一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法与流程

文档序号:14664507发布日期:2018-06-12 18:50阅读:465来源:国知局
一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法与流程

本发明涉及一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法,属于无铅压电陶瓷材料技术领域。



背景技术:

压电陶瓷是一种功能陶瓷,其可以实现将电能和机械能相互转化,在电子、机械和通讯等领域都有着不可替代的应用价值,广泛应用于驱动器、传感器、换能器等多种器件的制作。但目前大规模使用的压电陶瓷仍是以PZT等为主的铅基压电陶瓷,但是铅具有毒性,会危害人体健康并对环境造成污染。各主要工业国及我国政府都颁布了相应的法律法规,限制或在不久的将来全面禁止含铅等有害物质在电子信息产品中的使用。因此亟须寻求一种无铅的、环境友好的并且性能优良的压电材料以取代传统的铅基压电材料。无铅压电铁电材料中,钛酸铋钠(Na0.5Bi0.5TiO3,NBT)因其具有较高的剩余极化强度、居里温度、介电常数以及近年来发现的大场致应变而受到重视,被认为是最有希望取代铅基压电铁电材料的无铅体系。为了进一步提高钛酸铋钠基无铅压电陶瓷的性能,通常会添加第二组元进行掺杂改性,发展出了相应的二元、三元体系,其具有比纯NBT陶瓷更加优异的烧结特性和压电性能。然而,总体来说钛酸铋钠基无铅压电陶瓷的压电性能仍需进一步提升,以获得高的压电系数。目前对于钛酸铋钠体系进行Rb等价掺杂的研究还鲜有报道。



技术实现要素:

针对上述问题,本发明的第一个目的是具有良好压电性能的高压电系数钛酸铋钠基无铅压电陶瓷。

本发明的第二个目的是提供上述高压电系数钛酸铋钠基无铅压电陶瓷的制备方法。

为此,本发明提供的第一个技术方案是这样的:

一种高压电系数钛酸铋钠基无铅压电陶瓷,其组分原料及其摩尔百分比含量为0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5-xRbxTiO3-0.04BaTiO3;

其中:所述x=0或者0.05或者0.10或者0.20。

本发明提供的第二个技术方案是这样的:

一种高压电系数钛酸铋钠基无铅压电陶瓷的制备方法,依次包括下述步骤:

步骤一:配料合成

根据0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5-xRbxTiO3-0.04BaTiO3的化学计量比称取原料Bi2O3,Na2CO3,K2CO3,BaCO3,Rb2CO3和TiO2进行配料,将配好的料放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中球磨,再将球磨后的浆料于75-85℃烘干;

步骤二:预烧

烘干后的粉料过筛后置于氧化铝坩埚中,在750-850℃下预烧2-4h,得到预烧粉,再将预烧粉置于球磨机中进行二次球磨,再于75-85℃烘干;

步骤三:造粒

将步骤二的粉末过筛后,按照质量百分比0.8-1.2%加入聚乙烯醇缩丁醛,充分研磨至粉料呈粒状,得到颗粒均匀的粉料;

步骤四:压制成型

将步骤三中的粉料压制成直径为8-12mm,厚度为1.0-1.4mm的圆柱生坯圆柱生坯;

步骤五:排胶烧结

将上述生坯置于氧化铝坩埚中,利用同等组分的预烧粉埋烧,首先以2℃/min的升温速率至550-650℃保温1h排胶,然后以5℃/min的升温速率至1160-1180℃保温2h烧结,随炉自然冷却,制得无铅压电陶瓷;

步骤六:被银

对烧结好的陶瓷块体进行打磨和抛光,在两面涂覆中温银浆,在500-600℃下保温25-35min烧成银电极;

步骤七:极化

将述被银后的无铅压电陶瓷块体在硅油浴中极化处理,即得到高压电系数钛酸铋钠基无铅压电陶瓷0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5-xRbxTiO3-0.04BaTiO3。

进一步的,上述的一种高压电系数钛酸铋钠基无铅压电陶瓷的制备方法,步骤一所述的配料、磨球和无水乙醇的质量比为4:2:1。

进一步的,述的一种高压电系数钛酸铋钠基无铅压电陶瓷的制备方法,步骤一和步骤二中的球磨机的转速均为400r/min,步骤一球磨时间为12h,步骤二球磨时间为24h。

进一步的,上述的一种高压电系数钛酸铋钠基无铅压电陶瓷的制备方法,步骤二中预烧粉的预烧时间为3h。

进一步的,上述的一种高压电系数钛酸铋钠基无铅压电陶瓷的制备方法,步骤四中压制生坯时的压制压强为20Mpa,保压时间为5min。

进一步的,上述的一种高压电系数钛酸铋钠基无铅压电陶瓷的制备方法,步骤七中的极化时间为10-30min,极化电场为2-4kV/mm。

与现有技术相比,本发明的有益效果:

本发明将铷元素等价掺杂入钛酸铋钠基无铅压电陶瓷,所制备压电陶瓷无杂相,随着铷掺杂含量的增多,压电陶瓷的性能发生了显著改变,在掺杂量x为0.05时,获得压电系数高达210pC/N。本发明制备的无铅压电陶瓷生产成本低,压电性能好,在驱动器、传感器等多种领域可以得到良好应用。

附图说明

图1为实施例1、2、3、4所制备的不同铷掺杂量的无铅压电陶瓷的XRD检测结;

图2为实施例1、2、3、4所制备的不同铷掺杂量的无铅压电陶瓷的铁电电滞回线(P-E loops)和相应的电流-电场回线(I-V curves)。

图3为实施例1、2、3、4所制备的不同铷掺杂量的无铅压电陶瓷在3.5kV/mm电场极化20min后,测得的室温压电常数d33的值。

具体实施方式

下面结合具体实施方式对比本发明的权利要求做进一步的详细说明。

实施例1:制备BNT-BKT-BT无铅压电陶瓷。

按照0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3的摩尔化学计量比称取原料Bi2O3,Na2CO3,K2CO3,BaCO3和TiO2混合均匀,将配好的料放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中球磨,在400r/min的转速下球磨12h。再将球磨后的浆料于80℃烘干。烘干后的粉料过200目筛后置于氧化铝坩埚中,在800℃下预烧3h,得到预烧粉。再将预烧粉在400r/min的转速下球磨24h,再于80℃烘干。将上述粉末过筛后,加入预烧粉总质量1%加入聚乙烯醇缩丁醛(PVA),充分研磨至粉料呈粒状,得到颗粒均匀的粉料,并在20Mpa的压强下保压5min压制成直径为10mm,厚度为1.2mm左右的圆柱生坯。将上述生坯置于氧化铝坩埚中,利用同等组分的预烧粉埋烧,首先以2℃/min的升温速率至600℃保温1h排胶,然后以5℃/min的升温速率至1165℃保温2h烧结,随炉自然冷却,制得无铅压电陶瓷。对烧结好的陶瓷块体进行打磨和抛光,在两面涂覆中温银浆,在550℃下保温30min烧成银电极。上述被银后的无铅压电陶瓷块体在硅油浴中在3.5kV/mm的条件下极化20min,即得到0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3无铅压电陶瓷元件。

实施例2:制备BNT-BKT-BT-Rb0.05无铅压电陶瓷。

按照0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.45Rb0.05TiO3-0.04BaTiO3的化学计量比称取原料Bi2O3,Na2CO3,K2CO3,BaCO3,Rb2CO3和TiO2粉,将配好的料放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中球磨,在400r/min的转速下球磨12h。再将球磨后的浆料于75℃烘干。烘干后的粉料过200目筛后置于氧化铝坩埚中,在850℃下预烧3h,得到预烧粉。再将预烧粉在400r/min的转速下球磨24h,再于80℃烘干。将上述粉末过筛后,加入预烧粉总质量0.8%加入聚乙烯醇缩丁醛(PVA),充分研磨至粉料呈粒状,得到颗粒均匀的粉料,并在20Mpa的压强下保压5min压制成直径为10mm,厚度为1.2mm左右的圆柱生坯。将上述生坯置于氧化铝坩埚中,利用同等组分的预烧粉埋烧,首先以2℃/min的升温速率至550℃保温1h排胶,然后以5℃/min的升温速率至1160℃保温2h烧结,随炉自然冷却,制得无铅压电陶瓷。对烧结好的陶瓷块体进行打磨和抛光,在两面涂覆中温银浆,在500℃下保温25min烧成银电极。上述被银后的无铅压电陶瓷块体在硅油浴中在3.5kV/mm的条件下极化20min,即得到0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3无铅压电陶瓷元件。

实施例3:制备BNT-BKT-BT-Rb0.10无铅压电陶瓷。

按照0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.40Rb0.10TiO3-0.04BaTiO3的化学计量比称取原料Bi2O3,Na2CO3,K2CO3,BaCO3,Rb2CO3和TiO2粉,将配好的料放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中球磨,在400r/min的转速下球磨12h。再将球磨后的浆料于85℃烘干。烘干后的粉料过200目筛后置于氧化铝坩埚中,在850℃下预烧3h,得到预烧粉。再将预烧粉在400r/min的转速下球磨24h,再于85℃烘干。将上述粉末过筛后,加入预烧粉总质量1%加入聚乙烯醇缩丁醛(PVA),充分研磨至粉料呈粒状,得到颗粒均匀的粉料,并在20Mpa的压强下保压5min压制成直径为10mm,厚度为1.2mm左右的圆柱生坯。将上述生坯置于氧化铝坩埚中,利用同等组分的预烧粉埋烧,首先以2℃/min的升温速率至650℃保温1h排胶,然后以5℃/min的升温速率至1180℃保温2h烧结,随炉自然冷却,制得无铅压电陶瓷。对烧结好的陶瓷块体进行打磨和抛光,在两面涂覆中温银浆,在600℃下保温35min烧成银电极。上述被银后的无铅压电陶瓷块体在硅油浴中在3.5kV/mm的条件下极化20min,即得到0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3无铅压电陶瓷元件。

实施例4:制备BNT-BKT-BT-Rb0.20无铅压电陶瓷。

按照0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.30Rb0.20TiO3-0.04BaTiO3的化学计量比称取原料Bi2O3,Na2CO3,K2CO3,BaCO3,Rb2CO3和TiO2粉,将配好的料放入以无水乙醇为介质、氧化锆球为磨球的尼龙罐中球磨,在400r/min的转速下球磨12h。再将球磨后的浆料于80℃烘干。烘干后的粉料过200目筛后置于氧化铝坩埚中,在800℃下预烧3h,得到预烧粉。再将预烧粉在400r/min的转速下球磨24h,再于80℃烘干。将上述粉末过筛后,加入预烧粉总质量1%加入聚乙烯醇缩丁醛(PVA),充分研磨至粉料呈粒状,得到颗粒均匀的粉料,并在20Mpa的压强下保压5min压制成直径为10mm,厚度为1.2mm左右的圆柱生坯。将上述生坯置于氧化铝坩埚中,利用同等组分的预烧粉埋烧,首先以2℃/min的升温速率至600℃保温1h排胶,然后以5℃/min的升温速率至1165℃保温2h烧结,随炉自然冷却,制得无铅压电陶瓷。对烧结好的陶瓷块体进行打磨和抛光,在两面涂覆中温银浆,在550℃下保温30min烧成银电极。上述被银后的无铅压电陶瓷块体在硅油浴中在3.5kV/mm的条件下极化20min,即得到0.85Bi0.5Na0.5TiO3-0.11Bi0.5K0.5TiO3-0.04BaTiO3无铅压电陶瓷元件。

为了证明本发明提供的技术方案的效果,下面给出本申请制备的无铅压电陶瓷结果结果,具体如下:

图1是实施例1、2、3、4所制备的不同铷掺杂量的无铅压电陶瓷的XRD检测结果,可以看出所有制备的产物均为纯相,不含有任何的杂质。所制备的BNT-BKT-BT-Rbx(x=0,0.05,0.10,0.20)均形成了均匀的固溶体,从46.5°左右的分峰看来,所有组分均是三方相和四方相共存的结构,但随着铷掺杂量的增多,四方相含量逐渐减少。

图2是实施例1、2、3、4所述制备的不同铷掺杂量的无铅压电陶瓷的铁电电滞回线(P-E loops)和相应的电流-电场回线(I-V curves),从结果可以看出铷掺杂量x为0和0.05时,压电陶瓷体现出饱和丰满的电滞回线,并且电流-电场回线具有双峰,说明是典型铁电体。而当铷掺杂量x增加到0.10和0.20时,电滞回线明显收缩,,电流-电场回线具有四峰,说明产生了铁电相到弛豫相的转变。随着铷掺杂量的增多,压电陶瓷的矫顽场单调减小。

图3是实施例1、2、3、4所述制备的不同铷掺杂量的无铅压电陶瓷在3.5kV/mm电场极化20min后,测得的室温压电常数d33的值,可以看出少量的进行铷掺杂,可以提高压电陶瓷的压电性能,最高d33在x=0.05时获得,为210pC/mm。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1