一种单相陶瓷靶材及其制备方法和用途与流程

文档序号:15930929发布日期:2018-11-14 01:37阅读:510来源:国知局

本发明涉及材料制备技术领域,更具体而言,涉及一种单相陶瓷靶材及其制备方法和用途。

背景技术

多铁性材料是一种同时具有铁磁、铁电、铁弹等两种及两种以上铁性的新型多功能材料,而且由于各种铁性之间的耦合,还会产生压磁效应、磁电效应以及磁控极化反转等效应,使其在数据存储、自旋电子学和微电子学等领域具有广阔的应用前景,受到人们的广泛关注。但是,目前绝大多数单相多铁性材料的居里温度都低于室温,且在室温下无法获得铁磁性。铁酸铋(bifeo3)具有较高的居里转变温度(tc=1103k),是目前极少数在室温条件下同时具有铁电性和寄生弱铁磁性的材料。对于铁酸铋陶瓷而言,制备出单相、绝缘性好、具有优良铁电性质的陶瓷已是相当困难,而在此基础上还能在室温下表现出铁磁性则是更为困难。

现有报道的类似组分的单相陶瓷靶材制备方法需要的研磨时间长,烧结温度高,烧结时间长。而铋元素熔点为544.45k,在较高的温度下烧结时,容易挥发,使得铋元素损失,还极易出现其他的物相使得陶瓷不纯。且在具体的制备过程中,获得致密均匀,在室温下表现出铁磁性的单相陶瓷靶材工艺复杂,烧结困难,加入不同掺杂离子后又会出现居里温度降低,形成杂相等问题。



技术实现要素:

因此,鉴于上述单相陶瓷靶材制备中存在的技术问题,本发明的目的在于提供一种单相陶瓷靶材的制备方法,该制备方法中研磨、煅烧和烧结等工艺操作时间短,而且操作温度低,对设备要求低,且烧结过程中无需添加粘合剂等烧结助剂。

为了实现上述目的,本发明一方面提供了一种单相陶瓷靶材的制备方法,所述制备方法包括以下步骤:

称取原料加入有机溶剂中进行球磨混匀后,再进行煅烧后过筛;

将过筛后的粉体,压制成胚体,并对该胚体进行预烧结;

进行预烧结后胚体研碎和加入有机溶剂中球磨混匀后将所得粉体再压制成胚体并预烧结的过程一次或多次;

将所得胚体于1023-1173k温度下进行成型烧结,

其中,所述原料为bi2o3、ro2、fe2o3、mgo和mco3,其中,r为ti,zr或hf;m为ca或ba。

优选地,所述r为ti,所述m为ca。

优选地,进行所述球磨的时间为30-60min。

优选地,所述煅烧的操作温度为650-1023k,操作时间为2-4h。

优选地,所述预烧结的烧结温度为823-1023k,烧结时间为2-4h。

优选地,使用制胚设备于10-200mpa的压力下进行胚体压制。

优选地,进行预烧结后的胚体的研碎和加入有机溶剂中进行球磨混匀后将所得粉体再压制成胚体并预烧结的过程一次至三次。

优选地,所述制备方法中不使用烧结助剂。

本发明另一方面提供了一种单相陶瓷靶材,所述单相陶瓷靶材的化学组成为(1-x)biti(1-y)/2feymg(1-y)/2o3-xcatio3,其中,0<x<1,0<y<1;所述陶瓷靶材通过下述方法制备:

称取原料加入有机溶剂中进行球磨混匀后,再进行煅烧后过筛;

将过筛后的粉体,压制成胚体,并对该胚体进行预烧结;

进行预烧结后胚体研碎和加入有机溶剂中球磨混匀后将所得粉体再压制成胚体并预烧结的过程一次或多次;

将所得胚体于1023-1173k温度下进行成型烧结,

其中,所述原料为bi2o3、tio2、fe2o3、mgo和caco3。

本发明另一方面还提供了所述单相陶瓷靶材在电子器件中的用途,优选地,所述单相陶瓷靶材用于制备可用于电子器件中的薄膜材料。

有益效果

与现有技术相比,本发明提供的单相陶瓷靶材制备方法,采用了低温-高温烧结成型方法,研磨、煅烧和烧结所需时间短,操作温度低,烧结过程中无需添加粘合剂等烧结助剂。整个方法操作便利,对设备要求低,制备效率高,有利于节约能源和降低成本。同时,采用本申请的制备方法制备的陶瓷靶材均匀致密,在低温(5k)和室温(rt)下均具有铁磁性,且具有较高的饱和磁化强度,可以有效用于制备可用于电子器件(例如换能器,激励器,存储器,驱动器微博通讯,纳米生物传感器,传感器,滤波器,振荡器,电容器等)中的薄膜材料。

附图说明

从下面结合附图的详细描述中,将会更加清楚的理解本发明的上述及其他目的、特征和其他优点,其中,

图1示出了根据本发明一个实施方案的单相陶瓷靶材的制备方法的工艺流程图;

图2示出了本发明实施例1中所制备的陶瓷靶材的xrd衍射图;

图3示出了本发明实施例1中所制备的陶瓷靶材在低温(5k)和室温(rt)下的磁滞回线。

具体实施方式

本发明提供了一种单相陶瓷靶材制备方法,所述的制备方法可以包括:首先按照合适的计算量称取原料,混合所称原料,并向其中加入有机溶剂,然后进行球磨混匀;将球磨混匀后所得的粉体进行煅烧,煅烧后再过筛;将过筛后获得的粉体,压制成胚体,并对该胚体进行预烧结;然后将预烧结后的胚体研碎,并向其中加入有机溶剂进行球磨混匀;将球磨混匀后所得的粉体再次压制成胚体。此处预烧结并预烧结后胚体研碎,加入有机溶剂进行球磨混匀然后制成胚体的整个过程可以重复进行一次或多次。最后将所得的胚体于低温下预烧结后于高温下进行成型烧结,从而获得单相陶瓷靶材。

本发明一些实施方案中所用的原料可以为bi2o3、ro2、fe2o3、mgo和mco3,其中,r可以为ti,zr或hf;m可以为ca或ba。优选地,所述原料为bi2o3、tio2、fe2o3、mgo和caco3。

原料粉末的纯度和粒径大小会影响最终获得靶材的均匀度和致密度,鉴于此,本发明所使用的原料优选为高纯粉末,具体地,粉末纯度为99.99%以上。

可以根据期望合成的陶瓷靶材的化学组成,按一定的比例(例如,各组成元素的化学计量比)计算并称取各原料粉末进行配料,例如,所述原料为bi2o3、tio2、fe2o3、mgo和caco3时,可按照设计的最终产品的化学组成的化学计量比进行称重配料,由于bi2o3在烧结过程中容易挥发,可以加入比化学计量比所需的量稍多的量,例如超过化学计量比5%-10%的量。

对原料粉末进行球磨可以使用本领域常规已知的合适的球磨设备,例如,可以使用球磨机。

可以使用的有机溶剂包括甲醇,无水乙醇或者丙酮等。

优选地,有机溶剂可以为无水乙醇,所述无水乙醇不影响原料成分,且在后期的煅烧及烧结过程中可以挥发掉。

根据本发明的一些实施方案,可以进行球磨30-60min,优选40-50min。目前常规的工艺中,球磨时间通常都需要数十小时以上乃至更久,根据本发明的这些实施方案,可以极大地节约制备时间,提高制备效率。

本制备方法中的煅烧及烧结工艺可以使用本领域常规已知的任何合适设备进行。例如,可以使用马弗炉进行。

所述煅烧步骤可以在650-1023k,优选650-833k温度下进行2-4h,煅烧过程可以去除原料中的水分和可挥发性溶剂。

所述预烧结步骤可以在823-1023k,优选823-923k温度下进行2-4h。

本制备方法中,过筛的工艺可以使用本领域常规已知的任何合适的设备进行。过筛可以获得更均匀且粒径更有利于后续工艺的粉末。优选地,过筛可以在压力为10-100mpa下进行,通过大小为100-800目、优选为800目的筛孔,可以获得粒径大小约为150-15μm、优选为15μm的粉体。

本申请的制备方法,通过将原料粉末研磨、煅烧然后过筛处理,然后反复经过压制成胚、烧结、再研碎后制胚烧结的工艺,最后将得到的胚体经过低温预烧结和高温成型烧结两步烧结,并通过每步骤中工艺参数的选择,可以有利于获得更均匀致密的靶材产品,从而有利于后期使用脉冲激光沉积技术制备可用于电子器件的薄膜材料。

本制备方法中的制胚设备可以使用本领域常规已知的合适的制胚设备,例如,可以使用冷等静压设备。根据本发明的一些实施方案,使用冷等静压设备制胚时可以在10-200mpa的压力下进行。优选地,可以在第一次制胚时使用10-100mpa的压力,在后续反复的制胚过程中,使用100-200mpa的压力。

根据本发明的一些实施方案,最后将得到的胚体经过低温预烧结和高温成型烧结两步烧结,具体地将最后所得胚体先于823-923k,优选823-900k温度下烧结3-5h,然后升温至1023-1173k,优选1023-1100k温度下烧结6-12h。可以使用的升温的速率优选为2.5k/min。

烧结结束后,降温至室温,获得最终的靶材产品。可以使用的降温的速率优选为2.5k/min。

该制备方法采用低温-高温烧结成型方法,研磨、煅烧和烧结所需时间短,操作温度低,烧结过程中不添加烧结助剂。整个方法对设备要求低,制备效率高,有利于节约能源和降低成本,而且可以获得均匀致密且性能优异的单相陶瓷靶材。

本发明使用上述制备方法制备了一种单相陶瓷靶材,该单相陶瓷靶材的原料为bi2o3、tio2、fe2o3、mgo和caco3,对应靶材的化学组成为(1-x)biti(1-y)/2feymg(1-y)/2o3-xcatio3,其中,0<x<1,0<y<1。所制得的陶瓷靶材均匀致密,在低温(5k)和室温(rt)下均具有磁性,可以有效用于制备可用于电子器件中的薄膜材料。所述的电子器件包括换能器,激励器,存储器,驱动器微博通讯,纳米生物传感器,传感器,滤波器,振荡器,电容器等。

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

实施例1:

1.将纯度为99.99%以上的bi2o3、tio2、fe2o3、mgo、caco3等高纯粉末按照化学计量比进行称重配料,由于bi2o3在烧结过程中容易挥发,需加入比化学计量比多7%的量。

2.将步骤1中的配料加入无水乙醇使其混合均匀,用球磨机进行充分研磨,球磨时间45min,使得原料混合均匀。

3.将步骤2所得的粉末进行煅烧,煅烧温度为675-750k,烧结时间为2h,煅烧后将粉末过筛。

4.将步骤3所得的粉末装入模具,使用冷等静压压制成初胚,所述压强为40-70mpa。

5.将步骤4所得的陶瓷胚放入马弗炉进行预烧结,烧结温度为850-900k,烧结时间为3h。

6.将步骤5所得的陶瓷胚研碎,加入无水乙醇后均匀混合并再次球磨,球磨时间45min,使得粉末混合均匀,随球磨时间延长粉末变干。

7.将步骤6所得的粉末装入模具,使用冷等静压压制成胚,所述压强为150-180mpa。

8.将步骤7所述陶瓷胚放入马弗炉进行烧结,烧结温度为823-900k,烧结时间为4h,再继续升温至1023-1100k,在此温度下烧结8h,降温至室温后获得陶瓷靶材。该陶瓷靶材的结构式为(1-x)biti(1-y)/2feymg(1-y)/2o3-xcatio3,其中,x=0.15,y=0.8。对获得的靶材进行了x射线衍射(xrd)测试和磁性测试。

(x射线衍射测试)

利用x射线衍射仪对样品进行测试,采用cu靶,实行θ-2θ扫描,测试2θ角度范围20-70°,获得结果如图2所示。

(磁性测试)

利用mpms磁性测试系统对样品的磁性性能进行表征,分别在室温(rt)和5k温度下进行测试,磁场范围-1t~1t(-10000oe~10000oe),获得结果如图3所示。

从图2中可以看出制得的靶材结晶程度高;图3显示了制得的靶材在低温(5k)和室温(rt)下均具有饱和磁滞回线,说明该靶材在低温和室温下均具有铁磁性。其中,低温下,靶材的饱和磁化强度为10emu/g,矫顽场100oe;室温下,靶材的饱和磁化强度为8emu/g,矫顽场100oe。

以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1