导电性钙铝石型化合物块体的制备方法与流程

文档序号:13913779阅读:163来源:国知局

本发明属于钙铝石型氧化物半导体材料技术领域,具体涉及到一种利用固相反应-放电等离子烧结(sps)-制备[(ca1-xmx)24al28o64]4+(o2-)2-y(e-)2y块体材料的方法。



背景技术:

[ca24al28o64]4+(o2-)2以多孔陶瓷晶体的形式存在,属于钙铝石体系。1915年,由rankin和wright利用cao和al2o3合成,后来eitel和bussem确定了其中cao与al2o3的摩尔比为12:7,一个晶胞中包含两个[ca24al28o64]4+(o2-)2分子,包含2分子的晶胞中存在66个氧离子,其中的两个氧离子以游离氧的方式包接于由结晶框架形成的笼体空间中,可采用[ca24al28o64]4+(o2-)2的形式表示一个单胞的化学分子式,带正电的[ca24al28o64]4+部分是晶格的主体框架部分,为了保持电中性,2个o2-自由占据12个笼腔中的任意2个,因为o2-与带正电荷框架[ca24al28o64]4+结合力较弱,所以可以在笼腔内自由穿梭。相邻的笼子之间依靠笼腔壁上的孔(直径为0.4nm)相连通。自由o2-就很容易迁移到别处,也很容易被其他负离子(如f-,cl-,oh-,e-)取代,生成ca24al28o66的各种衍生物。生成的衍生物仍然保留ca24al28o66原有的框架结构。当ca24al28o66晶体结构中的部分笼腔被电子填充或笼腔内的部分o2-被电子e-取代后,笼腔内含有o2-和电子e-,即形成了[ca24al28o64]4+(o2-)2-y(e-)2y(0≤y≤2),当笼腔中的o2-被e-完全取代后形成[ca24al28o64]4+(e-)4,具有良好的电子传导特性,而且在400℃以下的大气环境中可以稳定存在,因此,可用作催化剂、光存储器、离子刻蚀、冷阴极电场电子发射、制冷设备等。



技术实现要素:

本发明主要目的是提供一种快速制备高纯度导电性钙铝石型化合物[(ca1-xmx)24al28o64]4+(o2-)2-y(e-)2y(0≤x≤1;0≤y≤2)块体的简单、高效的制备方法。本发明所提供的制备方法简单快速,制备周期大幅度缩短,而且制备的块体纯度高,有利于批量化生产和应用。

本发明采用放电等离子烧结(sps)技术原位反应合成高纯度的导电型[(ca1-xmx)24al28o64]4+(o2-)2-y(e-)2y块体,具体步骤如下:

将[(ca1-xmx)24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的活性金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:活性金属粉末与[(ca1-xmx)24al28o64]4+(o2-)2粉末的质量比1:2~1:5,烧结温度800~1300℃,反应室真空度不高于10pa,压力40mpa,反应时间为5~15min,随炉冷却脱模后去除金属层得到导电性钙铝石型化合物块体材料;活性金属粉末选取单质ti(钛)、ca(钙)、al(铝)、ba(钡)以及mg(镁)中的至少一种粉末来实施;

应用所述方法制备得到导电性钙铝石型化合物[(ca1-xmx)24al28o64]4+(o2-)2-y(e-)2y(m=mg、ba、sr、ge、ni、ce、gd、cu;0≤x≤1,0≤y≤2)块体材料。

调整还原温度(800~1300℃),电子浓度随着烧结温度上升而上升,电子浓度理最大理论值为2.33×1021/cm3,通过调整烧结温度可以调控电子浓度。

其中,m表示掺杂元素,x表示掺杂元素含量,y表示o2-的减少量,使用的放电等离子烧结设备的型号sps-5.0mk-v。

本发明具有以下特点:

本发明可通过活性金属结合放电等离子烧结快速还原绝缘体多晶[(ca1-xmx)24al28o64]4+(o2-)2而将电子注入,且可在约1017~1021/cm3范围内调控多晶块体的电子浓度,实现电输运特性的可控,故可以快速、高效地制备出高纯度的导电性钙铝石型化合物[(ca1-xmx)24al28o64]4+(o2-)2-y(e-)2y块体;其禁带宽度约为0.15~0.18ev;该方法制备方法简单,生产周期大幅度缩短,易于批量化生产。

附图说明

图1、实施例2制备的块体[ca24al28o64]4+(o2-)2多晶的实物照片。

图2、实施例4还原制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体的实物照片。

图3、实施例4制备的还原前后[ca24al28o64]4+(o2-)2多晶xrd图谱。

图4、实施例6制备的[ca24al28o64]4+(o2-)2-y(e-)2y多晶体断面sem照片。

图5、实施例6中用金属钛结合sps原位合成的[ca24al28o64]4+(o2-)2-y(e-)2y块体的电导率,还原温度分别为800℃、900℃、1000℃、1100℃、1200℃、1300℃。

具体实施方式

实施例1

将[ca24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钛金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钛粉末与[ca24al28o64]4+(o2-)2粉末的质量比为1:5,烧结温度800℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钛层得到导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到1.5×1017/cm3,300k时电导率为900s/cm。

实施例2

将[ca24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钛金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钛粉末与[ca24al28o64]4+(o2-)2粉末的质量比为1:5,烧结温度900℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钛层得到导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到1.7×1018/cm3,300k时电导率为1120s/cm。

实施例3

将[ca24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钛金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钛粉末与[ca24al28o64]4+(o2-)2粉末的质量比为1:5,烧结温度1000℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钛层得到导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-x(e-)2x块体材料;

经测试,制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到1.0×1019/cm3,300k时电导率为1250s/cm。

实施例4

将[ca24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钛金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钛粉末与[ca24al28o64]4+(o2-)2粉末的质量比为1:5,烧结温度1100℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钛层得到导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到2.1×1020/cm3,300k时电导率为1310s/cm。

实施例5

将[ca24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钛金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钛粉末与[ca24al28o64]4+(o2-)2粉末的质量比为1:5,烧结温度1200℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钛层得到导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到1.2×1021/cm3,300k时电导率为1400s/cm。

实施例6

将[ca24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钛金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钛粉末与[ca24al28o64]4+(o2-)2粉末的质量比为1:5,烧结温度1300℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钛层得到导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到2.3×1021/cm3,300k时电导率为1500s/cm。

实施例7

将[(ca0.95sr0.05)24al28o64]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钙金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钙粉末与[(ca0.95sr0.05)24al28o64]4+(o2-)2粉末的质量比为1:2,烧结温度800℃,压力40mpa。反应室真空度为8pa,反应时间为5min。随炉冷却脱模后去除金属钙层得到导电性钙铝石型化合物[(ca0.95sr0.05)24al28o64]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[(ca0.95sr0.05)24al28o64]4+(o2-)2-y(e-)2y块体电子浓度达到2.2×1021/cm3,300k时电导率为1530s/cm。

实施例8

将[(ca0.90gd0.10)24al28o66]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的镁金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属镁粉末与[(ca0.90gd0.10)24al28o66]4+(o2-)2粉末的质量比为1:3,烧结温度800℃,压力40mpa。反应室真空度为8pa,反应时间为8min。随炉冷却脱模后去除金属镁层得到导电性钙铝石型化合物[(ca0.90gd0.10)24al28o66]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[(ca0.90gd0.10)24al28o66]4+(o2-)2-y(e-)2y块体电子浓度达到1.0×1021/cm3,300k时电导率为1490s/cm。

实施例9

将[(ca0.94cu0.06)24al28o66]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的钡金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属钡粉末与[(ca0.94cu0.06)24al28o66]4+(o2-)2粉末的质量比为1:4,烧结温度800℃,压力40mpa。反应室真空度为8pa,反应时间为10min。随炉冷却脱模后去除金属钡层得到导电性钙铝石型化合物[(ca0.94cu0.06)24al28o66]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[(ca0.94cu0.06)24al28o66]4+(o2-)2-y(e-)2y块体电子浓度达到1.6×1021/cm3,300k时电导率为1580s/cm。

实施例10

将[(ca0.97ce0.03)24al28o66]4+(o2-)2进行粉碎、研磨,装入石墨模具中,预压成形,然后加入一定量的铝金属粉末,置于放电等离子烧结设备中进行原位反应合成;反应条件为:金属铝粉末与[(ca0.97ce0.03)24al28o66]4+(o2-)2粉末的质量比为1:5,烧结温度800℃,压力40mpa。反应室真空度为8pa,反应时间为15min。随炉冷却脱模后去除金属铝层得到导电性钙铝石型化合物[(ca0.97ce0.03)24al28o66]4+(o2-)2-y(e-)2y块体材料;

经测试,制备的[(ca0.97ce0.03)24al28o66]4+(o2-)2-y(e-)2y块体电子浓度达到1.9×1021/cm3,300k时电导率为1400s/cm。

如图1所示实施例3中制备的块体[ca24al28o64]4+(o2-)2;图2为实施例3还原制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体,表面及内部均为黑色;图3为实施例3制备的还原前后[ca24al28o64]4+(o2-)2-y(e-)2y多晶xrd图谱,还原前后均为多晶体,且物相没有发生变化,表明晶体结构没有发生改变;图4为实施例5制备的[ca24al28o64]4+(o2-)2-y(e-)2y多晶体断面sem照片,样品气孔较少,确定制备的样品致密;图5为实施例中不同还原温度下制备的[ca24al28o64]4+(o2-)2-y(e-)2y块体的电导率,随烧结温度的增加电导率增加。结果表明该工艺方法可制备出高纯度的导电性钙铝石型化合物[ca24al28o64]4+(o2-)2-y(e-)2y块体,且该制备方法简便快速、周期更短,易于工业化。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1