一种用于166MHz四分之一波长超导腔的酸洗工装

文档序号:37459534发布日期:2024-03-28 18:42阅读:58来源:国知局
一种用于166MHz四分之一波长超导腔的酸洗工装

本发明属于加速器物理、超导高频腔领域,涉及一种用于高能同步辐射光源高阶模深度抑制的166mhz四分之一波长超导腔的酸洗工装。


背景技术:

1、超导腔是超导加速器的核心部件。在运行过程中,腔内充满高频电磁场。电磁场与腔的内表面相互作用,为束流提供能量。大部分超导腔采用高纯铌作为原材料。理想状态下,超导腔的内表面应光滑、平整、无杂质,超导腔在运行中的峰值磁场能够接近甚至达到铌材的超导理论极限。在超导腔制造过程中,铌材经过轧制、冲压、机加工、焊接等制造工艺,表面会产生划痕、凹坑、嵌入物、焊接飞溅、沾染油污等。超导腔内表面的这些缺陷,将导致高频腔出现场致发射、磁致失超、二次电子倍增等物理现象,降低超导腔的物理性能,甚至不能正常运行,最终导致研制失败。

2、为了消除超导腔内表面的污染层,通常采用化学抛光的方法来实现。超导腔缓冲化学抛光(bcp)工艺是将氢氟酸hf、硝酸hno3、磷酸h3po4按照体积1:1:2的比例配制成bcp酸液,bcp酸液注入腔内,并在腔内循环流动,使腔内表面的铌材与酸发生蚀刻反应,去除铌材表面100~150μm的污染层。

3、在酸洗过程中,铌和酸化学反应放热,会导致酸温升高,进一步加快化学反应,产生大量氢气,氢气渗入铌材中腐蚀晶格,则可能产生超导腔氢中毒的现象,降低腔的测试性能。所以,酸洗过程中需要设置制冷系统,将酸温控制在15℃以下。如果酸洗工装回路设计不合理,将产生不合理的酸液流向及比例分配,气泡不能及时排除,聚集在腔体的内表面上,阻碍酸液和铌材的蚀刻反应,最终导致超导腔内表面的蚀刻不均匀和各种表面缺陷,如气室、凹坑、鼓包、条纹状沟槽等。所以,设计合理的酸洗工装十分重要,良好的酸洗工装可以保证酸液在腔内循环充分、流速适当、气泡导流顺畅等。

4、高阶模深度抑制的166mhz四分之一波长超导腔,由于频率极低,所以腔的体积较大。即使采用四分之一波长结构,较椭球腔的尺寸大幅降低,但腔的尺寸仍然很大。该腔的外导体直径400mm,腔的轴向法兰间长度为880mm,容积为100l左右。高阶模深度抑制的166mhz四分之一波长超导腔的模型如图1所示。根据工程需要,腔体上有7个开口,且尺寸多样,包括:1个内径为505mm的大束管、1个内径为80mm的小束管、1个内径为100mm的耦合器口、4个内径为30mm的淋洗口等,其中大束管的内径是淋洗口内径的17倍。多达7个的超导腔开口、悬殊的口径比(最大/最小~17倍)、以及位于外导体内部与大束管相对的内导体,直接影响酸液在腔内的流向和流量分配,为超导腔酸洗工装的设计提出了巨大挑战。鉴于高阶模深度抑制的166mhz四分之一波长超导腔结构的复杂性,导致酸液在腔内的流动路径非常复杂,酸液流速的分布不均匀,所以腔体均匀抛光的难度很大。

5、由于高阶模深度抑制的166mhz四分之一波长超导腔的酸洗挑战很大,在采用普通酸洗工装进行酸洗后,发现在大束管过渡段上产生了线条状沟槽缺陷。每一条沟槽的宽约1mm,长约60mm,呈放射状分布在大束管过渡段区域。由于超导腔的性能对内表面的质量极其敏感,上述缺陷是不能接受的。这就需要重新设计酸洗工装,消除酸洗缺陷,恢复腔体内表面的平滑、洁净、无缺陷,保证超导腔的测试性能。

6、国际上,美国阿贡国家实验室在轮辐型超导腔上也发现了线条状沟槽缺陷。美国阿贡国家实验室在轮辐型超导腔的研制过程中,在中间的内导体柱上发现了类似线条状沟槽酸印。但是公知领域内未找到它的解决方案。

7、目前在公知领域没有解决高阶模深度抑制的166mhz四分之一波长超导腔酸洗过程中出现线条状沟槽缺陷的技术方案。

8、高能物理研究所在高能同步辐射光源预研阶段,成功研制了166mhz超导原型腔(166mhz pop腔),该166mhz pop腔的酸洗工艺是与本发明最接近的技术方案。

9、166mhz pop腔的酸洗工装包括密封法兰和连接管路。其中,用于密封酸液的密封法兰由耐酸的聚偏氟乙烯(pvdf)制成,用于法兰之间连接的管路由可溶性聚四氟乙烯(pfa)制成。

10、为了保证166mhz pop腔壁厚去除量的均匀性,超导腔酸洗分为两步。

11、第一步,大束管进液酸洗。166mhz pop腔的大束管朝下,酸液从大束管密封法兰进入腔内,在腔内完成化学蚀刻,通过耦合器密封法兰、信号提取密封法兰、四个淋洗口密封法兰、小束管密封法兰,最后从小束管上的主管道流出。模型如图2所示。酸洗时长为60分钟。

12、酸洗工装共分为2部分:第一部分大束管侧工装(内孔44mm),第二部分为小束管侧组合工装。

13、第一部分大束管侧工装(内孔44mm):一个内径44mm pvdf管路作为进液口,一个外径228mm的pvdf法兰作为大束管密封法兰,pvdf的管路与pvdf的法兰连接,作为酸洗工装的第一部分,用于酸液的导入。

14、第二部分小束管侧组合工装:耦合器密封法兰、信号提取密封法兰、四个淋洗口密封法兰、小束管密封法兰均由pvdf材料制成,小束管法兰上侧设置一个内径44mm的pvdf管作为出液口主管道;小束管密封法兰、四个淋洗口密封法兰通过内径20mm的pvdf管和内径44mm的pvdf出液口主管道相连;由于耦合器密封法兰、信号提取密封法兰距离出液口主管道较远,需要一定的灵活性,所以采用内径20mm的pfa软管和内径44mm的pvdf出液口主管道相连。内径44mm的pvdf出液口主管道构成了一个6通。

15、第二步,小束管进液酸洗。166mhz pop腔倒转180度,超导腔的小束管朝下。酸液从小束管下方进入主管道,然后通过小束管密封法兰、四个淋洗法兰、耦合器密封法兰、信号提取密封法兰进入腔内,在腔内完成化学蚀刻,通过大束管密封法兰流出。模型如图3所示。酸洗时长为60分钟。

16、酸洗工装共分为2部分:第一部分为大束管侧工装(内孔20mm),第二部分为小束管侧组合工装。

17、第一部分大束管侧工装(内孔20mm):一个内径20mm pvdf管路作为出液口,一个外径228mm的pvdf法兰作为大束管密封法兰,pvdf的管路与pvdf的法兰连接。该部分工装作为超导腔酸液的出口与酸洗系统相连。

18、第二部分小束管侧组合工装:采用第一步中小束管侧的工装,倒转180度后使用。该部分工装作为超导腔酸液的入口与酸洗系统相连。

19、借鉴高能同步辐射光源预研阶段、166mhz pop腔的酸洗工艺设计,对高能同步辐射光源高阶模深度抑制的166mhz四分之一波长超导腔进行了酸洗。虽然166mhz pop腔酸洗后内表面光滑、无酸洗缺陷,满足缓冲化学抛光的要求,但是由于高阶模深度抑制的166mhz四分之一波长超导腔的结构更加复杂、腔上开口多且口径尺寸差异巨大(最大/最小~17倍),酸液在腔内的流动路径复杂,酸液的流速分布不均匀,导致其酸洗的难度更大。对于高阶模深度抑制的166mhz四分之一波长超导腔,在大束管进液酸洗后,发现在腔的大束管过渡段上产生了线条状沟槽缺陷,破坏了超导腔内表面的形貌和质量,这将导致超导腔在运行中出现场致发射、磁致失超、二次电子倍增等现象,降低超导腔的物理性能,甚至导致超导腔的研制失败。所以需要探索一种适用于166mhz四分之一波长高阶模深度抑制超导腔的酸洗工装,以解决该腔在酸洗过程中产生线条状沟槽缺陷的问题,提高内表面质量,确保腔的测试性能。


技术实现思路

1、针对现有技术中存在的问题,本发明的目的在于提供一种用于高能同步辐射光源高阶模深度抑制的166mhz四分之一波长超导腔的酸洗工装。

2、本技术所涉及的超导腔缓冲化学抛光工装是为了实现国家重大科技基础设施项目高能同步辐射光源工程的储存环高频系统相关的超导腔酸洗设备的高性能要求开发而成的,并且可以为其他超导腔、尤其是结构复杂超导腔的后处理工装设计提供借鉴。

3、本发明根据高阶模深度抑制的166mhz四分之一波长超导腔的结构特点,设计一套酸洗工装,合理规划酸液在腔内的流动路径,设计酸洗工装的管径及流量分配,平衡酸液在超导腔内各位置的流速,是酸液在腔内循环充分、气泡排除顺畅,最终实现超导腔在酸洗后内表面无线条状沟槽等缺陷,内表面蚀刻量均匀,提高超导腔的酸洗效果,满足超导腔后处理的要求。

4、本发明提出了导酸圆筒设计,在导酸圆筒上设计了出酸孔,出酸孔对大束管过渡段的酸液汇集区形成冲击干扰,有效地提高了大束管过渡段的酸液流速,加速了该位置的酸液流动,更加有利于气泡的顺利导出,破坏了酸洗线条状沟槽缺陷的形成机制。

5、本发明提出了环状圆盘设计,通过设计圆盘的位置和外径,可以有效降低酸液的流通截面,引导酸液从环状圆盘外侧经超导腔颈口向超导腔内流动,提高酸液在大束管过渡段的流速,平衡大束管过渡段和超导腔颈口处的流速关系,有利于排除聚集的气泡,破坏大束管过渡段条状沟槽缺陷的产生机制。

6、高阶模深度抑制的166mhz四分之一波长超导腔的酸洗工装由耐酸的聚偏氟乙烯(pvdf)和可溶性聚四氟乙烯(pfa)制成。

7、酸洗工装共包含三部分,分别是第一部分大束管侧工装、第二部分小束管侧组合工装和第三部分腔内的酸液导流工装;

8、所述大束管侧工装作为超导腔系统的进酸口或出酸口,其一端与超导腔系统的腔大束管法兰1密封连接,另一端通过第一连接法兰和连接管与酸洗设备相连;

9、所述小束管侧组合工装作为所述超导腔系统的进酸口或出酸口,其一端与所述超导腔系统的腔小束管法兰2、腔耦合器法兰7以及各淋洗口法兰密封连接,另一端通过第二连接法兰和管路与所述酸洗设备相连;

10、所述酸液导流工装位于所述超导腔系统内,与所述大束管侧工装连通,用于引导经所述大束管侧工装输入所述超导腔系统内的酸液流动、平衡酸液流速。

11、第一部分大束管侧工装:由大束管密封法兰、连接管和连接法兰组成。大束管密封法兰的外径为571mm,壁厚为25mm,与超导腔大束管法兰相接,用于腔的大束管法兰密封、酸液的入口或出口、并提供足够的强度去支撑腔内的酸液重量。大束管密封法兰通过一个内外径分别为44mm和50mm的连接管与一个外径140mm、厚度25mm的连接法兰连接成一个整体。连接管用于连接和酸液的导流。连接法兰用于大束管侧工装与酸洗设备之间的连接,根据腔放置的朝向,用作整个超导腔酸洗系统的进酸口或出酸口。

12、第二部分小束管侧组合工装:由小束管密封法兰、淋洗口密封法兰、耦合器密封法兰、连接法兰、主管路、小管路组成。小束管密封法兰的外径为140mm,淋洗口密封法兰外径为70mm,耦合器密封法兰外径为160mm,法兰的厚度均为25mm,小束管密封法兰用于腔的小束管法兰密封,淋洗口密封法兰用于腔的淋洗口法兰密封,耦合器密封法兰用于腔的耦合器法兰密封。连接法兰的外径为140mm,壁厚为25mm,一侧与小束管侧组合工装的主管路相连,另一侧与酸洗设备相连,根据腔放置的朝向,用作整个超导腔酸洗系统的进酸口或出酸口。主管路的内径和外径分别为44mm和50mm,用于连接小束管密封法兰、连接法兰、以及4个从淋洗口密封法兰引出的小管路、1个从耦合器密封法兰引出的小管路,并成为一个7通。小管路的内径和外径分别为20mm和25mm,用于主管路和4个淋洗口密封法兰、主管路和耦合器密封法兰的连接。

13、第三部分腔内的酸液导流工装:由内径44mm、外径50mm、总长324mm、底面开口顶面封闭的导酸圆筒和外径140mm、厚4mm的环状圆盘组成。该工装只在酸液从大束管进入时使用,目的是引导酸液流动、平衡酸液流速,破坏大束管过渡段条状沟槽缺陷的产生机制,避免超导腔内导体被酸液直接冲刷,改善超导腔蚀刻不均匀的问题。

14、导酸圆筒的底端开口(内径44mm)与超导腔的大束管密封法兰(内径44mm)连接,用于接收输入的酸液。导酸圆筒上分布26个直径为9mm的出酸孔,酸孔的位置由出酸孔距导酸圆筒18的底端平面的距离、出酸孔个数及俯视时出酸孔的角度定义。

15、第一行:出酸孔距导酸圆筒18的底端平面4mm,均布2个出酸孔,位于0°和180°方位。

16、第二行:出酸孔距导酸圆筒18的底端平面70mm,均布2个出酸孔,位于0°和180°方位。

17、第三行:出酸孔距导酸圆筒18的底端平面75mm,均布2个出酸孔,位于90°和270°方位。

18、第四行:出酸孔距导酸圆筒18的底端平面105mm,均布4个出酸孔,位于45°、135°、225°和315°方位。

19、第五行:出酸孔距导酸圆筒18的底端平面145mm,均布4个出酸孔,位于0°、90°、180°和270°方位。

20、第六行:出酸孔距导酸圆筒18的底端平面180mm,均布2个出酸孔,位于135°和315°方位。

21、第七行:出酸孔距导酸圆筒18的底端平面195mm,均布2个出酸孔,位于45°和225°方位。

22、第八行:出酸孔距导酸圆筒18的底端平面215mm,均布2个出酸孔,位于90°和270°方位。

23、第九行:出酸孔距导酸圆筒18的底端平面240mm,均布2个出酸孔,位于0°和180°方位。

24、第十行:出酸孔距导酸圆筒18的底端平面295mm,均布4个出酸孔,位于0°、90°、180°和270°方位。

25、26个圆孔的合计面积略大于进酸口截面的面积,比值为1.3。

26、腔大束管法兰1、腔小束管法兰2、第一淋洗口法兰3、第二淋洗口法兰4、第三淋洗口法兰5、第四淋洗口法兰6、腔耦合器法兰7和酸洗工装密封法兰之间,进酸法兰20、出酸法兰21和酸洗工装的法兰之间,放置聚四氟乙烯密封圈和氟橡胶圈,通过螺钉固定密封。导酸圆筒18和环状圆盘19之间通过热熔焊接成一个整体。第三部分腔内的酸液导流工装和大束管密封法兰之间也是通过热熔焊接成一体。

27、本发明的优点如下:

28、本发明的酸洗工装合理规划了酸液在超导腔内的流动路径,通过设计酸洗工装的管径,合理分配酸液在各端口的流量,使酸液在腔内循环充分、气泡导流顺畅。

29、采用导流装置,平衡了酸液在腔内的流速分布,改善了超导腔蚀刻的不均匀性,同时避免超导腔局部蚀刻过多、酸洗后频率偏移过大的问题。对于容易产生条状沟槽缺陷的大束管过渡段,通过导酸圆筒上的出酸孔和环状圆盘的引流,酸液在大束管过渡段的流速得到了大幅提升;同时保护超导腔的内导体小端,避免酸液直接冲刷导致内导体小端,造成蚀刻量过大、频率偏移量过多等。

30、高阶模深度抑制的166mhz四分之一波长超导腔在酸洗后,内表面光滑、平整、无线条状沟槽等缺陷,满足缓冲化学抛光的要求。成功地解决了因酸洗在超导腔大束管过渡段上产生的缺陷的问题。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1