从自沉积浴中除去金属离子和污染物的方法

文档序号:3397930阅读:209来源:国知局
专利名称:从自沉积浴中除去金属离子和污染物的方法
技术领域
本发明与1992年3月6日提交的题为“由自沉积组合物中分离多价金属离子的方法和再生其中所用的螯合型离子交换树脂的方法”的共同未决的专利申请07/847,543中共同转让的发明有关。这一共同未决的专利申请在本申请中全文引用作为参考,只要其中没有任何与本申请矛盾的说法。
本发明的领域一般来说涉及其中的金属离子累积一段时间且必须定期清除的化学浴,更具体地说,本发明涉及通过化学反应为材料(如金属,包括钢)的涂布提供油漆涂层的系统,在该系统中通过从中除掉在操作期间积累下的溶解和/或分散的多价金属离子使自沉积组合物浴定期地得到稳定。
自泳和电泳是用涂料组合物涂布物体、特别是那些由金属材料制成的物体的两种已知方法。电泳效应通过使用电场来控制带电的有机分子向作为通常是两电极体系的一个电极的加工件的运动,造成电沉积。控制电流的大小和施加的时间以便将加工件涂布到所要求的厚度。自泳作用使得能通过控制带负电或不带的高分子量聚合物胶乳粒子的去稳过程和向例如有金属表面的加工件沉积来进行自沉积涂布,该加工件的金属表面经过化学处理产生带正电的离子,它吸引反号的或不带电的涂料组合物粒子。要涂布的部件通常是浸入到含有所要涂料组合物的涂布浴中。铁、钢、镀锌的金属等加工件,至少其外表面通常可以用自沉积涂布法涂镀。
进行自沉积涂布的系统的一个问题是,一段时间后,两价或高价的金属离子(多价离子)溶解和/或分散到浴中或自沉积组合物中,日益减低自沉积涂布过程的效率。随着自沉积组合物中金属离子浓度的增加,在加工件上形成的涂层的质量降低到某种程度,此时必须更换涂料组合物或自沉积浴,或者必须去掉浴的一部分并加入新的未沾污的涂料组合物,以便减小金属离子的浓度,使自沉积涂布过程能够继续。先有技术中曾多次试图从自沉积浴或涂料组合物中除掉金属离子,以便更经济地利用涂料组合物浴,并避免必须处置其中含有全部环境公害物的污染浴的问题。
1974年10月1日颁布的美国专利3,839,097(Hall等)提出,使用离子交换材料(例如离子交换树脂)除掉金属离子以稳定酸性水基涂料组合物。这种离子交换材料定期再生,以恢复其离子交换能力。为了完成离子交换材料的这种再生,将这些金属离子用可以被要从涂料组合物中除掉的金属离子置换的阳离子顶替和置换。在所给出的一个实施例中,先用水淋洗装有离子交换材料小球的离子交换柱,回收柱中残留的涂料组合物。随后用去离子水流过柱子将它完全冲洗出。在所给出的这一实施例中,离子交换材料小球随后用强酸水溶液再生,用于离子交换材料含有可置换的氢离子的场合。虽然在该文献中提出了这种稳定涂料组合物浴的方法,并且还提出了另一种在离子交换柱内除掉离子交换材料小球的金属离子、然后使金属离子再生的方法,但是没有展示或说明进行该方法的系统。对于本申请来说,Hall等的美国专利3,839,097中与本申请不矛盾的那些说法在本文中引用作为参考。
1991年4月17日公布的题为“电沉积浴的处理方法”的加拿大专利申请2,017,026提出一种连续或间歇地除掉装在槽10内的一部分电沉积浴并使取出的这部分通过超过滤器16的方法。滤出的树脂、颜料和其它高分子量组分送回到浴中。只是将超过滤液通过离子交换柱22以除掉超过滤液中的铁和其它物质。将流出离子交换柱22的滤液送回到电沉积浴中,从离子交换柱22中除下废产物并弃置之。用硫酸流过柱子使离子交换柱22再生。该文中只以很简略的方式提到完成这一操作的系统。
1967年4月4日授予Mcvey的美国专利3,312,189展示了一种在金属表面(如铝)形成铬酸盐涂层的装置。将一种含六价铬离子和污染阴离子络合物的水基酸性工作溶液涂在金属表面上。使用一种流体流动控制系统使受控比例的处理溶液流过阳离子交换树脂并将流出液送回到处理溶液或操作溶液中。使用电导率传感器测量流出液的电导率,作为对流出液的电导率减小到低于未通过交换树脂的溶液之上的某个预定增量的响应。一台控制器利用电导率测定值来增加流过阳离子交换树脂的溶液比例。为了满足在本发明领域中公认的需要,本发明人设想并研制了一种基本上自动化的系统,用来从自沉积加工中所用的涂料组合浴中除掉污染物。在设计本系统时,发明人认识到需要做到基本上所有的自沉积浴或涂料组合物都被用在涂布部件上,而先有系统则由于使用一段时间后的沾污被迫丢弃自沉积浴而代价昂贵地浪费了大量自沉积浴。本发明人还认识到,需要提供一种大大减少对环境有害的废产物生成的系统。通过设计一种基本上自动的自沉积加工系统,基本上全部利用了昂贵的自沉积浴或涂料组合物材料,达到了最佳经济效果。
本发明人认识到,使含有颗粒物质(例如包含在自泳或自沉积浴中的胶乳和颜料)的化学浴通过离子交换(IEX)柱的作法与先有作法不同。本发明人设想了本系统以完成这一操作,并克服了先有技中诸如IEX柱被自泳浴堵塞等问题。
本发明的目的之一是提供一种改进的自沉积系统。
本发明的另一目的是提供一种改进的自沉积系统,它最大限度地利用了自沉积浴,并将有害的废产物的生成减至最少。
本发明的又一目的是提供一种用来稳定化学浴的基本上自动化的系统,其中使用一个离子交换树脂柱定期地除去浴中的金属离子,并定期地清洗和再生该离子交换柱。
考虑到本发明的这些目的和其它目的,本发明提供一种用来定期稳定化学浴或自沉积浴的基本上自动的编程系统,其中将浴的全部或一部分流过多个过滤器和一个离子交换柱,以便从浴中除去于其中积累了一段时间的金属离子和其它污染物。此系统还提供了将去离子水从供水槽自动地泵送流过离子交换柱的装置,以便将处理过的浴从柱子送回到保存化学浴或自沉积浴的储槽中。此系统利用再生剂酸流过离子交换柱以除掉被柱子从自沉积浴中捕集的金属离子,定期地使离子交换柱再生。随后,柱子用去离子水自动冲洗,除去离子交换柱中保留的残余酸,从而制备好用于清除自沉积浴中金属离子和污染物的另一循环的离子交换树脂。废水和废的再生剂酸以对环境安全的方式自动地从系统送到处理厂中。在本发明的另一实施方案中,流过离子交换柱的酸可以收集在再用槽中,以便尽可能重新用来再生离子交换柱。将一台控制器(例如微处理机)编程以控制阀门装置和泵送装置,用来以可控方式使自沉积浴或化学浴、去离子水及再生剂酸流过系统。使用一台空气操作的隔膜泵泵送自泳浴,以实现低剪切泵送。
下面参照附图叙述本发明各种实施方案,其中相同的项目用一符号表示

图1A和1B表示本发明一种实施方案的部分示意流程图;图2是表示本发明一种实施方案里提供警报指示的多个灯和/或可见指示器的部分电路示意图;图3表示本发明一种实施方案中多个开关的布置图。
参看图1,该图中画出了一个用来对化学浴、特别是自沉积组合物进行加工的系统,以便以定期和基本上自动的方式,通过使用螯合型离子交换树柱30从中分离出多价金属离子,并使螯合型树脂30再生。如上所述,在1992年3月6日提交的题为“由自沉积组合物中回收多价金属离子的方法和再生其中所用的螯合型离子交换树脂的方法”的共用未决的有关专利申请07/847,543中,详细说明和叙述了在本系统中使用的一种优选方法,该申请中与对本系统的说明不矛盾的部分在本文中引用作为参考。如其中所述,在自沉积系统中使用水基树脂涂料组合物在浸于其中的金属表面上形成固体浓度相当高的涂层。涂敷到金属表面上的涂层的厚度通过改变金属部件在涂布组合物中浸泡的时间长短和调节浴的成分(例如HF、FeF3和胶乳浓度)来控制。
虽然这里参照优选的自沉积法对本系统作出说明,但本系统不限于使用含聚合物的自沉积浴。本系统可以用来从很多类型的化学浴中定期地除掉可能随时间积累的金属离子。
通常,自沉积涂布法用来涂布金属加工件,例如铁、钢和/或镀锌金属。涂料组合物通常含有聚合物胶乳,它被加工成在溶液中形成带负电的胶乳粒子。保持涂料组合物浴处于轻度酸性,以便与浸入的金属加工件反应,使加工件表面结合上带正电的金属离子。结果,带正电的金属离子从溶液中吸引带负电的胶乳粒子,造成胶乳粒子沉积在金属加工件的表面上。涂层的厚度很薄,在此实施例中通常控制在0.5至0.7密耳,因此很小一份涂料组合物可以用来涂布大量的加工件。
在加工件自沉积涂布期间,来自加工件的金属离子由于溶解而逐渐积累在涂料组合物中。随着涂料组合物浴中的金属离子浓度的增加,会达到对涂层质量有不利影响的程度。另外,金属离子的浓度会增加到涂料组合物开始聚沉和变得不稳定的地步。因此,在达到发生这种不利影响之前,定期清除掉涂料组合物浴中积累的金属离子很重要。
再参看图1,一个用来除掉涂料组合物浴中金属离子的系统包括一个装有涂料组合物浴1的槽4。为示例说明起见,假定穿过涂料组合物浴1的加工件是钢,而浴1包含有给定浓度的氢氟酸(HF)。在一项可任意选择的实施方案中,使用浸没在槽4中的传感器3监测HF的浓度。信号线5由传感器3传递一个电压与HF浓度成比例的电信号。电导率传感器129浸没在槽4中的涂料组合物浴1中,提供指示浴1电导率大小的信号。排水管7的一端深浸在涂料组合物浴1中,另一端则连接到一个气动泵P1的入口9。P1最好是气动隔膜泵,因为在泵送自泳浴时要求低剪切。冲程指示剂组件11与泵P1连接,以便提供指示泵的各次冲程的信号SINI(通过压力开关151)。监测在给定的操作循环期间泵的冲程次数,可以测量出通过泵的涂料组合物数量。在此实施例中,泵P1每次冲程泵出0.016加仑。泵P1的一个出口13经流体管线15连接到过滤器F1的入口17。过滤器F1的出口19则与自动气动阀AV1的一端相连。注意流体管线15通过一个压力计隔离器21与监测泵P1和过滤器F1之间压力的压力计PG1相连。另外,一个压力探测器PS1通过压力计隔离器跨接在过滤器F1上。在此实施例中,PS1代表一个常开型开关,当过滤器F1干净时,在PS1两端产生低压。当过滤器F1变得堵塞时,PS1两端产生压差,其响应是关掉内部的可调可关(未画出),在此实施例中造成信号PR1从零伏状态改变成+5伏,指示过滤器F1堵塞。因此,信号PR1是过滤器F1的入口17和出口19之间压差超过预定水平的指示。另外,压力计隔离器21将另一压力计PG2连接到流体管线23上,测量过滤器F1的出口19与自动阀AV1一个口之间的压力。
阀AV1的出口经过止回阀25和流体管线27与离子交换柱(IEX)29相连,并通过通常连接在管27一端上的另一流体通路31连接到与流体管线33的共用接头上,管线33则连接在自动阀AV4和AV8的流体进出口之间。自动阀AV4的另一端则通过流体管线35连接到节流阀TV4的一端,后者的另一端与三通管37的一个口相连,三通管的另一口经过流体管线39与处理装置(未画出)相连。流体电导率传感器41安装在三通37上以便对经由它排放或流过的流体提供指示电导率的信号C3。
流体管线43的一端连接到阀AV4和TV4之间的流体通路35上,另一端则连接到自动阀AV3的一个口上。阀AV3的另一端通过流体管线45连接到流体管线47、49和32端点之间的共用接口上,以便通过流体管线47的另一端连接到离子交换柱(IEX)29的流体口上,通过流体管线32连接到自动阀AV6的一个口上,并通过流体管线49连接到自动阀AV2的一端。自动阀AV6的另一端通过流体管线34连接到节流阀TV2的一个口。节流阀TV2的另一个口经过流体管线36和与旋转流量计40串联的止回阀38连接到泵P3的出口42。止回阀38的方向安排成流体从旋转流量计流向节流阀TV2。流体管线36还经由管线66与另一节流阀TV3的一个口相连,后者的另一个口经由流体管线65连接到自动阀AV8的另一个口上。
冲程指示器44连接到泵P3上,通过压力开关153提供信号SIN2,指示在指定的操作循环期间泵P3的冲程次数,以提供对经由它泵送的流体的量度(本实施例中为0.016加仑/每冲程)。泵P3的入口65通常经由流体管线67和69分别连接到自动阀AV7和AV5的流体口上。自动阀AV5的另一流体口经由流体管线78连接,该管线有一个开口端于靠近装有新的再生剂酸68(本实施例为HF)的槽T2的底部处。自动阀AV7的另一口经由流体管线90连接到抽水管或排水管79,该管79有一个自由端处在装去离子(DI)水81的槽T1中靠近底部处。槽T1的作用是能储存DI水,以便使厂内DI水的瞬时流动不足以供应IEX29对DI水需要的工厂内的系统能够运转。
泵P2有一个入口4通过流体管线10与装有新鲜化学再生剂或酸的圆筒(未画出)相连。出口12经由流体管线14与进料管91相连,用来在再装料循环期间向槽T2中排放新的再生剂酸68。
一个电动操作的电磁阀SV11有一个流体口经由流体管线93与去离子(DI)水的加压源(未画出)相连。阀SV11的另一个流体口连接到流体进管线95,用来在再装料循环中从管95向槽T1中排放DI水。
自动阀AV2的另一流体口经由流体管线97连接到过滤器F2的入口。过滤器F2的出口经由流体管线99连接到节流阀TV1的一个口上。使用压力计隔离器21将压力计PG5和压力开关PS2都连接到流体管线99上(如图所示)。PS2代表一个不施压时常开型的开关(未画出)。当F2未堵塞时,高的反压使有关的信号PR2处于零伏。在本实施例中,PS2受F2堵塞引起的预定的压力降的指挥,开启内部开关使信号PR2由+5伏状态改变到0伏。换言之,压力开关PS2提供了指示流体管线99中或过滤器F2的出口处的压力低于预定值的信号PR2。节流阀TV1的另一个口经由流体管线101与止回阀103的入口端相连,后者的出口通过流体管线105与三通接管107的一个口相连。在三通接管107上装有电导率传感器109,用来提供流过三通接管107的流体的电导率指示信号C2。三通接管107的另一端与进料管111连接,用来将处理过的涂料组合物送回到槽T4中,这将在下面详细叙述。
本发明的另一实施方案(画在部分剖视图中)是可任意选择的,包括一个用来装放用过一次的再生剂酸113的槽T3。此实施方案还包括一个连接在流体管线67与69的共用接头和自动阀AV9的一个口之间的流体管线115。自动阀AV9的另一个口连接到流体管线117的一端,管线117的另一端则位于槽T3的靠近底部处。流体管线119有一端与流体管线31和33的共用接头相连,另一端则连接到自动阀AV10的一个口上。阀AV10的另一流体口连接着流体管线121,用来将用过一次的再生剂酸113排放到槽T3中,这将在下面叙述。
空气源(未画出)经由管123向过滤器F3的入口提供压力可控的“车间空气”,过滤器F3的出口则经由空气压力管线125分别与多个电磁阀SV1-SV10和SVP1-SVP3相连。这些阀被控制器127分别通过由控制器127在适当时候产生的电控制信号50-62逐个控制,这将在下面详细叙述。当电磁阀SV1-SV10被逐个起动时,在本实施例中它们将开启以分别提供压力信号A、B、C、D、E、F、G、H、J和K,这些空气压力信号分别逐个地与自动气动阀AV1-AV10耦连,以开启这些阀。类似地,本实施例中当电磁阀SVP1、SVP2和SVP3由控制器127逐个起动时,这些阀将开启,分别提供气压信号L、M、N,施加到泵P1、P2、P3上,起动这些气动泵。
一个低液面探测器131位于槽T1内底部附近,用来提供槽T1内流体液面降到预定低液面以下的指示信号71。同样,一个高液面探测器133位于槽T1内槽顶之下的预定液面处,在本实施例中用来提供一个+5伏的液面信号70,指示D1水面达到液面探测器133的位置。注意,在此实施例中与液面探测器131和133以及下面讨论的其它探测器相连的开关是常开型开关。如本文所述,所有这些液面探测器在液体低于所连接的液面探测器的位置时,都产生一个零状的液面信号,而当液面是处在或高于有关的液面探测器的位置时,产生+5伏的液面信号。
槽T2包含一个位于槽中靠近底部处的低液面探测器135,用来产生一个指示其中的酸降至探测器135位置以下的零状的低液面信号74;一个中间液面探测器137在酸的液面降至该探测器位置之下时产生零状的信号73;一个高液面探测器139位于槽T2的顶部,在本实施例中用来产生一个+5伏的液面信号72,指示槽内的酸达到探测器139的位置。按照与槽T2基本上相同的方式,槽T3包括一个用来产生低液面信号77的低液面探测器141、产生中等液面信号76的中等液面探测器和产生高液面信号75的高液面探测器145。
在自动控制图1的系统期间,当需要不同的系统操作模式时,控制器127对液面信号70-77、阀状态信号80-89、压力信号PR1和PR2、电导率信号C1-C3以及冲程脉冲信号SIN1和SIN2作出响应,提供SV控制信号50-63。下面将详细说明这些操作模式。
在本系统的一个工程样机中,控制器127装有一个AllenBradley SLC-500PLC微处理机(Allen Bradley公司制造,Milwaukee,WI)。节流阀TV1是一个GF314型隔膜式节流阀(George Fischer公司制造,Schaffhausen,瑞士),用来流过含涂料组合物的流体。节流阀TV2和TV4是可调节的GF522型针型阀。节流阀TV3是一个可调节的GF301型Y-球形阀。液面探测器131、133、135、137、139、141、143和145是Thomas4400型浮控开关探则器(Thomas公司制造)。阀AV1-AV10是带有手动代用装置的GF220型(George Ficher公司)。过滤器F1是一台Sethco袋滤器(Met Pro公司Sethco分公司制造,Hauppauge,Newyork)。过滤器F2是一台DBG-1型Sathco袋滤器。气动泵P1、P2和P3由Marlow 1/2AODP型泵提供(Marlow ITT流体技术公司制备,Mid Land Park,New Jersey)。
离子交换柱29在本实施例中由直径约12英寸、长38英寸的乙烯基酯塑料槽构成。其长轴垂直放置。离子交换柱29内装满适当的离子交换树脂30,本实施例中为Amberlite IRC-718(Rohm&Haas公司制造,Pennsylyania)。合适IEX树脂30的其它实例包括Miles/Bayer Lewatit TP-207、Purolite S-930、Sybron Ionac SR-5、Bio-Rid Chelex20或Chelex100、Mitsibushi Diaion CR11及其它类似的亚氨基二乙酸酯基树脂。在本实施例中,树脂30可以从流过离子交换柱29的涂料组合物1中除掉铁和亚铁离子。还有其它类型的树脂用来除掉其它金属离子,例如铬或锌离子。在本实施例中,再生剂酸68是浓度大于1%的氢氟酸。
电磁阀SV1-SV10由Burkett470型阀(ohio Components,Parma,Ohio)构成。电磁阀SV11是一个由来自控制器127的电信号63控制的电动操作的电磁阀。在样机系统中使用的其它部件是容易得到的典型标准部件。还要指出,上面对样机系统指出的实际部件并不意味着限制,任何合适的代用品均可使用。
自动气动阀AV1-AV10各自分别包括一对输出信号或阀状态信号80-89,用来提供指示阀门现行位置的活动信号也即指示阀门是开或关。如图所示,控制器127通过监测这些信号对80-89判断出各阀门的状态。作为监测这些信号的结果,控制器127在适当时间输出电磁阀控制信号50-63,用来进行各种模式的本系统操作。另外,控制器127可以通过监测这些信号检验阀AV1-AV10的适当操作。
在本发明的另一实施方案中提供了一个目视的警报系统。控制器127驱动一排继电器158,用来在适当的时间起动有关的继电器,通过L18提供灯信号L1。在图2中,灯160-177分别灯信号或电压L1-L18作出反应,点亮,提供一个有关代表信息的可见指示,根据所示的各自符号,指示一个具体部件或系统运转,或者显示一个有故障的部件或系统运转。在此实施例中,标有“R”符号的灯是红色的,标“G”的灯是绿色的,标“Y”的灯是黄色的。但是,对于灯160-177,可以使用任何所希望的组合颜色。在一项实施方案中,如图2所示,灯160-177各自与后照光显示板180的信息显示160’-177’相关联。或者是,在另一实施方案中,灯160-177装在一个显示板上,各自分别与有关的印制警报或部件操作信息160’-177’相邻,如后照光面板180所示。在这种替代的实施方案中,灯160-177分别被起动,点亮相邻的信息显示160’-177’。在本系统的工程样机中采用后一实施方案。在本实施例中设置了警报,以便不熟练的操作人员能排除在系统操作期间可能发生的问题。
在图3中画出了与控制器127连接的7个开关SW1-SW7。在本实施例中,开关SW1-SW3和SW6是三位旋转开关。开关SW4是两位旋转开关。开关SW5是常闭型按钮开关,开关SW7是常开型按钮开关。这些开关通常位于系统中的控制面板上。如图所示,开关SW1、SW2、SW3和SW6的触点“a”、“b”和“d”与控制器127相连。开关SW4的触点“a”和“c”与控制器127相连。开关SW5和SW7的触点“a”和“b”与控制器127相连。
现在说明控制器127对开关SW1-SW7的不同位置作出反应的程序。开关SW1在控制面板(未画出)上标志成“再生/DI水泵开关P3”。当此开关的手柄182转动成触点“a”和“b”电学上连接时,SW1是处在所标明的“开”位置。控制器127的响应是起动电磁阀SVP3,打开此阀门使空气压力信号N施加到泵P3上,起动该泵。但是,这一作用仅在开关SW3由于其手柄186转动至触点“a”与“d”或触点“a”与“b”电学连通而工作时才能发生,开关SW3标记成“系统控制”。如果开关SW1的手柄182位于其触点“a”和“c”电学上不连通的位置,则指定为“关”位,此时泵P3不能起动。当柄182转动成触点“a”和“d”电学上连通时,此位置称为“自动”位置,用于编程序的泵3在所编各种程序中的适当时刻起动。
开关SW2称为“涂料泵P1”开关。当它的手柄184转动成有关的触点“a”和“b”电学上连通时,该开关处在标明“开”的位置,条件是系统控制开关SW7不是处在“关”的位置(手柄186使触点“a”和“c”电学上连通)。当开关184转动成触点“a”与触点“c”电学上连通时,这称为SW2的“关”位。此时泵P1不能起动。当开关手柄184转成触点“a”和“d”电学上连通时,这称为“自动”位置,此时泵P1可以在系统自动操作期间的适当的编程时间起动,这将在下面叙述。
开关SW3称为“系统控制”开关。当其手柄186处在使其触点“a”和“b”电学上连通的位置时,这称为“自动”位置,控制器127作出的响应是使系统处在自动操作状态。当开关SW3的手柄186转动成有关的触点“a”和“c”电学上连通时,该开关是处在“关”位,阻止系统工作。当手柄186转动成有关的触点“a”和“d”电学上连通时,这称为“按扭起动”位置。当开关SW3处于此位置时,控制127被设计成响应按扭开关SW7的触发,其作法是压下它的按钮触点194以使有关的触点“a”和“b”相连通。控制器127的程序被编制成响应后一开关操作,开始涂料组合物1的一个处理循环,这将在下面详细叙述。再参看“系统控制”开关SW3,当此开关藉助转动其手柄186使触点“a”和“b”电学上连通而处在“自动”位置时,涂料组合物1的处理过程将按编制器程序以预定的时间间隔周期性地重复进行。当“系统控制”开关SW3因手柄186处在使有关的触点“a“和“c”电学连通而处在“关”位置时,系统处在手动操作模式,操作循环将会停止。但是,控制器127被编制成对此作出响应,先检验确定是否在离子交换柱29中保留有任何油漆或涂料组合物1。如果答案是“是”,则控制器127被编制成继续这部分系统操作程序,以便将涂料组合物泵送通过离子交换柱29。如果控制器127确定,对于当系统开关SW3系统到它的“关”位置而停住的操作秆循环,涂料组合物1经过离子交换柱29的泵送事先已经停止,则控制器的程序被编制成开始一次用去离子水中81冲洗离子交换柱的操作循环,这将在后面详细叙述。在这一冲洗循环之后,控制器127被编制成清除自身以便使系统内的所有参数复位,准备对“系统控制”开关SW3作出响应,开关SW3的操作或是通过将其手柄186移动到触点“a”和“d”相连通的位置、从而使开关SW3处在它的“按钮起动”位置,或是通过将手柄移至触点“a”和“b”电学连通、从而将SW3置于“自动”位置。当“系统控制”开关SW3如上所述移动到它的“按钮起动”位置时,在此实施例中随后将控制器127编程为对“开始清除程序”的按钮开关SW7的起动作出反应。
开关SW4称为“再生剂化学泵P2”。在此开关的“关”位置,手柄188位于有关触点“a”和“b”电学连通的位置。在此“关”位置上,泵P2不能起动,控制器127被安排成重新设置一个用新的再生剂酸或化学再生剂68将槽72再充满的循环,这将在下面详细叙述。当开关SW4的手柄188转动到触点“a”和“c”电学连通时,开关SW4处在特指的“自动”位置。在此位置上,泵P2可以在控制器127控制下起动,以便用新的化学再生剂或酸再注满槽T2。当控制器探测到槽内的液面到达预定的充满高度时,它将关掉泵P2。在此实施例中,控制器127被设计成在任何情况下都不能使泵在指定的再充液循环中工作30分钟以上。
开关SW5称作“紧急停车”开关。当按下此开关的按钮190时,有关的触点“a”和“b”之间的电学连接断开,开关SW5机械地保持这一位置。将控制器127设计成如下响应紧急停车开关SW7的操作先检查该开关是否由于向外拉出已经手动地回到它的不能工作的位置,在这种情形如果一个处理循环已被中断,则该循环将从它原先中断的地方重新恢复。但是,如果控制器127确定“紧急停车”开关SW5保持起作用,则系统的运转将中止,但系统将不到零位。接着,所有警报(下面将详细叙述)都将被清除,但是出口压力低警报160、160’、高压差警报161、161’、无泵流警报164、164’和阀故障警报163、163’除外。随后,如果“紧急停车”开关SW5被解除作用,则控制器127将如上所述地恢复先前中断的操作循环。
开关SW6称作“补充DI”开关。此开关有三个位置,一个是手柄192转动到触点“a”和“b”电学上连通的位置,称为“开”位置。当接触手柄192转动到触点“a”和“c”电学上连通时,构成“关”位置。最后,随着手柄转动到有关的触点“a”和“d”电学上连通时,构成“自动”位置。当此开关位在它的“开”位置上时,控制器127作出的响应是输出控制信号63以起动或开启电磁阀操纵的阀门SV11,使去离子水能开始再注入假定需要注入的槽T1中。如果开关SW6处在它的“关”位置,则控制器127被安排成阻止阀SV11的操作。当开关SW6置于其“自动”位置时,控制器127被安排成在由液面探测器133探测到的槽T1内的DI水液面低于充满高度或液面时打开阀SV11。在这样的再充液期间,本实施例将控制器127安排成当探测信号70指示槽T1已被充满时就关闭阀SV11。
开关SW7称为“开始清除程序”按钮。当按下这个瞬时接触按钮开关时,控制器127被设计成对触点“a”和“b”经由接触按钮臂194的电学连通作出反应,先检验确定是否“紧急停车”按钮开关SW5被按下或起作用。如果回答是肯定的,则控制器127的编制程序将开动或点亮所有的面板灯160-177,警告操作人员“紧急停车”按钮SW5除了对控制器起灯试验信号的作用之外还被开动。但是,如果“紧急停车”按钮SW5不是被这样开动,则控制器127随后将检验确定是否“系统控制”开关SW3定位在它的“按钮起动”位置上。如果答案是肯定的,则控制器127将起动一个完整的处理涂料组合物1的循环,以便从中除去金属离子。但是,如果回答是否定的,则控制器127的程序编制成检验确定系统控制开关是否处在它的“关”位置。如果回答是肯定的,则控制器127将进行一次阀门故障试验。气动阀AV1-AV10各装有一个相连的灯(未画出),当任何一个相连的阀经试验证实是不能工作时,控制器127会以闪烁或闪光的形式起动灯。或者是,如果控制器127探知“系统控制”开关SW3未处于它的“关”位置,而是在其“自动”位置,则控制器将开始重复的或周期性的处理涂料组合物1的循环。
现在将说明系统的操作。控制器127包括一个微处理机,其程序被编制成,通过定期地使一部分槽T4中的涂料组合物流过离子交换柱29(按箭头6所示的向下流动方向)并在处理后回到槽T4,使涂料组合物浴1得到稳定。为了将系统设定成自动操作模式,首先必须进行操作方法或模式的初始化。操作模式的初始化步骤如下1.手动放置再生泵开关SW1关处在“自动”位置。
2.手动放置涂料泵开关SW2在其“自动”位置。
3.手动拉出“紧急停车”开关SW5至其不起作用的位置。
4.手动放置再生剂化学泵开关SW4至其“自动”位置。
5.手动放置补充DI开关SW6至其“自动”位置。
6.控制器127检验高液面符号70的状态,以确定槽T1中的DI水液面是否处在高液面处。如果不是,控制器127的程序将向阀SV11施加控制信号63,以便用DI水将槽T1再充满,直到探测到液面信号70,随后终止信号63,继续下一步骤。
7.控制器127检验液面信号74的存在以确定槽T2中的新的再生剂酸是否高于预定的低液面如果不高,则控制器127将产生控制信号61,用以开启电磁阀SVP2,向泵P2供应空气信号M,以便起动泵将酸再充入槽T2中。当控制器127测到液面信号72的存在时,控制信号61终止,关闭阀SVP2,从而关掉泵P2。
8.手动设定系统控制开关SW3至其“自动”位置或“按钮起动”位置,或者留下开关SW3在其“关”位置。
9.如果系统控制开关SW3处在它的“关”位置,则系统是在手动操作模式,重新复位以开始一个涂料组合物的处理循环。
10.如果系统控制开关SW3不是在其“关”位置,它是否在“按钮起动”位置?如果答案是肯定的,则进行下一步骤;如果答案是否定的,开关SW3在“自动”位置。进行到步骤18。
11.手动按下“开始清除程序”开关SW7,使系统运行以下的全部工艺程序一次,然后停止程序进行,使系统回到“备用”状态。
12.使泵P1、P2和P3断电,将分别用于P1和P3的冲程计数器11和44复位。
13.将阀AV1-AV8顺序地循环以试验其操作,在进行涂布浴1循环的下一操作模式之前,将所有的阀操纵器都复位到“关闭”位置。
14.如果“系统控制”开关SW3是在其“自动”位置,控制器127的内在程序将自动地和定期地使系统运行一个“进料/再生程序”,此程序将在每次操作循环后重复预定的小时数。
15.在预定的时间后,回到步骤16,完成步骤16和17,并进行下一模式-操作模式Ⅱ。
在操作的初始化模式Ⅰ之后,控制器127的程序编制成进行操作模式Ⅱ,以便经过以下步骤使涂料组合物1沿向下流动方向(见箭头6)经过离子交换柱29进行循环Ⅰ.为开始DI水从IEX柱29中被代替的过程,产生控制信号50和52以分别打开阀门AV1和AV3。
2.产生开启阀门SVP1的信号60,以提供起动泵P1的空气信号L,泵1将预定加仑数的涂料组合物1泵送到IEX柱29,从中顶替走DI水(由计数信号SIN1的脉冲检测出每个冲程代表0.016加仑)。
3.泵P1由T4中抽出涂断组合物浴或油漆1,经过过滤器F1进料,以除掉油漆1中聚结人油漆和小块,保护IEX柱19。
4.检测信号PR1的电压大小,以查明过滤器F1有无任何堵塞。
5.涂料组合物1流过阀AV1和止回阀25,并由此沿下流方向6进入IEX柱29,当它进入IEX柱29时顶替走DI水。
6.被顶替走的DI水从IEX柱29经由阀AV3和节流阀TV4流走(后者人工设定成预定的流速)。
7.将顶替出的DI水经由三通接管37排放到废水处理设施,或者收集进行废水处理。
8.终止控制信号52以关闭SV3,从而终止空气控制信号C以关闭阀AV3,但保持阀AV1开启。
9.起动程序,以便进行涂料组合物浴或油漆1循环通过IEX柱29并将处理过的油漆1送回槽T4的步骤。
10.产生打开阀SV2的控制信号51,以提供空气控制信号B打开阀AV2。
11.将涂料组合物1从槽T4经由泵P1、过滤器F1、阀AV1、节流阀25循环,沿6下流经过IEX柱29、阀AV2、过滤器F2、节流阀TV1(用于得到给定流速)、止回阀103、三通接管107,排放回到T4。
12.监测信号PR1的电压大小以判断过滤器堵塞情况,如果PR1达到例如+5伏,则触发警报灯L2通过操作人员在完成从涂布组合物中除掉金属离子的这一循环更换过滤器F1。
13.监测压力信号PR2的电压大小,如果信号达到例如+5伏,则触发警报灯L1通知操作人员在这一处理循环完成后更换过滤器F2。
14.在对泵P1计数了预定次数的冲程之后,表明已有预定数量的涂料组合物通过IEX柱29,终止控制信号60以关掉泵P1。
15.将软件程序中的计数器(未画出)复位,它由于冲程计数器11而递增。
16.终止控制信号50以关闭阀AV1。
17.执行模式Ⅲ。
下一个操作模式(模式Ⅲ)包括编程的控制器按以下步骤用去离子水冲洗IEX柱291.为开始从IEX柱29中顶替走残留的涂料组合物1,继续产生控制信号51以保持阀AV2开启,同时产生控制信号56和57,分别使阀SV7和SV8开启,各自产生空气信号G和H,它们又分别使阀AV7和AV8开启。
2.产生控制信号62以打开阀SVP3,产生空气信号N以起动泵3。
3.从槽T1中抽出DI水,经过阀AV7、泵P3、旋转流量计40、止回阀38、设定为给定流速节流阀TV3、阀AV8,沿下流方向6进入IEX柱29,以便将其中残留的涂料组合物经由阀AV2、过滤器F2、节流阀TV1、止回阀103和三通接管107强制排放到槽T4中。
4.在这一循环期间,监测压力信号PR2,如果该信号改变状态,例如从0变至+5伏,测触发警报灯L1通知操作人员在完成这一操作循环后更换过滤器F2。
5.通过监测信号SIN2,计数泵P3的冲程次数,以确定何时进行步骤6。
6.终止控制信号51以关掉阀门AV2,同时维持控制信号56和57以保持阀AV7和AV8开启。
7.起动下一步循环以便用DI水冲洗IEX柱29,其作法是先产生控制信号52以打开阀门SV3,产生空气控制信号C,打开阀门AV3。
8.计数有关的冲程指示器信号SIN2的脉冲数,同时从槽T1中抽出DI水2,经过阀AV7、泵P3、旋转流量计40、止回阀38、节流阀TV3、阀AV8,沿下流方向6穿过IEX柱29,由该处经阀AV3、节流阀TV4、三通接管37从系统中排放出去以便处理。
9.在指定数量的DI水2已流过IEX柱29之后,终止控制信号62以关掉P3。
10.终止控制信号52、56和57以便分别关掉阀AV3、AV7和AV8。
11.执行模式Ⅳ(如果使用的话),否则执行模式Ⅴ。
在本发明的一项可任意选择的实施方案中,随后进入第四个操作模式,通过先将用过一次的酸113从槽T3经IEX柱29沿下流方向(见箭头6)循环来开始IEX柱29内的树脂再生过程。这一任意选择的模式Ⅳ包括以下步骤1.监测液面信号75、76和77,如果在电模式期间的任何时刻槽3中用过的酸的液面降至预定的低液面(由液面信号77指示)以下,则终止这一操作模,转入模式Ⅴ。
2.产生控制信号58以打开阀门AV9。
3.产生控制信号57以打开阀门AV8。
4.产生控制信号52以打开阀门AV3。
5.产生控制信号62以起动泵P3。
6.监测SIN2以使计数泵P3的冲程次数达到预定的冲程次数,从而使预定数量的用过的酸113从槽T3进行循环,经过的流程依次包括阀AV9、泵P3、旋转流量计40、止回阀38、节流阀TV3、阀AV8、IEX柱29(下流循环6从中穿过)、阀AV3、阀TV4和三通接管37,再用的酸113由三通接管37从系统中排入出去以便处理。
7.在达到预定的泵3冲程次数或槽T3中用过的酸的液面降至低液面时(在本实施例中由液面信号77由+5伏变至0伏指示),终止控制信号62。
8.终止控制信号58以关闭阀门AV8。
9.终止控制信号52以关闭阀门AV3。
10.继续产生控制信号55,立即进行模式Ⅴ,模式Ⅴ保证了新的再生剂酸68从槽T2经由IEX柱29循环(见箭头6),以便通过从树脂30中除去金属离子完成装在离子交换柱29内的树脂30的再生。如果不采用本发明的包括一个用过的酸槽T3以便用用过的酸113开始IEX柱29中树脂30再生过程的实施方案,则在模式Ⅲ之后立即进入操作模式Ⅴ,来自槽T2的再生剂酸68在流过IEX柱29之后从系统中排放出去以便处理。操作模式Ⅴ的步骤如下1.产生控制信号52以打开阀门AV3。
2.产生控制信号54以打开阀门AV5。
3.产生控制信号57以打开阀门AV8。
4.产生控制信号62以起动泵P3,将新鲜的再生剂酸68从槽T2经由IEX柱29沿下流方向(见箭头6)循环。
5.监测信号SIN2以计数泵P3的冲程次数,确定何时有预定数量的新的再生剂酸68通过了IEX柱29并从三通接管37中排放出去用于废液处理,此时终止控制信号62以关掉泵P3。
6.将冲程计数器44复位。
7.终止控制信号52以关闭阀门AV3。
8.终止控制信号54以关闭阀门AV5。
9.继续产生控制信号57以保持阀AV8开启。
通过编程的控制器127提供模式Ⅵ-A,以便用DI水沿下流方向6淋洗IEX柱29并从系统中排放掉淋洗水用于废水处理。如果采用的本发明实施方案包括一个用过的酸的槽T3和使用用过的酸113开始IEX柱29中树脂30的再生,则最初从IEX柱中排放出的溶液被循环到槽T3以便将槽中再装满用过的酸113,以后从IEX柱29中循环出的任何溶液则排放掉进行废水处理。模式Ⅵ-A包括以下步骤1.产生打开阀门AV7的控制信号56。
2.如果不采用其中包括槽T3以便能利用用过一次的酸113的实施方案,则执行步骤11,否则执行下一步骤。
3.产生打开阀门AV10的控制信号59。
4.产生起动泵P3的控制信号62。
5.监测信号SIN2以计数泵P3的冲程次数,以便监测从中泵送出的DI水数量。
6.监测液面信号70和71,以探测槽T1内DI水2的液面。
7.如果在预定数量的DI水通过IEX柱29之前,液面信号71至少有三分钟不能产生,则终止控制信号62以关掉泵P3,产生控制信号63以打开阀SV11向槽T1中重新注入DI水,直到液面信号变成“高”,此后终止控制信号63,再发出控制信号62以便再开动泵P3,进行余下的冲洗循环。
8.监测液面信号75、76主77,以便跟踪槽T3中用过的酸的液面。
9.在探测到液面控制信号75被触发、说明槽T3中充满了用过一次的酸113,或者计数了预定次数的P3冲程、说明已有预定数量的再生剂酸通过IEX柱29到达槽T3时,终止液面控制信号。
10,当槽T3中已再满用过的酸时,终止控制信号59以关闭阀AV10。
11.产生控制信号52以便打开阀门AV3,改变溶液的目的地为废液处理。
12.产生控制信号62以起动泵P3。
13.继续监测冲程信号SIN2以累积泵3的额外冲程计数。
14.在预定数量的DI水2已通过IEX柱29之后终止传给泵P3的控制信号62。
15.终止控制信号52和57以关闭阀AV3和AV8,结束下流淋洗模式Ⅵ-A。
通过控制127提供模式Ⅵ-B,以便用DI水沿上流方向8淋洗IEX柱29并将淋洗水从系统中排放走用于废水处理。这一上流冲洗操作是在预定的DI水流速下进行的以使IEX柱29中的离子交换树脂30流态化,基本上除掉IEX柱29中的外来颗粒物。用这种方式,防止了在多次操作循环后外来颗粒物的积累造成IEX柱的堵塞。应该注意,在本系统的一种工程样机中,IEX柱29的顶部扩散器被改装成有更多的孔和开口以及曲折的流体通道,以确保聚结的胶乳材料通过并流出IEX柱29,而离子交换材料30则留在其中。模式Ⅵ-B包括以下的编程步骤1.产生控制信号51以打开阀AV2。
2.产生控制信号53以打开阀AV4。
3.产生控制信号56以打开AV7。
4.产生控制信号62以起动泵P3。
5.监测信号SIN2以计数泵P3的冲程次数,监测从中泵过的DI水的数量。
6.监测液面信号70和71以检验槽T1中DI水2的液面。
7.如果在预定数量的水通过IEX柱29之前液面信号71变成零伏,则中止控制信号62以关掉泵P3,产生控制信号63以打开阀SV11将槽T1用DI水再充满,直到液面信号70变成+5伏,此后终止控制信号63,再发出信号62使泵P3重新起动,进行余下的淋洗循环。
8.在预定数量的DI水2通过IEX柱29之后,终止控制信号62。
9.终止控制信号51、53和56以关掉阀门AV2、AV4和AV7。
浴稳定操作模式,特别是模式Ⅰ至Ⅵ,提供了一个处理涂料组合物1的全循环,用于除去其中的金属离子并使IEX柱29中的树脂再生。控制器127可以编制成自动操作模式,用于周期性地重复这些模式Ⅰ-Ⅵ,以稳定涂料组合物浴1。
注意,在为了使涂料组合物1经由IEX柱29循环以除去其中的金属离子的模式Ⅱ程序设计中,根据特定的系统要求,可以将控制器127的程序设计成预定数量的涂料组合物1通过IEX柱29,然后进行模式Ⅲ,或者可将程序设计成能为系统提供经过IEX柱29循环的涂料组合物1,直至电导率信号C1和C2之间的差别减小到预定的水平,然后终止模式Ⅱ并开始模式Ⅲ。类似地,在模式Ⅵ操作中,控制器127的程序可以设计成用预定数量的DI水2冲洗IEX柱29,或者用DI水2连续冲洗IEX柱直到电导率信号C3降低到预定的最低值,说明在IEX柱29中未留下再生剂酸68或113。保证IEX柱29被彻底冲洗和完全清除掉所有的残余酸特别重要,在其中的高浓度残余酸作用下,会造成涂料组合物1在IEX柱29内聚结,堵塞该系统。
控制器127的程序还编制成能提供一种试验多种类型警报的操作模式。现在详述试验程序。注意程序编制成只在体系控制开关SW3处在其“自动”或“按钮起动”位置时试验程序才能运行。有8种不同的试验模式,其中大多数除自动操作外需要手动操作。
试验模式1规定起动灯160、点亮后照光面板显示器160’(如果使用的话)以指示“出口压力低”。如前所述,这一警报表示在过滤器F2与TV-1之间的管线中测得的压力低,意味着过滤器F2堵塞,必须更换。由控制器127探测到压力信号PR2改变状态,例如从+5伏到0伏,指示出口压力低,从而发出警报。在这个第一试验模式里涉及到的步骤如下1.如果泵P1起动了15秒以上,信号PR2仍在0伏水平上,则在本实施例中表示出口压力低,发出灯信号L1以起动灯160和显示器160’(如果用的话)。注意,此时也发出灯信号L10以起动灯169和相连的显示器169’(如果用的话)-“警报灯”。还应注意,每当系统内任何单个警报被触发时,灯169总会起动。
2.如果在指定的操作循环期间检测到出口压力低,则完成此操作循环,但不开始下一循环,直到问题得到改正;如果当时没有进行操作循环,则在问题得到改正之前阻止新的循环。
3.如果需要大修,则人工改正引起警报的条件,将“系统控制”开关SW3转向其“关”的位置使系统复位,然后回到它的先前的“自动”或“按钮起动”位置。如果是后者,则按下开关SW7以重新开始操作循环。
4.如果不需要大修,则跳过紧接的上一步骤,将“紧急停车”按钮SW5置于锁住的压下位置,以便停止所有的系统操作和功能。
5.手动检查故障状况并排除之。
6.在排除故障后,拉出“紧急停车”开关SW5以恢复系统被中断的循环操作。
第二种试验模式(“试验模式2”)检测过滤器F1是否已堵塞。此试验模式包括以下步骤1.鉴测压力信号PR1。
2.如果在起动泵P1期间PR1指示“高”15秒以上,则发出灯信号L2和L10,以起动灯161和相连的后照光显示器161‘(如果用的话)以及灯169和相连的显示169’(如果用的话)。
3.完成此操作循环,停止执行新的操作循环,直到故障排除。
4.如果故障容易排除,则排除故障并使用“系统控制”开关SW3将系统手动复位,作法是先置于它的“关”位,然后放在它在探测到过滤器F1两边高压差之前的位置。
5.如果故障不易排除,则跳过前一步骤,手动压下“紧急停车”开关SW5以停止系统的任何部分工作。
6.改换过滤器F1。
7.拉出“紧急停车”开关SW5的按钮。
8.恢复在出故障期间中断的操作循环。
第三种试验模式(试验模式3)提供了在开始操作循环之前检验溶液液面,包括以下步骤1.监视液面信号70-77。
2.如果在开始任何指定的操作循环前有任何液面不适合开始有关的操作循环,则发出灯信号L3以点亮灯162和相连的后照光显示162’(如果用的话)。
3.如果液面随后得到校正,则终止灯信号L3。
4.如果系统不是按为使浴稳定的模式Ⅰ-Ⅵ中之一操作,而且探测到槽T1、T2、T3中至少有一个的流体液面不合适,则发出灯信号L3以起动灯162及相连的后照光显示162’(如果用的话)。
5.如果在3分钟或某个编程预定的时间内,液面信号70和/或液面信号74以及/或液面信号77(假如任选地使用槽T3中的用过的酸)保持0伏,则表明DI水液面和/或槽T2中的新再生剂酸液面以及/或槽T3中用过的酸的液面不适合开始对涂料组合物浴1的处理,发出灯信号L3以接通灯162和连带的后照光显示162’(如果用的话)。
6.如果发出灯信号L3,则停止系统的起动。
7.手动按下“紧急停车”开关SW5,以便以安全的方式进行所需的系统维修。
8.手动排除在槽T1、T2和T3(如果用的话)中一个或多个流体液面问题。
9.手动拉出“紧急停车”开关SW5以使系统能够运转。
10.如果希望开始一个清除程序,手动压下“开始清除程序”开关SW7。
11.回到步骤2。
下一个试验模式(试验模式4)是在如果某个气动阀出故障的情况下进行检测发并发出可见的警报。如前所述,自动阀AV1-AV10每一个都各自包括一对阀门状态线80-89。在本实施例中,对于每对状态线80-89。在本实施例中,对于每对状态线80-89,当有关的阀是开着时,则一根线有+5伏信号,另一根为0伏信号;当有关的阀关闭时,则电压水平符号相反。按着这种方式,控制器127能在系统操作的全部时间内监测阀AV1-AV10中任一个的状态。换言之,阀AV1-AV10中任何一个的指定操作都会产生一个反馈信号送回到控制器127,指示该阀门目前处于开启或关闭操作状态,控制器127藉此确定此状态是否是对该阀门所要求的状态。试验模式4的有关步骤如下1.监测阀门状态线对80-89。
2.发出灯信号L4以点亮灯163和后照光显示163’(如果使用的话),表明阀AV1-AV10中某个阀已不能在10秒内(本实施例)产生阀状态信号的变化,以发出改变一个或多个特定阀门状态的控制信号。
3.在检测和提供一个阀门故障警报后,关闭所有的自动阀,停止可能进行中的任何系统操作。
4.手动按下“紧急停车”开关,以便能进行维修,排除阀门故障。
5.手动转动“系统控制”开关SW3至其“关”的位置。
6.压下用于“开始清除程序I的按钮开关SW7,同时“系统控制”开关SW3处于它的“关”位置,以找出出故障阀门(AV1-AV10)的位置。
7.控制器127将在出故障的气动电磁阀处闪烁一只灯,指示有关的阀门有故障。
8.手动修理或更换AV1-AV10中出故障的阀门。
9.用DI水手动淋洗IEX柱29,排放淋洗水以便废水处理。
10.手动转动“系统控制”开关SW3至其“自动”或“按钮起动”位置。
11.手动拉出“紧急停车”开关SW5按钮。
12.手动压下“开始清除程序”铵钮开关SW7,以便从第一个步骤起重新开始一个加工程序。
下一个试验程序是试验模式5,如果在一个要求起动泵P1的程序中该泵变成不能运转,则模式5检测并点亮警报灯。此试验模式的步骤如下1.监测信号SIN1以计数泵P1的冲程数。
2.每当泵P1被起动时就发出控制信号60。
3.作为对接收脉冲信号SIN1的反应,发出起动灯168及后照光显示168’(如果用的话)的灯信号L9,以指示泵P1的起动。
4.如果在发出控制泵P1起动信号60的15秒或某个其它的预定时间内,检测到的冲程信号SIN1的次数少于预定数目,则发出起动警报灯164及后照光显示164’(如果用的话)的灯信号L5,提供关于泵P1故障状况的警报(通常是排放管堵塞)。
5.如果泵P1的冲程速度超过每秒5个冲程或指示泵P1是在泵送空气而非液体的某个其它的预编程速度,则发出起动灯164及后照光显示164’(如果用的话)的灯信号15。在这种有故障状态,灯162连续点亮,指示抽吸管线堵塞。
6.终止任何正在运行的系统过程,关掉所有的自动阀门。
7.按下“紧急停车”按钮开关SW5。
8.手动方式进行维修,排除泵P1的故障。
9.手动拉出“紧急停车”按钮SW5以恢复系统的运转。
警报试验模式6提供了控制器127监测泵P3操作的程序。有关的步骤如下1.监测冲程指示器信号SIN2。
2.按要求发出起动泵P3的控制信号62。
3.如果在起动泵P3的15秒或某个其它预偏程时间内未接收到预定数目的冲程信号SIN2,则以脉动方式发出灯信号L5以便闪烁或闪动灯164以及如果使用的有关的后照光显示164’,提供在操作泵P3过程中的故障警报指示。
4.如果信号SIN2指示泵P3的冲程速度超过每秒5次或某个其它的预编程的速度,指示泵P3是在泵送空气而非液体,则如前一步骤所示发生警报。
5.停止所有的系统操作。
6.手动推进或压下“紧急停车”按钮SW5。
7.进行维修,排除泵P3的故障。
8.拉出“紧急停车”开关SW5,恢复系统运转。
下一个试验模式是“试验模式7”。此试验模式用来在新再生剂酸槽T2中的酸68的液面降至预定水平之下时发出警报。试验模式7的步骤如下1.如果再生剂酸槽T2中的酸68的液面降至预定的液面(如液面信号74从+5伏变至0伏所指示的)5秒钟或其它某个预编程时间以上,发出灯信号16,以便起动灯165和有关的后照光显示165’。
2.停止所有的系统操作。
3.手动按下“紧急停车”按钮W5以进行维修。
4.手动改正再生剂酸槽T2中酸的液面。
5.拉出“紧急停车”按钮开关SW5,恢复中断的系统操作。
另一个试验模式(试验模式8)用于监测槽T2中新再生剂酸的液面68,以便在酸的液面超过预定水平时发出警报。试验模式8包括以下步骤1.监测液面信号72。
2.如果液面信号72由0伏变至+5伏超过5秒钟或其它某个预编程的时间,发出灯信号L7以接通灯166及后照光显示166’(如果用的话);还终止信号61以关掉泵P2。
3.继续不中断地进行加工。
4.人工检查再生剂酸槽T2以保证安全状态。
在某些应用中,液面探测器可以包含在槽T4中并监测之,以检测在指定时刻涂料组合物浴1的液面。但是,在典型的自沉积系统中,因为涂在穿过涂料组合物浴1的加工件上的涂料组合物的涂层很薄,所以在长期使用中涂料组合物的液面变化很小。另外,涂料组合物材料很贵,这种自沉积工艺的典型用户都采取特别的预防措施以保证涂料组合物1的最大利用。结果是,只利用对涂布组合物浴1的手动控制。
在本发明的工程样机系统中,槽T1为90加仑,槽T2为140加仑,槽T3为30加仑,槽T4能容下至少27000磅涂料组合物1,需要一个至少3000加仑的槽。槽T4的尺寸也部分地由要用涂料组合物1涂布的加工件的尺寸和实际实施时所希望的生产速度决定。在样机系统中,将钢加工件浸没在涂料组合物浴1中一段指定的时间以涂布加工件。结果,在使用一段时间后,铁开始积累在涂料组合物中,造成其中的金属离子过剩。
可以定期地人工滴定涂料组合物1以便确定何时开始处理涂料化合物的循环,以除去一部分金属离子。当滴定测量结果达到对所用的特定涂料组合物和所涉及的金属离子(如铁、锌或铬)预定的水平时,开始处理循环。另外,在某些应用中可以不需要滴定测量。在这类应用中,开始处理循环的起点可以在与涂料组合物1涂布给定数量的特定金属的使用程度有关的时间基础上确定。
如前所述,各阀门AV1-AV10分别有一对阀门状态信号线80-89,以便控制器127能监测阀门的操作。这些阀门都包括两个监测接近度开关(未画出),一个用于沿有关的阀门状态信号线发送指示阀门开启的信号,另一个开关用来沿另一根有关的阀门状态信号线发送指示阀门处在关闭位置的信号。在本发明的另一实施方案中,在浴稳定化的流水作业期间,控制器127的程序编制成在开始浴稳定化模式Ⅱ程序之前,依次将所有的阀AV1-AV10进行从关到开到关的循环,同时所有的泵均在“关”状态,以便在开始实际操作程序将涂料组合物1循环流过系统进行处理之前,检验阀门以保证操作顺利。
还应指出,电磁阀SV1-SV10的每一只都带有一只内装灯,分别用于指示有关的气动阀AV1-AV10的适当操作。如果在阀AV1-AV10中任何一只发生故障,控制器127的内设程序将如上所述地使有关的阀上的灯闪烁。
如上所述,对于装在系统内的复位的可视警报,与槽T1、T2以及T3(如果用的话)有关的警报在有关的槽内液面复原时自动复位。但是,压力警报则要先失效、随后用“紧急停车”开关SW5触发来复位。另外,如前面给出的文字流程图中所示,阀门警报只是将系统置于不工作状态并检修阀门时才能复位。
在本发明的优选实施方案中,选择用在IEX柱29中的树脂30特别关键。如上所述,所选择的树脂30使系统能处理胶乳基的涂料组合物,该组合物通常容易聚结和堵塞已知的系统。本发明的系统能使整个的组合物加阳极液通过IEX柱29以便除掉金属离子,而涂料组合物1中的胶乳化合物基本上很少聚结。
在从涂料组合物浴中除去金属离子的处理过程中,本系统向涂料组合物1中释放出氢氟酸,从而有助于保持涂料组合物浴1中HF浓度更恒定。涂料组合物浴1中HF的测定是为了操作人员对浴本身进行维护,不涉及到指示何时必须对涂料组合物1进行处理以除掉例如铁。
再参看灯160-177,灯168、176、177和175是绿色的,分别用来指示泵P1、P2、P3中的一个是否起动,或者系统是否处在标准操作模式。灯170-174是黄色的,用于指示在有关的循环开始后现在正进行给定的操作循环的那一步骤。另外,在这一样机系统中,灯169是红色的,并作成比灯160-167大得多。如前所述,灯169指示系统处在故障状态。具体的故障状况由灯160-167以及如果使用时后照光显示160’-167’中的一个或几个的点亮情况指示。这种颜色标志并非限制,可以采用其它的颜色方案。
现在叙述本系统的典型操作的实施例。将“再生泵”开关SW1转动到“自动”位置,“涂料泵”开关转动到“自动”位置,“系统控制”开关SW3转动到它的“按钮起动”位置,“再生剂化学泵”开关SW4置于其“自动”位置。“补充D2”开关SW6转动到它的“自动”位置。在系统操作的这一实施例中,将再生剂酸槽T2重新充满。
当系统正常操作时,所有的红色警报灯都是“关”,有关的后照光显示(如果用的话)也是这样。这包括灯160-167、灯169、后照光显示160’-167’和169’。如果出现警报状态,造成这些灯中的一个起动或点亮,则应采取上面对各种警报或试验条件所叙的校正措施,以便在开始下一操作循环或完成中断的操作循环之前排除所有这些警报状态。
在本实施例中,涂料组合物浴1保持特定的HF浓度。通过使用一台Lineguard101计(Henkel公司制造,Parker+Amchem,Madison Heights,Michigan)人工监测该浓度。如前所述,为确定何时开始从涂料组合物浴中除掉金属离子的浴稳定循环,可以用滴定法定期检验浴。或者是,可以在重复生产的设施中进行分析,以获得每日涂布的加工件的面积,加工件在涂料组合物浴1中保持的时间长短等,由此确定铁(本实施例)或其它金属离子进入油漆或涂料组合物浴1中的速度。在对本发明样机系统给出的实施例中,从涂料组合物浴中除去金属离子的每个操作循环通常除掉1磅至1.5磅铁。
对于先前所述的系统开关设定,如上所述,当要开始浴稳定循环时,操作人员只要按下“开始清除程序”开关SW7以开始模式Ⅱ操作。另外,正如前面所指出的,可以将系统置于全自动的操作模式,以便按照所要求的时间进度自动进入浴稳定循环。注意,当油漆或涂料组合物1穿过IEX柱29循环时,从IEX柱29排放出的液体的PH通常比进入IEX柱29的液体的PH略低。结果,这一反应平衡了由于使用期间涂料组合物浴中的金属溶解和金属氧化造成的酸度损失。
注意,在模式Ⅱ操作期间,涂料组合物1如箭头6所示向下流过IEX柱39。通常在IEX交换柱29内的树脂材料30是珠状形式,以便在涂料组合物1向下流过树脂材料30时为涂料组合物1提供最大的表面积。在涂布钢加工件的本实施例中,无须除掉的金属离子是Fe3+。如前所述,这些离子在离子交换柱29中通过树脂30交换H+,Fe浓度减少了的涂料组合物1直接回到槽T4。当IEX柱29中的树脂30耗尽时,开始模式Ⅲ以便用DI水冲洗IEX柱29,顶替走留在IEX柱29中的任何涂料组合物。在此实施例中,IEX柱29接着至少按模式Ⅴ、在某些应用中通过模式Ⅳ和Ⅴ再生。树脂30用约2%的HF酸再生。
本系统防止了金属离子(例如本实施中的铁)的浓度在涂料组合物浴1中增加到对涂敷在加工件上的涂层有不利影响和/或造成涂料组合物1的胶乳聚结的程度。通过使用本发明,如在IEX柱中使用的树脂30的实例所代表的,用固定化的螯合剂从胶乳中分离出诸如铁等金属离子。通过使用本发明,与先前的涂料沉积体系相比,基本上消除了胶乳损失。
如上所述,确定何时必须着手浴的稳定化的一种方法是人工进行涂料组合物浴1的滴定试验。滴定试验提供了溶在涂料组合物浴1中的金属离子的相对数量。此种测定用标准的电导化进行,该仪器提供了用微西门子表示的电导率的量度或读数。在所给出的实施例中,浴的电导率随铁或其它金属离子的含量而变,此含量随连续生产而增高,通过采用浴稳定循环而减小。
虽然本文展示和说明了各种实施方案,但它们并不意味着是限制性的。本领域的技术人员可以考虑对这些实施方案作出修改,这些修改均被包括在所附权利要求的精神和范围之内。例如,如上所述,本系统不限于用于涉及聚合物的自沉积方法,而是可以用于从很多类型的化学浴中除去金属离子。另外,虽然在化学浴1是含有胶乳和聚合物的自沉积时优选采用模式Ⅵ-式但在处理其它类型的化学浴时可能不需要这一模式。
权利要求
1.一种从自沉积系统中使用的涂料组合物浴中除掉金属离子和污染物的方法,所述的自沉积系统包括一个装去离子水(DI水)的第一槽、装化学再生剂的第二槽、装用过一次的化学再生剂的第三槽、装涂料组合物的第四槽和一个装有离子交换材料的离子交换(IEX)柱,该方法包括以下步骤确定涂料组合物中的金属离子浓度何时增加到预定的水平;将涂料组合物从第四槽中循环流过IEX柱,处理后回到第四槽;确定何时已经对足够数量的涂料组合物作了去除金属离子的处理,以便将槽4中涂料组合物内的金属离子的浓度减小到可接受的水平;和终止涂料组合物经过IEX柱的循环。
2.权利要求1的方法,其中测定金属离子浓度的步骤包括人工进行该涂料组合物的滴定。
3.权利要求1的方法,其中所述的确定何时已处理了足够量的涂料组合物的步骤包括以下步骤测定留在第四槽内的涂料组合物的电导率;测定从IEX柱回到第四槽中的涂料组合物的电导率;计算在第四槽内和回到第四槽内的涂料组合物之间电导率的差值;和确定一个用来触发终止步骤的差值大小。
4.权利要求1的方法,其中还包括以下步骤在涂料组合物进入IEX柱之前先通过第一过滤器,以便除掉涂料组合物的聚结部分及其它的颗粒物质。
5.权利要求4的方法,其中还包括以下步骤在涂料组合物流出IEX柱但回到第四槽之前,使其流过第二过滤器,以便除掉离子交换材料的颗粒及其它颗粒物。
6.权利要求5的方法,其中还包括以下步骤探测何时第一过滤器堵塞;当第一过滤器堵塞时发出警报;和在完成该涂料组合物的处理后,停止进一步的操作,直到第一过滤被更换。
7.权利要求5的方法,其中还包括以下步骤探测何时第二过滤器堵塞;当第二过滤器堵塞时发出警报;和在完成该涂料组合物的处理后停止进一步操作,直到第二过滤被更换。
8.权利要求5的方法,其中还包括以下步骤探测何时第一和第二过滤器中的一个或两个堵塞;分别发生指示第一和第二过滤器堵塞的警报;和在完成该涂料组合物的处理之后阻止进一步操作,直到第一和第二过滤器不再堵塞。
9.权利要求1的方法,其中在完成涂料组合物的处理之后还包括以下步骤将足够数量的DI水循环进入IEX柱,以便顶替走其中残留的涂料组合物;和将一部分被顶替出来的涂料组合物送入第四槽。
10.权利要求9的方法,其中还包括以下步骤阻止液体从IEX向第四槽的任何进一步流动;沿一个方向将DI水循环流过IEX柱;将DI水的流动从IEX柱引向废水排放口;和在基本上冲洗掉IEX柱的涂料组合物之后,终止DI水通过IEX柱的循环。
11.权利要求10的方法,其中还包括以下步骤将化学再生剂从第二槽循环流过IEX柱并流出排放口;探测何时已有预定数量用于再生离子交换材料的化学再生剂流过IEX柱和终止化学再生剂通过IEX柱的流动。
12.权利要求11的方法,其中还包括以下步骤将DI水从第一槽中沿一个方向循环流过IEX柱,流出排水口;将DI水从第一槽中沿相反方向循环流过IEX柱,以保证从中除掉基本上所有的外来颗粒物,并流出排水口;探测何时已有预定数量的DI水流过IEX柱对它进行冲洗;和终止DI通过IEX柱的循环。
13.权利要求10的方法,其中还包括以下步骤将用过一次的化学再生剂从第三槽循环流过IEX柱,并流出排水口;探测何时已有预定数量的用过一次的化学再生剂通过IEX柱;终止用过一次的化学再生剂的循环;将化学再生剂从第二槽经过IEX柱循环,流出废水口;探测何时已有预定数量的新鲜化学再生剂流过了IEX柱,这是在先前流过用过一次的化学剂之外仍然必需的,以便使IEX柱内的离子交换材料基本上再生;将DI水从第一槽中循环进入IEX柱,以便将用过一次的化学再生剂顶替到第三槽中;和当第三槽内的液面达到预定高度或已有预定的数量的用过一次的化学再生剂排放到其中后,终止用过一次的化学再生剂从IEX柱向第三槽中的流动。
14.权利要求13的方法,其中还包括以下步骤从第一槽中双向循环DI水,流过IEX柱,从排放口流出;探测何时有预定数量的DI水流过IEX柱将它冲洗成基本上不含化学再生剂和外来颗粒物质;和终止DI水流过IEX柱的循环。
15.权利要求12的方法,其中还包括以下步骤在开始涂料组合物流过IEX柱的循环之前,先将预定数量的涂料组合物从第四槽循环进入IEX柱,以便顶替走其中的DI水;和将顶替出的DI水从排放口排出。
全文摘要
一种能从化学浴中定期地除去金属离子和污染物的自动化系统,其中包括一台微处理机,它可控制泵和阀门的流动回路,首先将第一份预定数量的化学浴从第一槽中循环流过一个离子交换柱并回到第一槽;再将去离子水从第二槽循环进入IEX柱以便顶替走其中的残留化学浴,使其回到第一槽;将去离子水循环流过IEX柱;将再生剂酸经过离子交换树脂循环;将去离子水经过IEX柱循环,以便冲洗其中的酸再生剂;将化学浴循环送入IEX柱中,顶替走其中残留的冲洗水,为化学浴的处理循环作准备。
文档编号C23C18/16GK1238227SQ9910403
公开日1999年12月15日 申请日期1999年3月19日 优先权日1993年1月26日
发明者W·G·科泽克, J·C·托平 申请人:亨凯尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1