改良的沸石和分子筛及其用途的制作方法

文档序号:3437027阅读:546来源:国知局
专利名称:改良的沸石和分子筛及其用途的制作方法
本申请要求于2000年10月20日提交的临时申请60/242,110的优先权,并是该临时申请的部分延续,该临时申请的内容并入本文作为参考。
本发明涉及沸石和分子筛,更具体地涉及沸石和分子筛的生产及其用途。
沸石和分子筛通常用在各种催化过程中。一般而言,沸石和分子筛可以用下面的方法制备,该方法包括由一种反应混合物形成结构,该混合物包含二氧化硅和氧化铝,通常还含有一种有机引导剂(常称为“模板”),该有机引导剂例如但不限于线性胺、线性二胺、和季铵盐。例如,季铵盐可以是四乙基氢氧化铵。有机引导剂可以用热处理过程从得到的沸石中除去,在高温下该过程通常被称作“煅烧”。所形成的沸石结构或分子筛的酸形式通过离子交换例如但不限于铵交换,和随后的再次煅烧产生。在一些方法中,铵交换步骤发生在煅烧之前,因此简化了步骤。在很多情况下,(附加的)热处理,也称作煅烧,在成型步骤之后进行。在该成形或成型步骤中,沸石或分子筛被制备成一定形状以便使用,例如用于固定床催化操作。
在现有技术中,已经认识到最后的热处理步骤可以影响沸石或分子筛的状态和性质。但没有认识到在除去有机引导剂的热处理过程中,改变沸石或分子筛材料的状态和性质会显著影响沸石或分子筛的性能。本申请人惊奇地发现,除去有机引导剂的受控热处理或煅烧以及在该处理过程中将沸石或分子筛暴露在不高于570℃的平均温度下是希望的,以产生具有特定性质和强度的酸性位点。这些产生的酸性位点可以依照实施例3(“TPD”)中进行的控温脱氨过程来测定,已经惊奇地发现该酸性位点显著提高了在反应中的催化性能,例如但不限于烃转化技术、和环境废料转化技术。本申请人已经发现,与过去本领域的发现所认可的相反,被称作“强酸位点”并可以依照实施例3(“TPD”)中所进行的控温脱氨过程来测定的这些位点,其丰度有益于芳香族的烷基化技术,例如但不限于苯的乙基化形成乙基苯。申请人还发现除了出现这些酸性位点,沸石或分子筛发生了相当大的重构,这一点可以用孔隙率测量来表征,例如用N2物理吸附和/或汞孔隙率仪测定。根据现有理解,申请人认为沸石和分子筛上述性质的结合在催化应用中特别是烃转化应用中优化性能是希望的。已经发现用酸性-活性指数(AAI)可以表征上述改良的性质和提高的催化性能的组合。说明书和权利要求中所用的AAI是温度高于300℃时从沸石中脱附的氨的总量与温度低于300℃时从沸石中脱附的氨的总量之比,依照实施例3(“TPD”)中进行的控温脱氨过程进行测量。
与申请人的发现相反,美国专利5,258,570说明β-沸石的催化活性可以通过活化所形成的沸石获得,活化是在约600℃到675℃下加热以减少所谓的“强”酸性位点。依照美国专利5,258,570,用常规方法得到的β-沸石需经特别处理来减少酸性位点进而提高催化活性。
本发明的一个方面提供了一种沸石或分子筛,它有数目增加的所谓“强酸位点”,即依照实施例3(“TPD”)中所用的控温脱氨过程来测定的位点。更特别的是,申请人发现通过增加强酸位点的数目可以显著提高催化活性。
本发明另一方面提供一种沸石或分子筛,它具有增大的中孔隙率,即孔的尺寸大于2nm且小于50nm,以及数目增加的所谓“强酸性位点”。更具体地,申请人发现通过增大沸石分子筛网络的中孔隙率和强酸性位点的数目可以相当大地提高催化活性。
沸石或分子筛的优选具有平均孔径大于100埃的孔隙。
在另一实施方案中,沸石或分子筛的孔体积大于0.7cm3/g。
按照本发明的一个优选实施方案,沸石或分子筛的酸性-活性指数(AAI)至少为1.0,优选至少为1.2,更优选至少为1.4,最优选至少为1.6,其中,说明书和权利要求中所用的AAI是温度高于300℃时从沸石或分子筛中脱附的氨的总量与温度低于300℃时从沸石或分子筛中脱附的氨的总量之比,测量依照实施例3(“TPD”)中所用的控温脱氨过程进行。
更具体地在一个优选实施方案中,沸石或分子筛包含二氧化硅和氧化铝,其摩尔比为6∶1或更高或15∶1或更高,它是通过使用包含有机氮化合物的模板或有机引导剂制备的。有代表性的但是非限制性的沸石列举如下β-沸石、TEA-丝光沸石、TEA-ZSM-12、MCM-22、MCM-36、MCM-39、MCM-41、MCM-48、PSH03、ZSM-5、TPA05、Breck 6、ZSM-12、ZSM-22、ZSM-23、ZSM-35、ZSM-48、SSZ-32等。优选的沸石是β-沸石,尽管本发明不限于优选的沸石。
根据本发明的另一方面,申请人发现具有改良催化活性的沸石或分子筛可以通过增加其强酸性位点制备。在这点上,申请人发现在制备沸石和分子筛的过程中,特别是在除去有机氮模板剂的过程中,应该控制所用条件以保存强酸位点。在这方面,强酸位点通过采用防止那些位点损失的工艺条件来保持,这些位点被证明有益于催化转化用途并可采用从I比例来表征。应当认为,这些位点可以归结为在沸石或分子筛结构中的一种特定的四面体铝的位点。
在这方面,在除去有机氮模板剂的过程中(通常至少50%被除去,在优选的实施方案中基本上全部被除去),控制加热来避免平均温度超过约575℃,优选加热到平均温度不高于550℃(通常至少50%被除去,在优选的实施方案中基本上全部被除去)。此外,在优选实施方案中,应该控制加热使材料的温度以可控的方式升高到最终煅烧温度。在这方面,“仔细”意味着材料温度的升高不会太快使温度高于约575℃的局部过热被避免和/或减到最小。
此外,除去模板剂的煅烧在浅床中进行以便减少局部过热或出现热点。另一选择是使用深的催化剂床,如果流动气体具有足够高的表面速率使传热速率能够维持催化剂床上任意一点的温度与平均床温之差不超过25℃。在另一方法中,煅烧过程中的过热可以通过以下途径减到最小,采用温度均变时的中间停顿或通过减少/控制氧气流量控制有机引导剂的燃烧加热来控制热点。其它本领域中已知的可能方法也可以用来将局部过热或热点的出现减到最小。
申请人还发现,水蒸汽可以影响沸石或分子筛的催化活性。因此,在优选实施方案中,煅烧沸石或分子筛时,把沸石或分子筛缓慢地加热到最终煅烧温度。为了减少暴露于300℃以上的机会,控温加热到最高300℃以便在到达高温前除去水份防止汽蒸,从而保存强酸性位点。在一个实施方案中,这可以通过采用缓慢的升温速率实现,例如小于10℃/min,优选小于5℃/min。
在另一个实施方案中,可以在升温到300℃的过程中采用中间停顿来减少暴露在显著高于300℃的温度。
目前的工作模式是主要由于特定形式的四面体铝的损失减少了所谓的“强酸性位点”。因此,根据本发明的一个方面,在生产沸石或分子筛时,为了提供改良的催化剂活性,应该减少或避免减少特定形式的四面体铝的量从而减少强酸性位点数目的操作条件。如上面所示,为了减少特定形式的四面体铝的损失从而保持强酸性位点的某一最小含量,应该控制除去模板剂的条件以便减少和/或避免长时间暴露在高于550℃的温度。此外,在优选实施方案中汽蒸应当避免;例如但不限于通过缓慢加热到达最终的煅烧温度。
此外,还应当控制除去模板剂后对沸石或分子筛的处理,以减少和/或避免暴露在高于550℃的温度。例如,离子交换步骤和离子交换后的沸石或分子筛的最后煅烧应该在适中的温度下进行。离子交换包括但不限于用NH4NO3交换Na得到NH4-形式的沸石或分子筛。此外,还应该减少或避免在挤出沸石或分子筛形成所希望的形状的过程中使用有机试剂。
本领域过去没有认识到沸石和分子筛中的强酸性位点提高催化活性,也没有认识到应该控制生产沸石和分子筛的工艺条件以防止强酸性位点的损失。在现有技术中,沸石或分子筛形成后的加工步骤使强酸性位点的数目减少到低于本发明的值,并且这一减少导致催化活性的降低。
本发明的沸石和分子筛可以与其它材料结合,如本领域熟知的。例如,沸石和分子筛任选可以在氢形成性阳离子交换之后进行金属阳离子交换。如果沸石和分子筛在氢形成性阳离子交换之后进行金属阳离子交换,则其沸石或分子筛组分优选地包括很多如上文所述的酸性位点。金属阳离子的代表可以是IIA族、IIIA族、IIIB到VIIB族的阳离子。这些阳离子的使用在本领域中是已知的,并且根据本文的说明这些附加阳离子的引入及其用量被认为包括在本领域的技术中。类似地,沸石或分子筛可以与一种或更多无机氧化物基质组分共同使用,该组分通常在用金属阳离子(如果使用)交换时与沸石和分子筛结合。这些基质组分通常是无机氧化物如二氧化硅-氧化铝、粘土、氧化铝、二氧化硅等。基质可以以溶胶、水凝胶或凝胶的形式存在,并通常是氧化铝、二氧化硅或二氧化硅-氧化铝组分如传统的二氧化硅-氧化铝催化剂。基质可以有催化活性或是惰性的。如上文所述,在优选实施方案中,当与基质结合时,沸石或分子筛的组分有很多强酸性位点。
如上文所述,为了保持强酸性位点,应该控制操作过程以避免沸石或分子筛长时间暴露在高温下。
本发明的沸石和分子筛可用于催化转化原料,其中,沸石或分子筛在反应区形成全部或部分的催化剂。将原料导入反应区,在使原料转化为希望的产品的有效条件下与催化剂接触。
基本上任何原料或原料的组合可以用于本发明。这样的原料,即一种或多种反应物组分,在环境条件即20℃和大气压力下可以是气态、固态或液态的。原料可以是有机的或无机和有机组分的组合。本反应体系特别适用于有机原料,优选具有包含碳和氢、及任选的一种或多种其它元素的分子。该其它元素优选选自氧、硫、卤素、氮、磷及其混合物。
由原料/沸石或分子筛催化剂接触得到的一种或多种产物当然取决于例如所用的原料、催化剂及反应条件。根据原料,产物可以是有机的或无机和有机组分的组合。希望的产物优选是有机物。然而应当注意,即使所寻求的主要产物是有机的,必要的因而也是希望的反应副产物可以是无机的。这可以用甲醇转化为轻烯烃和水来举例说明。一种或多种有机产物的分子优选地含有碳和氢。希望的一种或多种产物的优选动态直径允许该一种或多种产物从沸石或分子筛催化剂组合物的孔中被除去或逃逸。
在反应区中沸石或分子筛催化剂的量可以在很宽的范围内变化,它取决于例如具体的工艺用途。
如果是所希望的和/或对整个过程有益,除了原料外,稀释剂可以和原料一同使用。该稀释剂可以在原料与沸石或分子筛催化剂接触前与原料混合或结合,或可以与原料分别导入反应区。该稀释剂优选地调节原料化学转化的反应速率,并可能调节反应程度,还可能帮助控制温度。在某些实施方案中,优选在操作中将稀释剂充分连续地导入反应区。可用于本方法的典型稀释剂为氦、氩、一氧化碳、二氧化碳、氢、烃及其混合物。稀释剂(如果有的话)的用量可以根据所涉及的特殊应用在很宽的范围内变化。例如,稀释剂量的范围可以是原料摩尔数的约0.1%或更少到约100倍或更多。
根据例如所用的特定原料和催化剂以及所希望的一种或多种特定产物,过程发生的转化条件可以大范围变化。本方法特别适用于与原料接触的沸石或分子筛催化剂的接触温度超过约50℃,更优选地超过约100℃,压力从约大气压到约2000psig。根据例如所用的特定原料和催化剂以及所希望的一种或多种特定产物,原料在反应区的停留时间可以独立地选择。
有机原料优选为烃原料,催化转化过程优选为烃转化过程。能够用沸石或分子筛催化剂组合物催化的基本任何烃转化过程都可以按照本发明进行。有代表性的烃转化过程包括例如芳族和异链烷烃的裂解、氢化裂解、烷基化;异构化包括直链烷烃或二甲苯的异构化;聚合;重整;加氢;脱氢;烷基交换;脱烷基化;氢化开环和脱氢环化。
当使用含有加氢助催化剂如铂或钯的沸石或分子筛催化剂组合物时,重石油残渣油料、循环料和其它可氢化裂解的进料可以在温度200-450℃下氢化裂解,氢与烃的摩尔比在2到80范围内,氢的分压在大气压到200bar之间,液体时空速度(LHSV)为0.1到20,优选0.5到10。
用于氢化裂解的沸石或分子筛催化剂组合物也适合用在重整过程中,该过程中烃原料在约350-600℃与催化剂接触,氢的分压在1到35bar之间,(LHSV)在0.1到10的范围内,氢与烃的摩尔比在1到20之间,优选4到12之间。
其它异构化反应在与上述重整反应相似的条件下进行。烯烃优选在200-500℃异构化,而重质烷烃、环烷烃、烷基芳烃优选在300-550℃异构化。除了上述直链烷烃的异构化,本文预期的特别希望的异构化反应还包括下列转化正庚烯和/或正辛烯到异庚烯和异辛烯、甲基环戊烷到环己烷、间二甲苯和/或邻二甲苯到对二甲苯、1-丁烯到2-丁烯和/或异丁烯、正己烯到异己烯、环己烯到甲基环戊烯等。优选的阳离子形式是β-沸石与多价金属化合物(如硫化物)的组合,其中金属为IIA族、IIB族和稀土金属。
在略高的温度下,即约350-550℃,优选450-500℃及通常在约1到5bar的略低压力下,同样的催化剂组合物用来加氢异构含有较重直链烷烃的原料。重直链烷烃原料优选包括具有7-20个碳原子的直链烷烃。为了避免不希望的副反应如烯烃的聚合和烷烃的裂解,原料与催化剂的接触时间通常较短。LHSV值为0.1到10,优选0.5到6是合适的。
活化的沸石或分子筛催化剂的晶体结构及其完全不含碱金属的存在形式有利于该催化剂用于烷基芳族化合物的转化,特别是甲苯、二甲苯、三甲基苯、四甲基苯等的催化歧化。在歧化过程中,异构化和烷基交换也能够发生。优选地将VIII族的贵金属助剂单独或与VIB族金属如钨、钼和铬一同加入催化剂组合物中,其量从组合物总量的约3到15重量%。外加的氢可以但不必存在于反应区中,反应区的温度保持在约200-400℃,压力为5到150bar,LHSV值在0.1到15范围内。
催化裂解过程优选用β-沸石组合物进行,所用原料为柴油、重质石脑油、脱沥青原油残渣等,以汽油为主要希望产物。合适的反应条件为温度450-600℃,LHSV值为0.5到10,压力为大气压到4bar。
采用烷烃原料,优选为具有多于6个碳原子的直链烷烃原料进行的形成苯、二甲苯、甲苯等的脱氢环化反应,使用与催化裂解基本相同的反应条件进行。对于这些反应,活化的β-沸石催化剂与VIII族非贵金属阳离子如钴和镍一同使用是优选的。
在希望从芳香环上断裂烷烃侧链而基本不引起环结构的加氢的催化脱烷基化中,采用约450-600℃的较高温度,约20到70bar的中等氢压力,其它条件与上述催化氢化裂解的条件相似。优选的催化剂是与上述催化脱氢环化有关的同种催化剂。这里预期的特别希望的脱烷基化反应包括甲基萘到萘、甲苯和/或二甲苯到苯的转化。当用于烷基芳香族脱烷基化时,温度通常至少175℃,最高到原料大量裂解或转化产物出现的温度,通常最高到约370℃。温度优选至少230℃且不高于化合物发生脱烷基化的临界温度。所用的压力条件至少使芳香族进料保持液态。对于烷基化反应,温度可以低到120℃但优选至少175℃。在苯、甲苯和二甲苯的烷基化中,优选的烷基化试剂选自烯烃如乙烯和丙稀。
在催化氢化精制中,主要目标是在基本上不影响烃分子的情况下促进进料中有机硫和/或氮化合物的选择性氢化分解。针对这一目标,优选采用与上述催化裂解相同的通用条件和与上述脱氢环化操作中所述的相同一般性质的催化剂。原料包括汽油馏分、煤油、喷气机燃料馏分、柴油馏分、轻和重柴油、脱沥青原油残渣等,其中任何一种可以含有最高约5重量%的硫和最高3重量%的氮。
烃转化过程可以以间歇、半连续、或连续方式进行。这些过程可以在单一反应区或安置成串联或并联的许多反应区中进行,或在长管状区域或许多这样的区域中间歇地或连续地进行。当采用多个反应区时,串联使用一种或多种β-沸石催化剂组合物有利于得到希望的产物混合物。根据烃转化过程的本质,在动态(例如流动的或移动的)床体系或任何输送床体系而不是在固定床体系上使用沸石催化剂组合物实施某些过程是希望的。在一段给定的时间后,这样的体系容易地提供β-沸石催化剂组合物的任何再生(如果需要)。如果需要再生,β-沸石催化剂组合物可以以移动床形式连续地被导入再生区,在这里它们能够再生,例如通过在含氧的气氛下氧化除去含碳的材料。在一些烃转化过程的优选实践中,β-沸石催化剂组合物经历的再生步骤是烧掉在反应中积累的含碳的沉积物。
在本发明的一个优选实施方案中,本发明的沸石或分子筛作为用于烷基化过程中的催化剂如苯烷基化生产乙基苯。特别是酸性位点的小增加会导致催化剂活性的大增加。
在本发明的另一个优选实施方案中,在烷基化过程如苯烷基化生产乙基苯中用作催化剂的沸石是β-沸石。
本发明将在下列实施例中作进一步描述,但是本发明的范围并不限于此。除非另外说明,所有的份和百分数都按重量计。
实施例1β-沸石根据Murrell等人的专利(美国专利6,004,527,1999)制备。把喷雾干燥的二氧化硅(486克,Davison 948,60μm的平均粒径)浸入202g Al(NO3)3·9H2O和800g蒸馏水的混合物中,在120℃干燥2小时并以5℃/min的升温速率在500℃煅烧2小时。计算出的材料的二氧化硅-氧化铝比是30。
将得到的二氧化硅-氧化铝162g浸入162g 35重量%的TEAOH(Aldrich)中,然后浸入80g 3.76重量%的NaNO3水溶液中。在玻璃烧杯中搅拌着缓慢加入液体。将浸渍后的固体转移到一个2升的在马达驱动的滚床上旋转的Parr高压釜中。混合物在空气循环炉中在157℃下加热36小时。将高压釜冷却到室温,用大量的水清洗并过滤固体。产物在空气中120℃下干燥。X-射线衍射表明产物含有相对结晶度为113%的β-沸石。市售β-沸石粉用来作为参比。
随后,把20克的β-产物(实验室样品1)用下列程序在空气中煅烧以5℃/min升温到200℃,保温1小时,以5℃/min升温到650℃,保温6小时,并以5℃/min降温到室温。把20克的另一部分β-产物(实验室样品2)用下列程序在空气中煅烧以5℃/min升温到200℃,保温1小时,以1℃/min升温到500℃,保温12小时,并以10℃/min降温到室温。煅烧后的粉体在0.1M的NH4NO3溶液中在室温离子交换5天。
把650℃煅烧的离子交换样品(实验室样品1)2.50克与3.0克Nyacol氧化铝溶胶(20重量%)和2.0克去离子水混合。糊状物在80℃干燥2小时,然后以加热速率5℃/min在550℃煅烧6小时。得到的产物含有80重量%的β-沸石。样品研磨并筛分到+20/-12目大小,将其中1.0g样品装入烷基化反应器中。在根据实施例2的苯到乙基苯的烷基化中,该样品具有的一级观测速率常数为0.31cm3/g/s。
把500℃煅烧的干燥样品(实验室样品2)3.225克与4.06克Nyacol氧化铝溶胶(20重量%)和3克去离子水混合。糊状物在80℃干燥2小时,然后以下列程序煅烧以5℃/min升温到200℃,保温1小时,以5℃/min升温到500℃,保温6小时。得到的产物含有80重量%的β-沸石。样品研磨并筛分到+20/-12目大小,将其中的0.76g样品装入烷基化反应器中。在根据实施例2的苯到乙基苯的烷基化中,该样品具有的一级观测速率常数为0.95cm3/g/s。
实施例2下面描述了用来测定本发明沸石催化剂(实施例1的实验室样品2)、用常规技术煅烧的沸石催化剂(实施例1的实验室样品1)以及某些市售的催化剂的催化活性的烷基化过程。
沸石催化剂的催化活性用苯与乙烯烷基化形成乙基苯(EB)的标准反应来评价。
测试反应器是再循环的差示固定床反应器。测试条件为300psig、190℃,再循环速率是200克/分钟。进料包含0.35重量溶解在苯中的乙烯,进料速率为6.0克/分钟。
12到20目尺寸颗粒的催化剂的载量是1.000克。用计量泵常规进料前,催化剂通常用热苯清洗约7小时(除去水分)。测量持续7到8小时并每30min取样作GC分析。计算出一级速率常数来代表催化剂活性。
实施例3在微反应器/质谱仪组件内进行温度编程脱附(TPD),该组件是石英微反应器和四级质谱仪(Hiden Analytical HPR-20)的结合。
把粉体形式的40-44mg样品装入石英微反应器。
样品首先在含5.2%氧气的流速为30cc/min的氦气流中氧化,温度从30℃到550℃并在550℃(TPD)维持30分钟。氧化处理后,在冷却到100℃前样品在550℃用氦气洗涤20分钟。
氨的吸附在100℃在含氨4-5%流速为27-30cc/min的氦气流中进行30分钟。
在温度脱附开始前,氨处理的样品在氦气(30cc/min)中在100℃洗涤45分钟(足以使氨的质谱信号回到背景水平)。
氨的TPD按以下条件进行以30℃/min从100℃升温到600℃。有两个明显的脱附峰;一个在<200℃另一个在>300℃。低于300℃的脱附归类为弱酸性位点而高于300℃的脱附归类为强酸性位点。
质量数为16和17的氨都被使用。质量数为17的信号用于氨的定量。
氨脱附的定量基于用4-5%的氨对质谱仪的校正。
实施例4表1总结了TPD的结果、AAI比例和催化活性。
表1催化剂*强酸性(mmol/g)**弱酸性Keb(cm3/g/s) AAIFor烷基化实施例1的样品1 0.586 0.886 0.31 0.661实施例1的样品2 0.844 0.386 0.95 2.19市售β-I 0.538 0.618 0.34 0.871市售β-II-A0.626 0.578 0.38 1.08市售β-II-B0.501 0.463 0.28 1.08市售β-II-C0.519 0.533 0.36 0.973*在TPD过程中高于300℃时脱附的氨的总量。
**在TPD过程中低于300℃时脱附的氨的总量。
实施例5用实施例1和2相似方法制备的一系列样品测试铝核磁共振谱。在55和0ppm的峰可分别归属于四面体和八面体铝。基于现有技术和本发明制备的样品,其55ppm峰面积(四面体铝)分别是25.3和48.4。相似地,基于现有技术和本发明制备的样品,其0ppm峰面积(八面体铝)分别是41.9和10.1。前一样品的芳香族烷基化速率常数是0.23cm3/g-s而后一样品的速率常数是1.71cm3/g-s。
实施例6实施例5中样品的孔尺寸分布还用汞孔隙率仪测定。基于现有技术获得的样品具有宽的孔尺寸分布,即孔直径从50到50,000埃。基于本发明获得的样品具有很窄的孔尺寸分布,即高于90%的孔在200到800埃范围内。
实施例7如上面实施例1所述,把3.10克Davison Sylopol 948硅胶的50微米小球浸入0.63gAl(NO3)3·9H2O和11.5g水的混合物中使Si/Al比为30,并且在空气中在120℃干燥至恒重。将两克半(2.50克)这些小球浸于1.25克35重量%四丙基氢氧化铵的水溶液和1.25克3.68重量%的NaNO3水溶液中,得到氧化物的摩尔比为
33.6 SiO2∶0.56 Al2O3∶1 TPA2O∶0.22 Na2O∶108 H2O把混合物置于一个35ml带有10ml Teflon衬管的不锈钢高压釜中。在158℃放置25小时后,用XRD相对于参考样品测量,产物的ZSM-5结晶度是25.1%。原始无定形的网络结构小球的形状和尺寸在产物中保留下来。模板(或有机引导剂)利用示于实施例1实验室样品2中的温度描述除去。
实施例8根据实施例7的过程,用给定氧化物摩尔比如下的溶液制备丝光沸石5.94 SiO2∶0.43 Al2O3∶0.09 TEA2O∶1 Na2O∶16 H2O把混合物置于一个35ml带有10ml Teflon衬管的不锈钢高压釜中。182℃放置46小时后,用XRD测量的丝光沸石的结晶度是75%,并保持原有形貌。模板剂用示于实施例1实验室样品2中的温度描述除去。
根据以上说明,本发明的很多修改和变化都是可能的;因此,在附加权利要求的范围内,本发明可以用不同于本文中具体描述的方式进行实施。
权利要求
1.一种沸石或分子筛,所述沸石或分子筛的AAI至少为1.0。
2.权利要求1的沸石或分子筛,其中,所述沸石或分子筛具有平均孔径大于100埃的孔隙。
3.权利要求1的沸石或分子筛,其中,所述沸石或分子筛的孔体积大于0.7cm3/g。
4.权利要求1的沸石或分子筛,其中,二氧化硅与氧化铝的摩尔比至少为6∶1。
5.权利要求4的沸石,其中,沸石选自β-沸石、TEA-丝光沸石、TEA-ZSM-12、MCM-22、PSH-3、ZSM-5、TPA-5、Breck6。
6.权利要求4的沸石,其中,所述沸石用有机氮引导剂制备。
7.权利要求6的沸石,其中,二氧化硅与氧化铝的摩尔比至少为15∶1。
8.转化化学物质的方法,包括在包含权利要求1的沸石或分子筛的催化剂存在下进行转化。
9.权利要求8的方法,其中,所述转化是芳香族的烷基化。
10.权利要求9的方法,其中,所述沸石选自β-沸石、MCM-22和PSH-3。
11.权利要求8的方法,其中,所述转化是加氢异构化。
12.权利要求8的方法,其中,所述转化是氢化裂解。
13.权利要求8的方法,其中,所述转化是除去氮的氧化物。
14.权利要求8的方法,其中,沸石是权利要求2的沸石。
15.权利要求8的方法,其中,沸石是权利要求3的沸石。
16.权利要求8的方法,其中,沸石是权利要求4的沸石。
17.权利要求8的方法,其中,沸石是权利要求5的沸石。
18.一种制备沸石或分子筛的方法,其中,所述方法包括除去有机模板剂,其改进包括在不高于550℃及除去模板剂后沸石或分子筛的AAI至少为1.0的条件下除去该模板剂。
19.权利要求18的方法,其中,至少50%的模板剂被除去。
20.权利要求19的方法,其中,沸石选自β-沸石、TEA-丝光沸石、TEA-ZSM-12、MCM-22、PSH-3、ZSM-5、TPA-5、Breck 6。
21.权利要求19的方法,其中,加热在床体内进行,并控制加热防止床内的温度变化高于平均床温25℃。
22.权利要求21的方法,其中,加热速率低于10℃/min。
23.权利要求18的方法,其中,在除去模板剂后,所述沸石或分子筛具有平均孔径大于100埃的孔隙。
24.权利要求18的方法,其中,在除去模板剂后,所述沸石或分子筛的孔体积大于0.7cm3/g。
全文摘要
一种具有高数量强酸位点的改良沸石,其中所述沸石的AAI至少为1.0。在优选的实施方案中,这样的沸石通过晶体结构产生后控制条件来生产使得四面体铝的损失最小化,从而提供具有以上限定的AAI的沸石。
文档编号C01B39/48GK1501887SQ01820999
公开日2004年6月2日 申请日期2001年10月19日 优先权日2000年10月20日
发明者R·A·奥弗贝克, N·范德皮尔, 叶春渊, L·L·穆雷尔, 常云峰, P·J·安格维尼, J·H·克格勒, R A 奥弗贝克, 克格勒, 安格维尼, 穆雷尔, 缕ざ 申请人:Abb拉默斯环球有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1