制备晶面择优取向氧化铟锡-氧化铟薄膜热电偶的方法与流程

文档序号:26052087发布日期:2021-07-27 15:27阅读:110来源:国知局

本发明涉及高温合金表面温度测试技术,具体提供在金属表面制备晶面择优取向薄膜热电偶的方法,从而实现快速、准确获取高温合金表面的温度数据。



背景技术:

利用薄膜热电偶测温是获取航空发动机高温部件实时温度数据的常用方法。该项技术能够有效避免航空发动机叶片的超温现象同时为发动机设计提供数据支撑。然而,将薄膜热电偶结合在涡轮叶片上需要在涡轮叶片上制备绝缘层,该绝缘层既需要具有良好的绝缘性,又需要高温结合能力,不易于脱落,这就导致其存在一定厚度,影响到测温精度。目前,制备的绝缘层通常都是多层制备,例如包括结合层、过渡层等等,工艺较为复杂,层间材料界面应力较大,且应力界面多。在航空发动机高压环境下薄膜热电偶容易脱落,给薄膜热电偶的测温稳定性带来挑战。

现有的结合涂层与金属结合好(尤其是高温合金),但是,现有技术中结合涂层材料不全都是绝缘材料,而且在高温环境下结合材料的导电性是不稳定的。因此,现阶段需要将结合技术与绝缘技术相结合,保证能够在高温环境下对高温合金表面进行一个精确的温度测量。

现有的结合涂层通常具有较大厚度,至少为几十微米,影响热传导效率,过大的厚度,导致薄膜热电偶结合涂层与工件表面更困难的实现热平衡,无法瞬态测温。



技术实现要素:

本发明的目的是:采用在高温合金基底上沉积一层绝缘的结合涂层,后在结合涂层上直接沉积具有择优晶面取向的氧化铟锡和氧化铟薄膜热电偶,实现在金属表面快速沉积具有择优晶面取向的薄膜热电偶,对薄膜热电偶的稳定测温具有重要意义。

利用结合涂层制备技术替代现有的多层过渡层技术,实现薄膜热电偶在涡轮叶片上的快速制备,同时制备的薄膜热电偶具有择优晶面取向,实现性能优异的薄膜热电偶的快速制备。

本发明的技术方案是:

采用电子束物理气相沉积方法在涡轮叶片上沉积钇稳定的氧化锆(ysz)结合涂层,利用磁控溅射仪在制备的结合涂层上直接沉积具有择优晶面取向的氧化铟锡和氧化铟两种热电臂,然后溅射铂铱电极,热处理后在两个热电臂上溅射氧化铝保护层。

提供在金属表面制备晶面择优取向薄膜热电偶的方法,所述金属表面为曲面,包括如下步骤:

步骤1、通过物理气相沉积工艺在金属工件表面沉积钇稳定的氧化锆(ysz)结合涂层,将钇稳定的氧化锆(ysz)粉末和al2o3粉末通过物理气相沉积工艺沉积到金属工件表面,沉积厚度为不超过3μm;所述al2o3粉末与钇稳定的氧化锆(ysz)粉末的摩尔百分比在0.03以上,保证所述结合涂层为绝缘涂层;

步骤2、通过磁控溅射工艺在结合涂层上制备晶面择优取向的薄膜热电偶,所述薄膜热电偶包括两个热电臂和两个电极;热电臂之一为氧化铟锡靶沉积而成;热电臂另一为氧化铟靶沉积而成,所述电极均为铂靶和铱靶共溅射沉积而成;

步骤3、具有所述薄膜热电偶的金属工件进行热处理,以释放材料界面之间的应力;

步骤4、通过磁控溅射工艺在结合涂层上制备保护层,所述保护层为al2o3材质,使得保护层覆盖所述的两个热电臂。

进一步的,所述金属工件为涡扇发动机的涡轮叶片、燃烧室内壁、火焰筒、航空发动机涡轮轴承或航空发动机涡轮轴。

进一步的,所述金属工件为高温合金。例如镍基合金、钛基合金等。

进一步的,所述结合涂层的厚度不超过3μm,以保证瞬态测温的精确度。特别是,当金属工件为涡轮叶片时,其工作环境通常在1000摄氏度以上,因此,对于瞬态测温精确度具有较高要求。

进一步的,两个热电臂形成交叉面。更进一步的,所述两个热电臂均具有均匀宽度。保证了热电偶的可靠性,且测温区域面积可控。

进一步的,步骤1中的所述氧化锆结合涂层为钇稳定的氧化锆结合涂层。氧化锆具有绝缘性,因此,在加入氧化铝后其绝缘性能更好。

进一步的,所述晶面择优取向为100、111或220。

进一步的,所述的电极为铂铱合金,使得电极与补偿导线的接触电阻很低。

进一步的,步骤4中制备保护层的磁控溅射的温度为常温。

进一步的,所述氧化铟锡靶的原材料为氧化铟掺杂氧化锡,其中氧化铟为方铁锰矿型结构,空间群为ia3;所述氧化铟靶的原材料为方铁锰型结构的氧化铟,空间群也为ia3。方铁锰矿型氧化铟在沉积过程中,沿111晶面生长的吉布斯自由能较低,为本征择优面。

进一步的,在步骤2中,磁控溅射工艺的参数包括溅射功率、工作气压和基底温度;所述基底温度与氧化铟锡靶熔点的比值小于0.1,溅射功率范围为[50w~120w],工作气压范围在[0.5pa~2.0pa]。此条件能够形成更好111晶面择优取向的薄膜。

进一步的,在步骤2中,磁控溅射工艺的参数包括溅射功率、工作气压和基底温度;所述基底温度与氧化铟锡靶熔点的比值大于0.2,溅射功率范围为[30w~200w],工作气压范围在[0.3pa~1.0pa]。此条件能够形成更好100晶面择优取向的薄膜。

择优晶面取向的生长与材料本身的结晶特性和生长条件均有关,结晶特性为热力学因素影响,生长条件为动力学因素影响。根据不同材料的成分,设计生长条件,才能获得目标择优晶面取向的薄膜材料。磁控溅射的生长条件主要涉及三个参数:基底温度、工作气压与溅射功率。在基底温度确定后,由于还需要克服曲面不平整及应力,经过大量的试验才能够找到择优晶面取向生长的参数范围。

本发明的优点是:本发明的薄膜热电偶以牢固的结合涂层为沉积界面,与高温合金叶片的过渡界面较少,应力界面少,不容易脱落,且厚度薄,测温精度高。同时,能够在未抛光的结合涂层曲面(例如,叶片为不规则曲面)上,克服应力,突破传统平面基底的限制,制备具有晶面择优取向的薄膜热电偶,使得薄膜热电偶具有较高的稳定性。

本发明的方法,具有(111)晶面择优取向的薄膜热电偶在高温条件下具有更稳定的微纳结构,具有(100)晶面择优取向的薄膜热电偶具有更高的seebeck系数和灵敏度。

本发明的方法,本发明的结合涂层厚度不超过3μm,使得薄膜热电偶和被测工件之间的动态热传导能够迅速达到平衡,满足瞬态测试的要求,测温值与工件表面实际温度值一致,大幅提高测温准确度。

具体实施方式

下面对本发明做进一步详细说明。

实施例1,提供在金属表面制备晶面择优取向薄膜热电偶的方法,包括如下步骤:

步骤1、通过物理气相沉积工艺在金属工件表面沉积钇稳定的氧化锆(ysz)结合涂层,所述物理气相沉积工艺的蒸发粉末中al2o3的摩尔百分量在3%以上,使得所述结合涂层为绝缘涂层;

步骤2、通过磁控溅射工艺在结合涂层上制备晶面择优取向的薄膜热电偶,所述薄膜热电偶包括两个热电臂和两个电极;热电臂之一为氧化铟锡靶沉积而成;热电臂另一为氧化铟靶沉积而成,所述电极为铂靶和铱靶沉积而成;

步骤3、具有所述薄膜热电偶的金属工件进行热处理,以释放材料界面之间的应力;

步骤4、通过磁控溅射工艺在结合涂层上制备保护层,所述保护层为al2o3材质,使得保护层覆盖所述的两个热电臂。

所述金属工件为涡扇发动机的涡轮叶片。

所述金属工件为镍基高温合金。

所述结合涂层的厚度为2.8μm,以保证瞬态测温的精确度。当金属工件为涡轮叶片时,其工作环境通常在1000摄氏度以上,因此,对于瞬态测温精确度具有较高要求。

两个热电臂形成交叉面1mm2,所述两个热电臂均具有均匀宽度。保证了热电偶的可靠性,且测温区域面积可控。

另外,步骤1中,物理气相沉积的蒸汽云中y2o3(三氧化二钇)粉末、al2o3粉末和zro2粉末的摩尔百分比为6:3:91。最好为采用电子束加热蒸发。

在步骤2中,磁控溅射工艺的参数中,所述基底温度为150℃,溅射功率为80w,工作气压为1.5pa时,能够形成更好111晶面择优取向的薄膜。

实施例2,提供在金属表面制备晶面择优取向薄膜热电偶的方法,包括如下步骤:

步骤1、通过物理气相沉积工艺在金属工件表面沉积钇稳定的氧化锆(ysz)结合涂层,所述物理气相沉积工艺的蒸发粉末中al2o3的摩尔百分量在3%以上,使得所述结合涂层为绝缘涂层;

步骤2、通过磁控溅射工艺在结合涂层上制备晶面择优取向的薄膜热电偶,所述薄膜热电偶包括两个热电臂和两个电极;热电臂之一为氧化铟锡靶沉积而成;热电臂另一为氧化铟靶沉积而成,所述电极为铂靶和铱靶沉积而成;

步骤3、具有所述薄膜热电偶的金属工件进行热处理,以释放材料界面之间的应力;

步骤4、通过磁控溅射工艺在结合涂层上制备保护层,所述保护层为al2o3材质,使得保护层覆盖所述的两个热电臂。

所述金属工件为涡扇发动机的涡轮叶片。

所述金属工件为镍基高温合金。

所述结合涂层的厚度为2.8μm,以保证瞬态测温的精确度。当金属工件为涡轮叶片时,其工作环境通常在1000摄氏度以上,因此,对于瞬态测温精确度具有较高要求。

两个热电臂形成交叉面1mm2,所述两个热电臂均具有均匀宽度。保证了热电偶的可靠性,且测温区域面积可控。

步骤1中,物理气相沉积的蒸汽云中y2o3(三氧化二钇)粉末、al2o3粉末和zro2粉末的摩尔百分比为6:6:88。最好为采用电子束加热蒸发。

在步骤2中,磁控溅射工艺的参数中,所述基底温度为550℃,溅射功率为150w,工作气压为0.6pa时,此条件能够形成更好100晶面择优取向的薄膜。

实施例3,提供在金属表面制备晶面择优取向薄膜热电偶的方法,包括如下步骤:

步骤1、通过物理气相沉积工艺在金属工件表面沉积钇稳定的氧化锆(ysz)结合涂层,所述物理气相沉积工艺的蒸发粉末中al2o3的摩尔百分量在3%以上,使得所述结合涂层为绝缘涂层;

步骤2、通过磁控溅射工艺在结合涂层上制备晶面择优取向的薄膜热电偶,所述薄膜热电偶包括两个热电臂和两个电极;热电臂之一为氧化铟锡靶沉积而成;热电臂另一为氧化铟靶沉积而成,所述电极为铂靶和铱靶沉积而成;

步骤3、具有所述薄膜热电偶的金属工件进行热处理,以释放材料界面之间的应力;

步骤4、通过磁控溅射工艺在结合涂层上制备保护层,所述保护层为al2o3材质,使得保护层覆盖所述的两个热电臂。

所述金属工件为涡扇发动机的涡轮叶片。

所述金属工件为镍基高温合金。

所述结合涂层的厚度为2.8μm,以保证瞬态测温的精确度。当金属工件为涡轮叶片时,其工作环境通常在1000摄氏度以上,因此,对于瞬态测温精确度具有较高要求。

两个热电臂形成交叉面1mm2,所述两个热电臂均具有均匀宽度。保证了热电偶的可靠性,且测温区域面积可控。

步骤1中,物理气相沉积的蒸汽云中y2o3(三氧化二钇)粉末、al2o3粉末和zro2粉末的摩尔百分比为6:8:86。最好为采用电子束加热蒸发。

在步骤2中,磁控溅射工艺的参数中,所述基底温度为600℃,溅射功率为180w,工作气压为1.0pa时,。此条件能够形成更好100晶面择优取向的薄膜。

特别是,对各个实施例来说,所述的电极为铂铱合金时,电极的磁控溅射工艺中:采用铂靶和铱靶共溅射,工作气体为氩气,工作气压为0.8pa,铂靶和铱靶的直流功率分别为70w和50w,基底加热温度为400℃。

另外,上述各个实施例中步骤3的热处理温度可以为650℃。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1