一种Cu1.8S基多晶块体热电材料及其制备方法与流程

文档序号:15131379发布日期:2018-08-10 07:54阅读:634来源:国知局

本发明属于新能源材料技术领域,涉及机械合金化和放电等离子烧结技术,特别涉及一种cu1.8s基多晶块体热电材料及其制备方法。



背景技术:

随着社会经济的发展以及科学领域的不断拓宽,环境污染和能源危机,这一阻碍人类文明进步的难题促进了新能源材料及相关领域的快速发展。新能源材料能够对一次能源难以被完全利用的多余能量进行二次利用,其中热电、光伏热电材料就能够有效地将废热转化为电能,在对能源的开发和利用过程中日益受到科学家们的重视。热电材料是一种能够直接实现热能和电能相互转换的功能材料,其利用seebeck效应(当两个异种导体两端相接组成一个闭合回路,如果两个结点处于不同的温度,闭合回路中会产生电流)可实现温差发电,而利用peltier效应(当两个异种导体连通以后,通入电流,在两个结点处会出现一端发热,一端吸热的现象)能够对器件进行控温或者制冷。热电器件由于其无污染、体积小、寿命长、工作稳定的特点而备受关注,如果将其应用于工业废热回收、汽车尾气废热发电等,可以有效地提高能源的利用率,也是解决上述难题的有效手段之一。热电性能以无量纲热电优值zt来表征,zt=α2σt/κ,α是seebeck系数,σ是电导率,t是绝对温度,κ是热导率;α2σ称为功率因子,用来表征热电材料的电传输性能。直观地分析,有商业应用价值的热电材料需要大的seebeck系数来保证电压输出,高的电导率来降低焦耳热的耗散,并且需要低的热导率来维持材料两端的温度差。

现如今性能良好的热电材料有bi2te3,pbte,pbs,si-ge合金等,但由于这一系列材料中含有稀贵金属元素或是有毒元素,因而阻碍了当前绿色高性能热电材料的发展。因此寻找并研究无毒无害,廉价丰富的元素所构成的化合物作为合适的热电材料也是一项重要的基础工作。

cu1.8s作为最早的薄膜太阳能电池和光电子器件而为人们所熟知。近年来其复杂的晶体结构和具有发展潜力的热电性能使得该化合物重新引起科学家们的关注。cu1.8s具有两种不同的晶体结构:低温(<364k)六方相(r3-mh)和高温(>364k)立方相(fm3-m)。在cu1.8s的高温相结构中,cu离子围绕s离子组成面心立方亚晶格。并且作为一种超离子导体,cu+具有高的迁移率就如同在熔融态或者溶液中一样。cu1.8s中存在铜空位,在能带中形成大量导电空穴使得cu1.8s表现出极好的导电性,此外由于该化合物的元素丰富、成本低、环境友好等特点,cu1.8s成为了一种潜在的具有商业化应用价值的热电材料。目前该体系材料需要解决的主要问题是其较高的热导率以及较低的seebeck系数,而元素掺杂以及微观结构调控是提升其zt值的主要思路。近年来许多科研工作者围绕这两点展开了对cu1.8s体系材料热电性能的优化工作。葛振华等人以氯化铜和硫脲为原料,乙二醇为溶剂,采用水热法合成了cu1.8s纳米粉体,并结合放电等离子烧结技术制备出了cu1.8s块体材料,其晶粒细小、seebeck系数有所增大,热导率降低,并在673k取得了最大的zt值为0.49。(葛振华,张波萍,李敬锋,等.cu1.8s纳米粉体的水热合成及其块体的热电性能研究.全国高技术陶瓷学术年会.2012.)此外,专利(zl201410244837.0)提出了采用溶胶凝胶法制备出以sio2为壳、cu1.8s为核的核壳结构cu1.8s@sio2复合粉体。所得到的复合粉体经过放电等离子烧结后,核壳结构保存于块体中,制备出核壳结构的cu1.8s@sio2复合块体热电材料,部分提升了seebeck系数和功率因子,但是热电性能仍有待进一步提高。秦鹏等人采用机械合金化法结合放电等离子烧结技术制备出了sic颗粒分散在cu1.8s基体中的复合热电材料。(p.qin,z.h.ge,j.feng.enhancedthermoelectricpropertiesofsicnanoparticledispersedcu1.8sbulkmaterials.j.alloyscompd.2017,696,782.)由于sic颗粒对载流子和声子的强烈散射作用,seebeck系数得到提升的同时还有效地降低了其热导率,其中分散质量百分比1%sic颗粒后,cu1.8s基复合热电材料较纯的cu1.8s块体材料的热电优值有着较大的提高,但是单纯地引入陶瓷颗粒会显著地降低基体材料的电导率,并且单一地增加界面散射降低低温区的热导率对于cu1.8s材料热电性能的优化作用是有限的,其最佳zt值往往位于高温区。因而引入多尺度的散射中心(例如点缺陷)对于提高cu1.8s的热电性能是很有必要的。

综上,引入合适的第二相是一种有效地优化材料热电性能的方法,而寻找并研究合适的第二相是目前最为重要的工作之一。



技术实现要素:

本发明的第一目的在于提供一种cu1.8s基多晶块体热电材料,第二目的在于提供一种cu1.8s基多晶块体热电材料的制备方法。

本发明的第一目的是这样实现的,所述的热电材料是由包括cu1.8s和掺杂剂x2y3的原料制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.005~0.07。

本发明的第二目的是这样实现的,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料。

与现有技术相比,本发明的有益效果:

1、本发明通过引入合适量的掺杂剂x2y3(优选为in2s3)使得in(或其同族元素)能够固溶进cu1.8s中,有效实现进一步提升cu1.8s的热电性能,由于in(或其同族元素)的价态比cu高,所以in取代cu1.8s中的cu+后会导致电荷的析出从而使得载流子浓度下降,有效提升seebeck系数。而离子半径更大的in3+占据了cu+位置也将破坏晶体结构的对称性从而降低声子的平均自由程,增强短波声子的散射,进而降低晶格热导率。此外,本发明创新性地将元素掺杂的过程从粉体合成的过程转移到烧结过程,这使得在进行元素掺杂的同时,相对于现有相比,更进一步的引入了大量的纳米孔和特殊的纳米结构,两种机理的结合能够协同降低晶格热导率。而采用放电等离子烧结技术有助于保持晶粒形貌,抑制晶粒的长大,同样增强界面对声子的散射,降低热导率。

2、本发明通过机械合金化法制备出cu1.8s粉体,再采用放电等离子烧结工艺制备出in(或其同族元素)掺杂的cu1.8s基多晶块体。本发明并没有传统地将掺杂过程在粉末合成过程中就进行,而是制备出cu1.8s粉末后与掺杂剂均匀地混合,再将混合粉体进行放电等离子烧结,烧结过程中实现掺杂,由于放电等离子烧结过程时间短,温度低,使得烧结过程中的掺杂呈现出与制备粉体时的掺杂和熔炼合金时的掺杂不同的结果,除了掺杂本身调节载流子浓度的作用之外,还获得可控的更加复杂的微观结构,从而增强对不同频率的声子的散射,在保证良好的电传输性能的同时解决了cu1.8s高热导率的难题。

3、本发明一方面通过in(或其他同族元素)掺杂,引入电子,优化载流子浓度,并且引入点缺陷将显著增强短波长声子的散射从而降低高温热导率;另一方面,多余的掺杂剂(优选in2s3)形成了一种特殊的纳米结构,即多余的掺杂剂附着在气孔边缘,这种结构能够大幅降低材料的热导率,优化cu1.8s材料的热电性能。本发明所涉及到的cu1.8s基多晶块体热电材料的制备具有所需原料成本低,设备简单,易操作,效果显著的优点。

附图说明

图1为本发明实施例3的高分辨透射电镜照片;

图2为本发明实施例3的扫描透射电镜照片;其中,图2-a为低倍下扫描透射电镜照片,图2-b为高倍下扫描透射电镜照片,图2-c为s元素的分布图片,图2-d为cu元素的分布图片,图2-e为in元素的分布图片。

具体实施方式

下面结合实施例和附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。

本发明所述的cu1.8s基多晶块体热电材料,是由包括cu1.8s和掺杂剂x2y3的原料制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.005~0.07。

所述的掺杂剂x2y3为三方晶系的in2s3、in2o3、in2se3、in2te3中的一种或多种。

所述的in2s3、in2o3的空间群为r-3c,所述的in2te3、in2se3的空间群为r-3m。

所述的掺杂剂x2y3为单斜晶系的b2s3,六方晶系的al2s3中的一种或多种。

所述的b2s3的空间群为p21/c,所述的al2s3的空间群为p61。

所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在50~800nm的无规则形貌纳米粉体。

本发明所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料。

步骤(1)中所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比20~50:1、转速300~450rpm、球磨时间1~6h。

步骤(1)中所述的混合为手工研磨、球磨或者超声分散。

步骤(2)中所述的放电等离子烧结法的烧结温度为300~500℃,烧结时间为0~30min,烧结压力为10~50mpa。

实施例1

本发明cu1.8s+1wt%in2s3多晶块体热电材料的制备方法与性能表征。

1、粉体制备

按照化学计量比分别称取纯度>99.5%的cu单质粉体4g,s单质粉体1.12g;采用不锈钢球磨罐,在5%h2+95%ar的气氛保护下,按照球料比20:1、转速控制在450rpm,球磨时间3h,制备出cu1.8s粉体。称取固相烧结法制备的in2s3粉体0.0512g,并与cu1.8s粉体混合,手工研磨30分钟获得混合粉体。

2、块体材料制备

将步骤1中制备的粉体倒入直径为15mm的石墨模具中,在450℃下烧结5min,压力为50mpa。

3、热电性能表征

将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至96μvk-1;而引入纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至1.03wm-1k-1。最终热电优值zt在773k下达到0.89,该值是纯的cu1.8s块体样品最大zt值(0.49)的1.8倍。

实施例2

本发明cu1.8s+2wt%in2s3多晶块体热电材料的制备方法与性能表征。

1、粉体制备

按照化学计量比分别称取纯度>99.5%的cu单质粉体4g,s单质粉体1.12g;采用不锈钢球磨罐,在5%h2+95%ar的气氛保护下,按照球料比20:1、转速控制在450rpm,球磨时间3h,制备出cu1.8s粉体。称取固相烧结法制备的in2s3粉体0.1024g,并与cu1.8s粉体混合,手工研磨30分钟获得混合粉体。

2、块体材料制备

将步骤1中制备的粉体倒入直径为15mm的石墨模具中,在450℃下烧结5min,压力为50mpa。

3、热电性能表征

将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至98μvk-1;而引入的纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至0.78wm-1k-1。最终热电优值zt在773k下达到0.98,该值是纯的cu1.8s块体样品最大zt值的2倍。

实施例3

本发明cu1.8s+3wt%in2s3多晶块体热电材料的制备方法与性能表征。

1、粉体制备

按照化学计量比分别称取纯度>99.5%的cu单质粉体4g,s单质粉体1.12g;采用不锈钢球磨罐,在5%h2+95%ar的气氛保护下,按照球料比20:1、转速控制在450rpm,球磨时间3h,制备出cu1.8s粉体。称取固相烧结法制备的in2s3粉体0.1536g,并与cu1.8s粉体混合,手工研磨30分钟获得混合粉体。

2、块体材料制备

将步骤1中制备的粉体倒入直径为15mm的石墨模具中,在450℃下烧结5min,压力为50mpa。

3、热电性能表征

将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至101μvk-1;而引入的纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至0.60wm-1k-1。最终热电优值zt在773k下达到1.40,这是纯cu1.8s块体样品最大zt值的2.8倍。为了确定特殊微观结构对热电性能的影响,对该掺杂浓度的块体样品进行透射电镜表征(如附图一和二),由图可见纳米气孔存在于cu1.8s基块体材料中,而气孔边界处富集了多余的in2s3纳米析出物,该结构形成了额外的界面将显著地散射声子从而降低热导率,最终获得优异的热电性能。

实施例4

本发明cu1.8s+4wt%in2s3多晶块体热电材料的制备方法与性能表征。

1、粉体制备

按照化学计量比分别称取纯度>99.5%的cu单质粉体4g,s单质粉体1.12g;采用不锈钢球磨罐,在5%h2+95%ar的气氛保护下,按照球料比20:1、转速控制在450rpm,球磨时间3h,制备出cu1.8s粉体。称取固相烧结法制备的in2s3粉体0.2048g,并与cu1.8s粉体混合,手工研磨30分钟获得混合粉体。

2、块体材料制备

将步骤1中制备的粉体倒入直径为15mm的石墨模具中,在450℃下烧结5min,压力为50mpa。

3、热电性能表征

将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至104μvk-1;而引入的纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至1.12wm-1k-1。最终热电优值zt在773k下达到0.87,仍然明显高于纯的cu1.8s块体样品最大zt值的0.49。

实施例5

本发明cu1.8s+5wt%in2s3多晶块体热电材料的制备方法与性能表征。

1、粉体制备

按照化学计量比分别称取纯度>99.5%的cu单质粉体4g,s单质粉体1.12g;采用不锈钢球磨罐,在5%h2+95%ar的气氛保护下,按照球料比20:1、转速控制在450rpm,球磨时间3h,制备出cu1.8s粉体。称取固相烧结法制备的in2s3粉体0.256g,并与cu1.8s粉体混合,手工研磨30分钟获得混合粉体。

2、块体材料制备

将步骤1中制备的粉体倒入直径为15mm的石墨模具中,在450℃下烧结5min,压力为50mpa。

3、热电性能表征

将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至106μvk-1;而引入的纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至1.36wm-1k-1。最终热电优值zt在773k下达到0.76,仍高于纯的cu1.8s块体样品最大zt值的0.49。

实施例6

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.005。所述的掺杂剂x2y3为三方晶系的in2s3。所述的in2s3的空间群为r-3c。所述的cu1.8s和in2s3均为粉体,所述的粉体为尺寸在50~800nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的in2s3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比20:1、转速300rpm、球磨时间1h;所述的混合为手工研磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为300℃,烧结时间为1min,烧结压力为10mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至95μvk-1;而引入纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至0.99wm-1k-1。最终热电优值zt在773k下达到0.90,该值是纯的cu1.8s块体样品最大zt值(0.49)的1.8倍。

实施例7

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.01。所述的掺杂剂x2y3为三方晶系的in2o3。所述的in2o3的空间群为r-3c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在100~700nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比25:1、转速310rpm、球磨时间2h;所述的混合为球磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为320℃,烧结时间为5min,烧结压力为15mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至100μvk-1;但是氧化物陶瓷却也降低了材料的电导率,存在少量微米气孔,引入的相界面对声子造成明显的散射,热导率因此降低至1.18wm-1k-1。最终热电优值zt在773k下达到0.78,明显高于纯cu1.8s块体样品最大zt值的0.49。

实施例8

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.02。所述的掺杂剂x2y3为三方晶系的in2se3。所述的in2se3的空间群为r-3m。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在200~500nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比30:1、转速320rpm、球磨时间3h;所述的混合为超声分散;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为340℃,烧结时间为10min,烧结压力为20mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至105μvk-1;in2se3的带隙调控作用保证了电导率不会被显著地恶化,引入的相界面对声子造成明显的散射,热导率因此降低至1.28wm-1k-1。最终热电优值zt在773k下达到0.80,明显高于纯的cu1.8s块体样品最大zt值的0.49。

实施例9

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.03。所述的掺杂剂x2y3为三方晶系的in2te3。所述的in2te3的空间群为r-3m。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在300~400nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比35:1、转速330rpm、球磨时间4h;所述的混合为手工研磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为350℃,烧结时间为15min,烧结压力为20mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至108μvk-1;但是由于in2te3在合成过程中易挥发,因而造成基体中存在大量微米尺度的气孔,这将显著地降低电导率以及低温下的热导率。引入的相界面及气孔界面对声子造成一定程度的散射,热导率因此降低至0.92wm-1k-1。最终热电优值zt在773k下达到0.87,该值是纯的cu1.8s块体样品最大zt值(0.49)的1.8倍。

实施例10

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.04。所述的掺杂剂x2y3为单斜晶系的b2s3。所述的b2s3的空间群为p21/c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在50~450nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比35:1、转速360rpm、球磨时间5h;所述的混合为球磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为360℃,烧结时间为25min,烧结压力为30mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于第二相的引入增加了空穴载流子的散射,seebeck系数提升至101μvk-1;但是由于b2s3的熔点较低(310℃),所以在合成过程中易挥发并在原位产生微米尺度的气孔而未观察到纳米气孔与第二相结合的复杂结构,这将显著地降低电导率以及低温下的热导率。气孔界面对声子造成一定程度的散射,热导率因此降低至1.01wm-1k-1。最终热电优值zt在773k下达到0.75,明显高于纯cu1.8s块体样品最大zt值的0.49。

实施例11

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.05。所述的掺杂剂x2y3为六方晶系的al2s3。所述的al2s3的空间群为p61。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在100~600nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比40:1、转速370rpm、球磨时间6h;所述的混合为超声分散;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为380℃,烧结时间为30min,烧结压力为45mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于第二相的引入增加了空穴载流子的散射,seebeck系数提升至102μvk-1;未观察到纳米气孔与第二相结合的复杂结构,引入的相界面对声子造成一定程度的散射,热导率因此降低至1.38wm-1k-1。最终热电优值zt在773k下达到0.70,仍高于纯cu1.8s块体样品最大zt值的0.49。

实施例12

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.06。所述的掺杂剂x2y3为三方晶系的in2s3、in2o3、in2se3、in2te3的混合物。所述的in2s3、in2o3的空间群为r-3c,所述的in2te3、in2se3的空间群为r-3m。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在150~750nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比28:1、转速390rpm、球磨时间1.5h;所述的混合为手工研磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为400℃,烧结时间为8min,烧结压力为50mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×2mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至107μvk-1;但是由于in2te3在合成过程中易挥发,因而造成基体中大量微米尺度的气孔,这将显著地降低电导率以及低温下的热导率。气孔界面对声子造成一定程度的散射,热导率因此降低至0.96wm-1k-1。最终热电优值zt在773k下达到0.73,明显高于纯cu1.8s块体样品最大zt值的0.49。

实施例13

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.07。所述的掺杂剂x2y3为三方晶系的in2s3、in2o3。所述的in2s3、in2o3的空间群为r-3c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在250~550nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比32:1、转速410rpm、球磨时间2.5h;所述的混合为超声分散;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为420℃,烧结时间为12min,烧结压力为18mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至105μvk-1;过多的第二相的引入降低了结构的致密性,未观察到明显的特殊纳米结构,引入的孔界面与相界面对声子造成明显的散射,热导率因此降低至1.35wm-1k-1。最终热电优值zt在773k下达到0.74,仍高于纯cu1.8s块体样品最大zt值的0.49。

实施例14

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.055。所述的掺杂剂x2y3为单斜晶系的b2s3和六方晶系的al2s3。所述的b2s3的空间群为p21/c,所述的al2s3的空间群为p61。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在50~450nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比38:1、转速420rpm、球磨时间3.5h;所述的混合为球磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为440℃,烧结时间为18min,烧结压力为22mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于第二相的引入增加了空穴载流子的散射,seebeck系数提升至102μvk-1;而由于b2s3的挥发留下大量气孔,未观察到特殊纳米结构,引入的相界面与孔界面对声子造成明显的散射,热导率因此降低至1.13wm-1k-1。最终热电优值zt在773k下达到0.63,仍高于纯cu1.8s块体样品最大zt值的0.49。

实施例15

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.025。

所述的掺杂剂x2y3为三方晶系的in2s3、单斜晶系的b2s3。所述的in2s3的空间群为r-3c,所述的b2s3的空间群为p21/c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在50~650nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比38:1、转速300rpm、球磨时间5.5h;所述的混合为手工研磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为460℃,烧结时间为28min,烧结压力为48mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至103μvk-1;而由于b2s3的挥发留下大量微米气孔而未观察到特殊纳米结构,引入的相界面与孔界面对声子造成明显的散射,热导率因此降低至0.88wm-1k-1。最终热电优值zt在773k下达到0.93,该值是纯的cu1.8s块体样品最大zt值(0.49)的1.9倍。

实施例16

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.03。所述的掺杂剂x2y3为三方晶系的in2s3。所述的in2s3的空间群为r-3c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在50~250nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比50:1、转速300rpm、球磨时间6h;所述的混合为手工研磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为480℃,烧结时间为22min,烧结压力为42mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至107μvk-1;而引入的纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至1.38wm-1k-1。最终热电优值zt在773k下达到0.72,仍高于纯cu1.8s块体样品最大zt值的0.49。

实施例17

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.04。所述的掺杂剂x2y3为三方晶系的in2s3。所述的in2s3的空间群为r-3c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在200~500nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比20:1、转速450rpm、球磨时间3h;所述的混合为超声分散;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为500℃,烧结时间为15min,烧结压力为25mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至106μvk-1;而引入的纳米气孔与第二相结合的复杂结构对声子造成明显的散射,热导率因此降低至1.40wm-1k-1。最终热电优值zt在773k下达到0.68,仍高于纯cu1.8s块体样品最大zt值的0.49。

实施例18

一种cu1.8s基多晶块体热电材料,由cu1.8s和掺杂剂x2y3制备而成,所述的cu1.8s与掺杂剂x2y3的摩尔比为1:0.05。所述的掺杂剂x2y3为三方晶系的in2s3。所述的in2s3的空间群为r-3c。所述的cu1.8s和x2y3均为粉体,所述的粉体为尺寸在150~550nm的无规则形貌纳米粉体。

本实施例所述的cu1.8s基多晶块体热电材料的制备方法,包括以下步骤:

1)使用机械合金化法制备cu1.8s粉体,先按化学计量比分别称取cu、s单质粉体在保护性气氛下,进行球磨制备出cu1.8s粉体,然后加入配方比例的x2y3粉体进行混合;所述的cu、s单质的纯度>99.5%,所述的保护性气氛为5%h2+95%ar,所述的球磨过程的球料比40:1、转速400rpm、球磨时间4h;所述的混合为手工研磨;

2)将混合后的粉体置于石墨模具中通过放电等离子烧结法制备出cu1.8s基多晶块体热电材料;所述的放电等离子烧结法的烧结温度为450℃,烧结时间为20min,烧结压力为40mpa。

本实施例所得到的热电材料的性能表征:将步骤2烧结获得的块体切割成10×3×3mm的长条用于电性能测试,并将其余部分打磨至φ6×3mm的圆薄片用于热学性能测试。由于in的掺杂导致载流子浓度降低,seebeck系数提升至108μvk-1;过多第二相的引入降低了结构的致密性,并且相结构发生了变化,特殊纳米结构消失,引入的孔界面与相界面对声子造成明显的散射,热导率因此降低至1.21wm-1k-1。最终热电优值zt在773k下达到0.74,仍高于纯cu1.8s块体样品最大zt值的0.49。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1