中低温烧结钡-钛系微波介质材料及制备方法与流程

文档序号:14664498发布日期:2018-06-12 18:50阅读:156来源:国知局

本发明涉及微波介质材料技术领域,尤其涉及一种中低温烧结钡-钛系微波介质材料及其制备方法。



背景技术:

2017年世界移动通信大会上我国全力推动5G发展,力争在2020年实现5G网络商用。5G时代最显著的特征就是高速高容,必须使用更高频段,4G前用的是特高频段(300MHz~3GHz),5G则主要往超高频(3GHz~30GHz)甚至更高频段发展。主要的微波介质陶瓷器件有滤波器、介质谐振器、双工器、介质天线、介质基片、电容器和介质波导传输线等,而为了满足5G技术的升级,高性能的微波介质陶瓷器件在其中起着至关重要的作用。5G通讯为射频器件行业带来新的增长机遇,一方面射频模块需要处理的频段数量大幅度增加,另一方面高频段信号处理难度增加,系统对滤波器性能要求也大幅度提高,微波介质陶瓷在其中扮演着不可代替的作用。

目前微波介质陶瓷行业中应用较多的中介电常数的微波介质陶瓷材料,其Q·f值较低,基本集中在5000~30000之间,烧结温度一般集中在1250~1300℃的较高范围,而烧结温度较低的此类瓷料专利则伴随有成本昂贵、Q·f低的缺点,如专利CN1609050A所述,主体材料为Ca(Li1/3Nb2/3)O3和CaTiO3,烧结温度约900℃,但其中Li、Nb(铌)的原材料来源昂贵,而且其Q·f值仅为6000~10000;CN102584233A公开了一种中高介电常数低温共烧陶瓷材料,陶瓷主相包括15~35%的Nb2O5、10~25%的ZnO、10~25%的BaO、10~20%的TiO2、1~10%的ZrO2、1~8%的Sm2O3和少量的La2O3,助熔料包括5~10%的SnO2、5~10%的CuO、5~10%的SiO2和1~5%的B2O3,此外还包括0~5%的A12O3和0~5%的LiF,烧结温度为830℃~880℃,但是该陶瓷材料含有较为昂贵的Sm和La,因此,原材料成本较高。

随着工业生产方面对环境、能源的保护意识越来越强,工业生产的能耗日益成为能源保护的重要考核目标。因此,在瓷料生产工序过程中能耗占很大比重的烧结过程也必须做相应的调整,即在产品的性能得到保持的同时,尽量地降低微波介质瓷料的烧结温度,同时陶瓷材料的原材料成本也需要降低。



技术实现要素:

针对上述问题中的至少之一,本发明提供了一种中低温烧结钡-钛系微波介质材料及其制备方法,采用简单的制备工艺制得成品粉,避免了BaO-TiO2系微波陶瓷烧块的繁琐制备工艺(需按合适的计量比进行配料、球磨、干燥、粉碎、煅烧等),实现成品粉的一次制备,且能够在中低温(900~1170℃)下烧结,烧结后瓷体致密、无杂质和缺陷少,其相对介电常数在28~48范围可调,大大节约了生产成本和周期,易于实现工业化生产,可快捷、稳定地实现从材料配方到微波介质材料产品的批量生产转化。

为实现上述目的,本发明提供了一种中低温烧结钡-钛系微波介质材料,包括:主料、副料、改性添加剂和烧结助剂;其中,所述主料为TiO2;所述副料为BaTiO3;所述改性添加剂为Al2O3、MnO、SnO2、CoO、Nb2O5和ZrO2中的至少三种;所述主料、所述副料、所述改性添加剂和所述烧结助剂的摩尔份数为:所述TiO2为50~75份;所述BaTiO3为15~30份;所述Al2O3为1~5份;所述MnO为0.2~0.6份;所述SnO2为0~2份;所述CoO为0.2~0.8份;所述Nb2O5为0~3份;所述ZrO2为0~3份;所述烧结助剂共5~20份。

在上述技术方案中,优选地,所述烧结助剂为B2O3、SiO2、ZnO、Li2CO3、MgO、BaO和CuO的一种或多种。

在上述技术方案中,优选地,所述烧结助剂为LBS烧结助剂、LMZBS烧结助剂和/或BCB烧结助剂;所述LBS烧结助剂的制备原料包括摩尔比例为3:2:6的Li2CO3、H3BO3和SiO2;所述LMZBS烧结助剂的制备原料包括摩尔比例为3:3:2:1:1的Li2CO3、Mg(OH)2、H3BO3、ZnO和SiO2;所述BCB烧结助剂的制备原料包括摩尔比例为1:1:2的BaCO3、CuO和H3BO3。

本发明还提出了一种根据上述技术方案中的中低温烧结钡-钛系微波介质材料的制备方法,包括:将所述主料TiO2、所述副料BaTiO3、所述改性添加剂和所述烧结助剂按照比例混合;在混合物中加入氧化锆球进行球磨,之后烘干,过筛。

在上述技术方案中,优选地,所述烧结助剂由所述B2O3、SiO2、ZnO、Li2CO3、MgO、BaO、CuO中的一种或多种按比例混合,加入氧化锆球进行球磨,烘干、过筛后煅烧而成。

进一步的,将上述技术方案中所述的中低温烧结钡-钛系微波介质材料进行造粒;将造粒后的所述微波介质材料制成坯体;将所述坯体排胶,并将排胶后的所述坯体烧结,保温2~8小时后自然冷却至室温。

在上述技术方案中,优选地,所述微波介质材料在4~6MPa压力下制成坯体,所述坯体在排胶温度为500℃、升温速率为1-3℃/min、保温2-4小时的环境下排胶,所述坯体的烧结温度为900~1170℃。

与现有技术相比,本发明的有益效果为:

1、实现在中低温(900~1170℃)下烧结,陶瓷粉具备成分均一、粒度分布窄、分散性好、成型性工艺好,烧结后瓷体致密、无杂质和少缺陷,其相对介电常数在28~48范围可调、室温损耗角正切<5×10-4、绝缘电阻率>1×1013Ω·cm、容量温度特性稳定、品质因数Q·f值很高。

2、此种低介微波介质材料采用一步配料制得,减少了BaO-TiO2系微波陶瓷烧块制备的繁琐工艺(如配料、球磨、干燥、粉碎、煅烧等),简化了成品粉制备工艺,且烧结温度较低,可降低能耗,大大节约生产成本和周期,易于实现工业化生产,可快捷、稳定地实现从材料配方到微波介质材料产品的批量生产转化。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。

下面对本发明做进一步的详细描述:

根据本发明提供的一种中低温烧结钡-钛系微波介质材料,包括:主料、副料、改性添加剂和烧结助剂;其中,所述主料为TiO2;所述副料为BaTiO3;所述改性添加剂为Al2O3、MnO、SnO2、CoO、Nb2O5和ZrO2中的至少三种;所述烧结助剂为B2O3、SiO2、ZnO、Li2CO3、MgO、BaO和CuO的一种或多种;所述主料、所述副料、所述改性添加剂和所述烧结助剂的摩尔份数为:所述TiO2为50~75份;所述BaTiO3为15~30份;所述Al2O3为1~5份;所述MnO为0.2~0.6份;所述SnO2为0~2份;所述CoO为0.2~0.8份;所述Nb2O5为0~3份;所述ZrO2为0~3份;所述烧结助剂共5~20份。

在上述技术方案中,优选地,所述烧结助剂为LBS烧结助剂、LMZBS烧结助剂和/或BCB烧结助剂;所述LBS烧结助剂的制备原料包括摩尔比例为3:2:6的Li2CO3、H3BO3和SiO2;所述LMZBS烧结助剂的制备原料包括摩尔比例为3:3:2:1:1的Li2CO3、Mg(OH)2、H3BO3、ZnO和SiO2;所述BCB烧结助剂的制备原料包括摩尔比例为1:1:2的BaCO3、CuO和H3BO3。

进一步的,烧结助剂的制备方法如下:

(1)LBS烧结助剂的制备方法:按摩尔比例为3:2:6称取原料Li2CO3、H3BO3、SiO2混合,加入氧化锆(ZrO2)球进行球磨,球磨时间为6小时,在80℃烘10小时至干燥,过100目筛后,在600℃煅烧4小时后获得。

(2)LMZBS烧结助剂的制备方法:按摩尔比例为3:3:2:1:1称取原料Li2CO3、Mg(OH)2、H3BO3、ZnO、SiO2混合,加入氧化锆球进行球磨,球磨时间为6小时,在80℃烘10小时至干燥,过100目筛后,在560℃煅烧4小时后获得。

(3)BCB烧结助剂的制备方法:将分析纯的BaCO3、CuO和H3BO3按摩尔比1:1:2混合,加入氧化锆球进行球磨,球磨时间为5小时,80℃烘10小时至干燥,过100目筛后,再于650℃下保温3小时制得。

具体地,以表1中的配方,按照比例将主料TiO2、副料BaTiO3、改性添加剂和烧结助剂混合,加入氧化锆球进行球磨,球磨时间为5小时,在120℃烘6小时至干燥,过100目筛后制得中低温烧结钡-钛系微波介质材料。

表1中低温烧结中介微波介质材料配方(mol%)

按照表1的配方比例制得的微波介质材料加入6.5wt%的PVA(Polyvinyl Alcohol,聚乙烯醇)水溶液粘合造粒;分别在4Mpa和6MPa压力下压制成圆片和圆柱坯体,将坯体排胶,排胶温度为500℃、升温速率为2℃/min、保温3小时,去除粘合剂;将排胶后的坯体在900~1170℃下烧结,保温2~8小时,随炉自然冷却降至室温,制得微波介质陶瓷材料。

本发明中,因配方成分及烧结工艺选择适宜,实现了BaTiO3与TiO2低温化合反应生成BaO-TiO2系列化合物,同时实现陶瓷材料烧结致密化。通常,BaO-TiO2化合物固相法合成温度及烧结成瓷的温度高达1300-1400℃。与现有工业生产工艺相比,省去了BaO-TiO2化合物合成工艺,简化了生产工艺、节约了成本,更利于该微波介质材料的工业化生产。

将烧制完的圆片两表面涂覆银浆、烧制银电极,制成电容器后测试其室温电学性能,测试结果如表2所示:相对介电常数εr为28~48,损耗角正切值小于5×10-4,绝缘电阻率大于1×1013Ω·cm,TCf(Temperature Coefficient of frequency,谐振频率温度系数)普遍较小。

TCf是用来衡量谐振器谐振频率温度稳定性的一个重要参数,TCf越大,中心频率随温度的变化而产生的漂移越大,将无法保证器件在温度变化的环境中工作的高稳定性。为使电子电路能稳定地工作,应尽量选用频率温度系数小的介质材料。TCf计算公式为:

上式中,温度为T0时的谐振频率为f0,温度为T时的谐振频率为fT。

烧结后,所述圆柱样品的直径为8.4±0.5mm,厚度为5.0±1.0mm,圆柱样品的品质因数Q·f值为17430~40253GHz。

表2微波介质陶瓷材料的性能

以上所述为本发明的实施方式,根据本发明提出的中低温烧结钡-钛系微波介质材料及其制备方法,采用一步配料制得,减少了BaO-TiO2系微波陶瓷烧块制备的繁琐工艺(包括配料、球磨、干燥、粉碎、煅烧等),能够在中低温(900~1170℃)下烧结,其相对介电常数在28~48范围可调。本发明采用简单的工艺制得微波材料,大大节约了生产成本和周期,易于实现工业化生产,可快捷、稳定地实现从材料配方到微波介质材料产品的批量生产转化。

以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1