一种埋地管道阴极保护数据采集装置的制造方法_2

文档序号:9321272阅读:来源:国知局
感线圈器件。在一种实施方案中,直流电流采集单元与埋地管道之间连接电感,通过电感可以滤除线路中的交流电流,直流电流采集单元通过与埋地管道之间连接的电感检测埋地管道的直流电流值。如图3所示,直流电流采集单元优选采用ACS712芯片系列的ACS172ELC-05B芯片。ACS712芯片系列包括电流通路电路和稳定斩波型低偏置霍尔电路。直流电流采集单元采集埋地管道的电流时,电感一端连接ACS172ELC-05B芯片的引脚1、2。ACS172ELC-05B芯片的引脚3、4连接计划探头的极化试片。埋地管道的电流流经ACS172ELC-05B芯片时,引脚1、2和3、4之间的通路电流所产生的磁场,被ACS172ELC-05B芯片内的霍尔集成电路感应到,并将感应的电磁信号转化为成比例的电压输出。交流电流采集单元与埋地管道之间连接有电容,通过电容可以滤除线路中的直流电流,交流电流采集单元通过与埋地管道之间连接的电容检测埋地管道的交流电流值。同理,如图3所示,交流电流采集单元也采用ACS712芯片系列的ACS172ELC-05B芯片。具体的电流采集方式与直流电流采集方式基本相同,在此就不再一一赘述了。电流密度可以通过嵌入式程序编程计算得到,电流密度值等于电流值除以试片裸漏面积得到。在本方案中,直流电流密度等于直流电流值除以试片电极的裸漏面积得到,交流电流密度等于交流电流值除以试片电极的裸漏面积得到。
[0036]针对上述的电流采集方案,发明人经过反复测试和研究发现这种实施方案往往存在一些细小的问题,例如精度不够高,可靠性差等问题,两个ACS 172ELC-05B芯片同时工作成本较高,功耗也相应较大。为避免这种问题,发明人提供另外一种方案,如图4所示,直流电流采集单元和交流电流采集单元通过嵌入式程序编程区分检测埋地管道的直流电流值、交流电流值并计算直流电流密度、交流电流密度。电流检测单元直接采用一个ACS172ELC-05B芯片,通过对ACS172ELC-05B芯片的嵌入式程序编程实现对交流电流信息和直流电流信息的检测。电流检测单元采集埋地管道的电流时,埋地管道连接ACS172ELC-05B芯片的引脚1、2 ;ACS172ELC-05B芯片的引脚3、4连接计划探头的极化试片。具体的电流采集方式与两个ACS172ELC-05B芯片的电流采集方式基本相同,直流电流密度和交流电流密度与两个ACS172ELC-05B芯片的方案基本相同,在此就不再——赘述了。这种方案省去了分成两条支路单独接电感或电容。不仅降低了成本还提高了检测精度和可靠度。
[0037]ACS712芯片主要由靠近芯片表面的铜制的电流通路和精确的低偏置线性霍尔传感器电路等组成,如图3所示。被测电流流经的通路(引脚I和2,3和4之间的电路)的内电阻通常是1.2毫欧,具有较低的功耗。被测电流通路与传感器引脚(引脚5?8)压>2.lkVRMS,几乎是绝缘的。埋地管道的流经铜制电流通路的电流所产生的磁场,能够被片内的霍尔IC感应并将其转化为成比例的电压。ACS712芯片通过将磁性信号尽量靠近霍尔传感器来实现器件精确度的最优化。精确的成比例的输出电压由稳定斩波型低偏置BiCMOS霍尔集成电路提供,该集成电路在出厂时已进行了精确的编程。稳定斩波型低偏置BiCMOS霍尔集成电路给片内的霍尔元器件和放大器提供最小的偏置电压,该技术几乎可以消除芯片由于温度所产生的输出。
[0038]在本发明的另一个实施例中,埋地管道与极化探头之间还设置有继电器,电压采集单元通过继电器的通断采集埋地管道的交流电压、管道通电电位、瞬间断电电位、自腐蚀电位传输至控制单元。在本实施例中,控制单元和电压采集单元集成,优选采用ARM处理器,包括STM32F103VET6芯片。该ARM处理器内部内置有测量电压功能,通过DMA控制器直接读取电压(DMA作为一种独立于CPU的后台批量数据传输技术,以其快速、高效的特点在数据采集领域得到广泛应用),利用内置的AD转换模块可以对采集到的信号进行数字/模拟转换。在测量电压值时,将STM32F103VET6芯片的GND引脚与极化探头的参比电极相连,从而使最低电位一致。在测量电压时,通过处理器芯片上的AD (模拟/数字)转换模块监测电压值。在测量断电电位时,将STM32F103VET6芯片的AD引脚连接继电器,继电器另一端连接极化探头的极化试片,瞬间通过拉高继电器相应的控制位,则此时与管道断开,从而测出试片断电电位。在测量自腐蚀电位时,将STM32F103VET6芯片的AD引脚连接极化探头的自腐蚀试片,测出来的值即为自腐蚀电位。将STM32F103VET6芯片的AD引脚与极化探头的极化试片相连,继电器测出来的值即为通电电位。在测试管道通电电位、瞬间断电电位、自腐电位时,检测过程需要测量三个电压值,所以使用三路AD轮询的方式,然后通过DMA直接读取数据。
[0039]处理器是采集记录仪核心单元,协调和驱动其他各个单元的工作。本发明采用基于Cortex-M3内核的32位ARM处理器。STM32F103VET6芯片具有最高72MHz的主频以及512K的Flash闪存。stm32fl03系列微控制器具有平台成本低、系统功耗低,同时提供卓越的计算性能和先进的中断系统响应等优点。STM32F103XX增强型支持三种低功耗模式,可以在要求低功耗、短启动时间和多种唤醒事件之间达到最佳的平衡。在睡眠模式,只有CPU停止,所有外设处于工作状态并可在发生中断/事件时唤醒CPU。在保持SRAM和寄存器内容不丢失的情况下,停机模式可以达到最低的电能消耗。在停机模式下,停止所有内部1.8V部分的供电,PLL、HSI和HSE的RC振荡器被关闭,调压器可以被置于普通模式或低功耗模式。可以通过任一配置成EXTI的信号把微控制器从停机模式中唤醒,EXTI信号可以是16个外部I/O 口之一、PVD的输出、RTC闹钟或USB的唤醒信号。在待机模式下可以达到最低的电能消耗。内部的电压调压器被关闭,因此所有内部1.8V部分的供电被切断;PLL、HSI和HSE的RC振荡器也被关闭;进入待机模式后,SRAM和寄存器的内容将消失,但后备寄存器的内容仍然保留,待机电路仍工作。
[0040]本发明提供的埋地管道阴极保护数据采集装置在大部分时间是处于待机模式,从而可以达到最低的电能消耗,待机模式下大约2uA。只有当采集的数据超过预定的阈值时系统才会立即通过中断立即进入正常模式发送紧急数据,之后依然处于低功耗状态。
[0041]如图1所示,在本发明的一个实施例中,埋地管道阴极保护数据采集装置还包括GPS (Global Posit1ning System,全球卫星定位)单元,GPS单元与控制器通信连接。由于埋地管道大多是在室外环境下,因此需要优先选择使用是ATK-NE0-6M GPS定位模块进行定位。使用GPS定位的难点在于把接收到的来自卫星的信号解析成需要的位置信息。项目使用的模块遵循标准的NMEA-0183协议(美国国家海洋电子协会为海用电子设备制定的标准格式),采用ASCII码来传递GPS定位信息。需要的定位信息主要是经度、玮度、时间,只要解析$GPRMC即推荐使用定位信息语句即可,它包括了经玮度以及时间。ATK-NE0-6M-V12GPS模块,该模块采用U-BLOX NE0-6M芯片。模块通过串口与外部系统连接,串口波特率默认是38400。在本发明提供的埋地管道阴极保护数据采集装置需要采集经度和玮度信息,因此只要对 $GPRMC (推荐定位信息,Recommended Minimum Specific GPS/Trans it Data)命令进行解析即可(该语句包括经玮度信息)。
[0042]$GPRMC语句的基本格式如下
[0043]$GPRMC,〈1>,〈2>,〈3>,〈4>,〈5>,〈6>,〈7>,〈8>,〈9>,〈10>,〈11>,<12>*hh
[0044]<1>UTC时间,hhmmss (时分秒)格式
[0045]<2>定位状态,A =有效定位,V =无效定位
当前第2页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1