一种高透光率且不影响红外截止的光学玻璃的制备方法与流程

文档序号:13681428阅读:335来源:国知局
一种高透光率且不影响红外截止的光学玻璃的制备方法与流程
本发明涉及光学玻璃的制备方法,尤其涉及一种高透光率且不影响红外截止的光学玻璃的制备方法。
背景技术
:青蓝色玻璃在工业摄像镜头有着非常广泛的应用。在可见光波段(400nm-550nm)透过率越高越好,这样清晰度也会随之而高;另一方面,因为在拍摄过程中为了避免红光影响,对红外光波段截止要求较高,因此需要对红外波段进行截止,透过率越低越好。但在实际生产过程中熔炼此类青蓝色光学玻璃,可见光高透和红外截止这两个功能是相互矛盾,若要保证可见光,势必影响红外截止,反之亦然。如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象。目前行业生产此类滤光片,虽然能够找到该两种功能的平衡,产品勉强可以使用,但是始终没有达到理想效果,对于要求较高的产品,则只能通过在玻璃基片上进行镀膜,从而降低红外波段透过率,或者在可见光镀增透膜。但此类方法缺点是:(1)增加产品成本;(2)镀膜会衰减,使产品本身使用寿命简短。而玻璃本身是自带属性,光谱永远不会有变化。目前工业镜头应用广泛,对于镜头的高清晰度要求也越来越高,因此对可见光400nm-550nm需要较高的透过率,而目前同类产品透过率在该波段平均透过率率仅为80%。因此为了达到既隔热,又能够高显色,本发明人研究一种高透光率且不影响红外截止的新型材料来满足新一代工业镜头的要求,在隔热高显色玻璃的生产工艺方面相对于传统隔热玻璃的制备方法作出了极大的改进。技术实现要素:技术问题:本发明的目的在于提供一种新的光学玻璃材料的制备方法,能够提高近紫外和可见光透过且不影响红外截止的青蓝色光学玻璃的制备方法。技术方案:为实现上述目的,本发明提供如下技术方案:本发明的一种高透光率且不影响红外截止的光学玻璃的制备方法,包括如下步骤:步骤一,按重量份数取各组分,所述组分具体为:磷酸55-65,硼酸13-15,氧化铝8-12,氧化铜1-2,碳酸钡4-6,碳酸钠7-10,碳酸锂4-6,氧化铈0.5-0.9;所述各组分在混料机内混合均匀,得混合物;步骤二,取所述混合物进行熔炼,所述熔炼依次包括如下处理,高搅处理,澄清均化处理,冷却处理,浇注到模具中;步骤三,取步骤二熔炼所得产物在退火炉内冷却到230-330℃,闭电自然降温,之后降温至常温,在上述模具中成型;步骤四,取步骤三处理所得产物,切除不合格的气泡条纹,即得到一种高透光率且不影响红外截止的光学玻璃。有益效果:采用上述技术方案,本发明与目前技术相比,拥有如下优点:(1)本发明制备方法制备的高透过率且不影响红外截止的光学玻璃,可见光透过率可以由目前的低于80%提升至85%;最高透过率可达90%。(2)本发明制备方法制备出的一种高透过率且不影响红外截止的光学玻璃,可以在保证玻璃红外截止的前提下,提高可见光波段透过率,克服了传统工艺中如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象的问题。附图说明图1为本发明的高透光率且不影响红外截止的光学玻璃的制备工艺流程图。图2为本发明光学玻璃与现有技术的光学玻璃光谱曲线测试对比图。具体实施方式为使本发明实施例的目的、技术方案和优点更加清楚,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。在本发明一种实施方式中描述的元素和特征可以与一个或更多个实施方式中示出的元素和特征相结合。应当注意,为了清楚的目的,说明中省略了与本发明无关的、本领域普通技术人员已知的部件和处理的表示和描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。如图1所示,本发明的一种高透光率且不影响红外截止的光学玻璃的制备方法,包括如下步骤:步骤一,按重量份数取各组分,所述组分具体为:磷酸55-65,硼酸13-15,氧化铝8-12,氧化铜1-2,碳酸钡4-6,碳酸钠7-10,碳酸锂4-6,氧化铈0.5-0.9;所述各组分在混料机内混合均匀,得混合物;步骤二,取所述混合物进行熔炼,所述熔炼依次包括如下处理,高搅处理,澄清均化处理,冷却处理,浇注到模具中;步骤三,取步骤二熔炼所得产物在退火炉内冷却到230-330℃,闭电自然降温,之后降温至常温,在上述模具中成型;步骤四,取步骤三处理所得产物,切除不合格的气泡条纹,即得到一种高透光率且不影响红外截止的光学玻璃。此外,混合均匀具体为混合均匀度达到98%以上,将各组分混合均匀,且保持一定的水分。特定的金属着色离子在特殊配方的光学玻璃中以一定的配位状态存在,能调节光学玻璃变换色温的能力而不降低透光率。根据这一物理特性,发明人有针对性地调节滤光玻璃的成分和生产工艺,以期得到想要的滤光功能。高清晰度的工业镜头要求可见光透过率高而不影响红外截止。发明人对玻璃的磷酸盐玻璃体系使用氧化铜作为着色剂进行了研究。本发明中组分氧化铜,作为本改良玻璃的着色剂,其作用是对红色及红外波段的截止。铜离子在玻璃中为二价态时候在光谱红色及红外波段有很大的吸收。但不可过多使用,因为二价铜离子在紫外部分也有吸收,当氧化铜过量,虽然红外波段截止非常好,但是紫外及可见光波段透过率则会下降。因此组分在2-3重量份,最佳为2.3重量份。高清晰度的工业镜头要求可见光透过率高而不影响红外截止。发明人对玻璃的磷酸盐玻璃体系使用硼酸作为助熔剂进行了研究。本发明中组分硼酸,作为磷酸盐结构玻璃体系的重要组成部分。通过加入硼酸,能够改善磷酸盐玻璃化学稳定性差的缺点。同时,硼酸是良好的助熔剂,可使玻璃熔点降低。硼酸过多容易出现“硼反常现象”,不易过分引入,因此组分控制在13-15重量份,最佳为13-14重量份。本发明方法通过碳酸钠引入氧化钠,较之由硝酸钠引入,整个玻璃氧化性降低,原理同组分碳酸钡。组分控制在7-10重量份,最佳为8重量份。本发明方法中组分碳酸锂,锂离子代替部分钠离子,由于二价铜离子在红色及红外的吸收带位置随碱金属离子半径的增大而向长波方向移动,这是由于离子半径大的碱金属离子,对配位体氧的屏蔽不完全,使部分正电场进入着色离子的多面体配位中,消耗了一部分氧离子的有效电场,导致吸收带向长波长移动。另外,锂离子的半径比钠离子要小,因此二价铜离子的吸收带应该往短波方向移动。而此前解释由于整个玻璃成分氧化性降低,导致二价铜离子减少,吸收带往长波长方向移动,两者此消彼长,红色及红外吸收带可维持不变。除此之外,在紫外吸收方面,锂离子作为加强结构网络的成分能够使紫外截止波长往短波方向移动,从而使玻璃在近紫外有更高的透过率。组分控制在4-6重量份,最佳为5重量份。高清晰度的工业镜头要求可见光透过率高而不影响红外截止。发明人对玻璃的磷酸盐玻璃体系使用氧化铈作为着色剂进行了研究。本发明方法中氧化铈作为一种着色剂主要作用是对紫外波段250nm之前截止,在玻璃中存在ce3+和ce4+,两种价态的铈离子在紫外波段240nm都有强吸收,当ce4+过多时,光谱吸收会延伸到可见光区,从而影响近紫外波段透过率,因此对于ce4+数量需要进行控制,可以通过调整玻璃本身氧化还原性来进行控制,此前将硝酸钡和硝酸钠改为碳酸钡和碳酸钠,降低了整个玻璃成分的氧化性,从而能够生成较多订单ce3+,从而抑制ce4+数量。组分控制在0.5-0.9重量份,最佳为0.7重量份。下面通过具体实施例对本发明做进一步说明:实施例1在本实施例中,本发明的一种高透光率且不影响红外截止的光学玻璃的制备方法,首先按重量份数取各组分,所述组分具体为:磷酸55份,硼酸13份,氧化铝8份,氧化铜1份,碳酸钡4份,碳酸钠7份,碳酸锂4份,氧化铈0.5份。所有原料全部用ar级,目的是最大程度降低原料中含铁杂质,影响玻璃在紫外光透过率。采购ar级原料后,在工厂进行再一次提纯。熔炼坩埚和叶桨采用石英坩埚,选用石英坩埚目的是防止铁杂质污染原料。将上述原料混合均匀后,加料温度1065℃,料化透后再加料,总共加料20次,每次加料间隔约15分钟;加料完毕后升温至1110℃,升温时间为1个小时;熔炼温度为1120℃,持续8小时。降温从1120℃降至800℃,降温时间为4个小时,出料温度大约为800℃。最终退火,560℃降温,每小时10℃,到了300℃闭电自然降温,得到一种高透光率且不影响红外截止的光学玻璃。实施例2在本实施例中,本发明的一种高透光率且不影响红外截止的光学玻璃的制备方法,首先按重量份数取各组分,所述组分具体为:磷酸65份,硼酸15份,氧化铝12份,氧化铜2份,碳酸钡6份,碳酸钠10份,碳酸锂6份,氧化铈0.9份。所有原料全部用ar级,目的是最大程度降低原料中含铁杂质,影响玻璃在紫外光透过率。采购ar级原料后,在工厂进行再一次提纯。熔炼坩埚和叶桨采用石英坩埚,选用石英坩埚目的是防止铁杂质污染原料。将上述原料混合均匀后,加料温度1065℃,料化透后再加料,总共加料20次,每次加料间隔约15分钟;加料完毕后升温至1110℃,升温时间为1个小时;熔炼温度为1120℃,持续8小时。降温从1120℃降至800℃,降温时间为4个小时,出料温度大约为800℃。最终退火,560℃降温,每小时10℃,到了300℃闭电自然降温,得到一种高透光率且不影响红外截止的光学玻璃。实施例3在本实施例中,本发明的一种高透光率且不影响红外截止的光学玻璃的制备方法,首先按重量份数取各组分,所述组分具体为:磷酸60份,硼酸13份,氧化铝10份,氧化铜2.3份,碳酸钡5份,碳酸钠8份,碳酸锂7份,氧化铈0.7份。所有原料全部用ar级,目的是最大程度降低原料中含铁杂质,影响玻璃在紫外光透过率。采购ar级原料后,在工厂进行再一次提纯。熔炼坩埚和叶桨采用石英坩埚,选用石英坩埚目的是防止铁杂质污染原料。将上述原料混合均匀后,加料温度1065℃,料化透后再加料,总共加料20次,每次加料间隔约15分钟;加料完毕后升温至1110℃,升温时间为1个小时;熔炼温度为1120℃,持续8小时。降温从1120℃降至800℃,降温时间为4个小时,出料温度大约为800℃。最终退火,560℃降温,每小时10℃,到了300℃闭电自然降温,得到一种高透光率且不影响红外截止的光学玻璃。将上述实施例3所得高透光率且不影响红外截止的光学玻璃通过分光光度计测试玻璃光谱:样品标准测试厚度2mm根据国标gb/t15489.1,光谱要求:400nm-550nm》80%;570nm-580nm》70%;700nm《1%,样品在不同波长下的透过率详见表1:序号波长(nm)透过率(%)1400nm83.92500nm90.023550nm81.764570nm74.32572nm0.32从上表数据可以看出,该青蓝色玻璃在可见光玻璃有高透过率,峰值透过率达到90%,红外波段透过率为0.32%,截止性能良好。使用本发明方法制备的高透光率且不影响红外截止的光学玻璃与现有玻璃光谱曲线测试对比如图2所示,从对比数据中可以看出,红外截止波段720nm之后,截止深度基本没有变化。但是在可见光范围内(400nm-530nm)本发明的曲线明显高于现有技术玻璃的曲线。综上所述,本发明方法制备的高透光率且不影响红外截止的光学玻璃在保证红外波段截止功能不变的前提下,能够明显的提高可见光波段的透过率。最高透过率可达90%。本发明方法制备的高透光率且不影响红外截止的光学玻璃主要应用于工业摄像镜头。可以在保证玻璃红外截止的前提下,提高可见光波段透过率,克服了传统工艺中如果要想在可见光波段提升透过率,就会对红外玻璃截止生产影响,使红外玻璃截止深度不够,从而产生拍摄过程中的红光现象的问题。最后应说明的是:虽然以上已经详细说明了本发明及其优点,但是应当理解在不超出由所附的权利要求所限定的本发明的精神和范围的情况下可以进行各种改变、替代和变换。而且,本发明的范围不仅限于说明书所描述的过程、设备、手段、方法和步骤的具体实施例。本领域内的普通技术人员从本发明的公开内容将容易理解,根据本发明可以使用执行与在此所述的相应实施例基本相同的功能或者获得与其基本相同的结果的、现有和将来要被开发的过程、设备、手段、方法或者步骤。因此,所附的权利要求旨在在它们的范围内包括这样的过程、设备、手段、方法或者步骤。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1