳纤维基复合材料的界面结合强度>30mpa。

最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1