一种增韧抗压耐烧蚀材料的制备方法与流程

文档序号:16129880发布日期:2018-12-01 00:11阅读:491来源:国知局

本发明涉及高分子复合材料制备技术领域,具体涉及一种增韧抗压耐烧蚀材料的制备方法。

背景技术

近年来,航空航天、弹道导弹等技术得到了长足的发展。耐烧蚀绝热材料是其用到的关键材料之一。耐烧蚀绝热材料通常是指应用于升温速率大于500℃/s,工作温度大于2000℃,且需要承受高速气流冲刷及高速粒子侵蚀的复合材料,是国防、航天航空领域重要的工程材料。

飞行器飞行过程中与大气的摩擦产生上千摄氏度高温,会将整个飞行器烧毁。推进剂产生的高温、高压燃气将使发动机结构受到破坏。发动机喷管经受推进剂燃气及金属粒子的剧烈冲刷,为保证火箭发动机等部件结构的完整性,必须对暴露在推进剂燃气中的部件表面粘贴一层绝热材料加以保护,而这种绝热材料多以烧蚀材料为主。

耐烧蚀绝热材料在燃烧室高温烧蚀环境下形成炭化层、热解层和基体层三层结构。其中的炭化层直接承受热化学烧蚀、气流剥蚀和粒子侵蚀的共同作用,对保证绝热材料耐烧蚀性能和保护发动机壳体起关键作用。显然,炭化层的组成、微观结构和性能决定了绝热材料的耐烧蚀性能,炭化层的微观结构也是绝热材料烧蚀机理研究的重点。如果绝热复合材料在受热或燃烧时能形成“坚实”的炭化层,残炭率越高,炭化层越致密,炭化层与基体层的结合越牢固,则炭化层在燃气流和粒子冲刷作用下就越不容易被冲刷掉,材料的烧蚀率就越低,热防护能力越高。耐烧蚀绝热材料一般选取原则为:(1)材料的绝热性能好,导热系数低,受热时熔化热与蒸发热大;(2)热稳定性好,耐烧蚀性好(线烧蚀率最好小于0.1mm/s)、耐冲刷、受热时能够分解出低分子气体,形成的残炭层致密稳定、强度较高;(3)力学性能好;(4)发烟量少;(5)工艺性好,要易于制备加工。

目前研究较多的耐烧蚀复合材料是碳-碳复合材料和高分子复合材料。其中碳-碳复合材料具有低比重,高比强,高比模,低热膨胀系数,耐烧蚀等一系列优异特性,使其在航空航天领域有着其他材料无法比拟的应用前景。但碳-碳复合材料有一个致命的缺点,即在高温条件下易氧化,且氧化速率随着温度升高迅速增加。如果对易氧化缺点不加以防范,将引发灾难性的后果。目前用于解决碳-碳复合材料抗氧化的方法主要有涂层法,在高速粒子冲刷和高低温瞬时热震等极端环境下,表面涂层容易剥离,腐蚀,脱落从而导致失效。后者所用的高分子基体树脂有酚醛类、有机硅类、聚芳炔类等。有机硅用作耐烧蚀材料施工方便,但是其耐高温不超过1000℃,限制了其在航空航天领域的应用。聚芳炔由于含有大量的苯环和炔基,所以残炭率非常高(800℃时的残炭率为80~90%),但是其与碳纤维增强材料的粘合性不好,制备的复合材料力学强度低。酚醛树脂基体复合材料因其性能优异,价格低廉而广泛用作耐烧蚀材料,但是酚醛树脂存在脆性大、吸水率大、成型收缩率高的缺陷。

因此,研究开发出一种力学性能好、耐烧蚀性能强以及热稳定性好的耐烧蚀绝热材料来满足未来航天器速度更快,有效载荷越高的要求,具有重要意义。



技术实现要素:

本发明主要解决的技术问题,针对目前酚醛树脂基体作为耐烧蚀材料基体,性能优异,价格低廉而广泛应用,但酚醛树脂脆性大,成型收缩率高不易加工,烧蚀后高温抗压性能较差,并且普通耐烧蚀材料绝热性能有待提高的缺陷,提供了一种增韧抗压耐烧蚀材料的制备方法。

为了解决上述技术问题,本发明所采用的技术方案是:

一种增韧抗压耐烧蚀材料的制备方法,其特征在于具体制备步骤为:

(1)取150~200ml甲基硅油加入带有温度计和回流装置的三口烧瓶中,在氮气保护下将三口烧瓶移入沙浴锅中,保温反应后,升温,继续保温反应,反应结束后自然冷却至室温,得到产物;

(2)向上述产物中加入200~300ml二甲苯,搅拌混合10~15min后过滤,得到滤液,将滤液转入旋转蒸发仪中,旋蒸浓缩得到浓缩液,取30~40g硼化锆加入到粉碎机中粉碎30~40min,得到硼化锆粉末,将硼化锆粉末、浓缩液、100~200ml去离子水加入烧杯中,搅拌混合15~20min后,得到结合剂;

(3)按重量份数计,将40~50份白刚玉、30~40份黑曜岩、8~10份可膨胀石墨加入粉碎机中粉碎后倒入混砂机中,再向混砂机中加入10~15份氧化铝粉、0.3~0.5份聚丙烯酸钠、3~5份二氧化锆、5~8份石墨烯,搅拌混合10~20min,再依次加入8~10份结合剂,研磨过筛,得到耐火瓷粉;

(4)将苯氧基聚磷腈和酚醛树脂混合溶解于四氢呋喃中,溶解完全得到耐高温溶液,随后将耐高温溶液涂覆于碳纤维布上,晾干后放入真空烘箱中,烘烤得到耐高温碳纤维布;

(5)将上述耐高温碳纤维布裁成方块布,用耐火瓷粉作为中间隔热层,将方块布叠放后放入模具中,先预热,随后放入平板硫化仪中加热,保温使酚醛树脂完全融化,再升温预固化40~50min,最后放入热压机中,热压固化6~7h,取出冷却至室温后,得到增韧抗压耐烧蚀材料。

步骤(1)所述的控制沙浴温度为420~430℃,保温反应时间为1~2h,升温后温度为460~480℃,继续保温反应时间为40~50min。

步骤(2)所述的旋蒸浓缩温度为80~90℃,旋蒸浓缩时间为40~50min。

步骤(3)所述的可膨胀石墨粉碎后颗粒直径为1~3mm,所得耐火瓷粉颗粒大小为200目。

步骤(4)所述的苯氧基聚磷腈和酚醛树脂混合质量比为1︰7,控制耐高温溶液的涂覆量为100~120g/m2,烘烤温度为40~50℃,烘烤时间为10~12h。

步骤(5)所述的中间隔热层厚度为方块布厚度的0.5倍,预热温度为70~80℃,平板硫化仪中加热温度为100~110℃,预固化温度为120~130℃,控制热压温度为180~200℃,热压压力为5~6mpa。

本发明的有益效果是:

(1)将甲基硅油置于高温条件下裂解,得到裂解产物,将裂解产物与二甲苯混溶,经过滤、旋转蒸发得到浓缩液,以硼化锆粉末、浓缩液为原料制备得到结合剂,最后将白刚玉、黑曜岩粉碎后与氧化铝粉、聚丙烯酸钠、二氧化锆、石墨烯等原料混合,放入混砂机中混合搅拌,再掺入结合剂得到耐火瓷粉,将苯氧基聚磷腈和酚醛树脂混合溶解于四氢呋喃中得到耐高温溶液,涂覆于碳纤维布上制备得到耐高温碳纤维布,将耐火瓷粉作为中间隔热层,将耐高温碳纤维布裁成的方块布叠放后,经过预热,预固化,热压固化得到增韧抗压耐烧蚀材料,本发明在高温烧蚀环境中,可膨胀性石墨会侵入酚醛树脂碳层中,在经受高温作用后,由于可膨胀石墨导热系数大,可以快速吸收树脂碳层释放的熔化热和蒸发热后快速升温,膨胀石墨会微膨胀由卷曲状态变为舒张状态,提高耐烧蚀材料的外表面散热面积,将热量传导至高热容的中间隔热层中,对耐烧蚀材料炭化层起到降温作用,所用黑曜岩为高膨胀率火山岩,在1000℃以上高温条件可以膨胀为原体积5倍以上,形成高厚度的绝热层,从而改善耐烧蚀材料的绝热性能;

(2)本发明用甲基硅油所制备的浓缩液为聚碳硅烷,以聚碳硅烷和硼化锆作为结合剂,耐烧蚀材料中聚碳硅烷在高温下会裂解为碳化硅晶须,碳化硅晶须填充于耐烧蚀材料中可减小气孔,在烧蚀前碳化硅晶须对酚醛树脂起到增韧作用,烧蚀后提高耐烧蚀材料的高温时的抗压强度,耐火瓷粉和石墨烯通过聚碳硅烷紧密结合,再经高温烧成后通过碳化硅结合,由于碳化硅具有极高的结合强度,并且碳化硅在高温氧化后可在耐烧蚀材料表面形成一层致密的、牢固的二氧化硅薄膜,避免烧蚀形成的致密残碳层被氧化而变疏松,另外,碳化硅还可与硼化锆在高温下反应形成二氧化锆-二氧化硅薄膜,从而进一步提高耐烧蚀材料在高温时的抗压强度,减小高温过程中因膨胀产生的向外应力,从而提高耐烧蚀材料在高温环境下的抗压强度,应用前景广阔。

具体实施方式

取150~200ml甲基硅油加入带有温度计和回流装置的三口烧瓶中,在氮气保护下将三口烧瓶移入沙浴锅中,控制沙浴温度为420~430℃,保温反应1~2h后,升温至460~480℃,继续保温反应40~50min,反应结束后自然冷却至室温,得到产物;向上述产物中加入200~300ml二甲苯,搅拌混合10~15min后过滤,得到滤液,将滤液转入旋转蒸发仪中,在80~90℃下旋蒸浓缩40~50min,得到浓缩液,取30~40g硼化锆加入到粉碎机中粉碎30~40min,得到硼化锆粉末,将硼化锆粉末、浓缩液、100~200ml去离子水加入烧杯中,搅拌混合15~20min后,得到结合剂;按重量份数计,将40~50份白刚玉、30~40份黑曜岩、8~10份可膨胀石墨加入粉碎机中粉碎至颗粒直径为1~3mm后倒入混砂机中,再向混砂机中加入10~15份氧化铝粉、0.3~0.5份聚丙烯酸钠、3~5份二氧化锆、5~8份石墨烯,搅拌混合10~20min,再依次加入8~10份结合剂,研磨过200目筛,得到耐火瓷粉;将苯氧基聚磷腈和酚醛树脂按质量比为1︰7混合溶解于四氢呋喃中,溶解完全得到耐高温溶液,随后将耐高温溶液涂覆于碳纤维布上,控制涂覆量为100~120g/m2,晾干后放入温度为40~50℃的真空烘箱中,烘烤10~12h,得到耐高温碳纤维布;将上述耐高温碳纤维布裁成方块布,用耐火瓷粉作为中间隔热层,控制中间隔热层厚度为方块布厚度的0.5倍,将方块布叠放后放入模具中,先预热至70~80℃,随后放入平板硫化仪中加热至100~110℃,保温使酚醛树脂完全融化,再升温至120~130℃预固化40~50min,最后放入热压机中,控制热压温度为180~200℃,热压压力为5~6mpa,热压固化6~7h,取出冷却至室温后,得到增韧抗压耐烧蚀材料。

取150ml甲基硅油加入带有温度计和回流装置的三口烧瓶中,在氮气保护下将三口烧瓶移入沙浴锅中,控制沙浴温度为420℃,保温反应1h后,升温至460℃,继续保温反应40min,反应结束后自然冷却至室温,得到产物;向上述产物中加入200ml二甲苯,搅拌混合10min后过滤,得到滤液,将滤液转入旋转蒸发仪中,在80℃下旋蒸浓缩40min,得到浓缩液,取30g硼化锆加入到粉碎机中粉碎30min,得到硼化锆粉末,将硼化锆粉末、浓缩液、100ml去离子水加入烧杯中,搅拌混合15min后,得到结合剂;按重量份数计,将40份白刚玉、30份黑曜岩、8份可膨胀石墨加入粉碎机中粉碎至颗粒直径为1mm后倒入混砂机中,再向混砂机中加入10份氧化铝粉、0.3份聚丙烯酸钠、3份二氧化锆、5份石墨烯,搅拌混合10min,再依次加入8份结合剂,研磨过200目筛,得到耐火瓷粉;将苯氧基聚磷腈和酚醛树脂按质量比为1︰7混合溶解于四氢呋喃中,溶解完全得到耐高温溶液,随后将耐高温溶液涂覆于碳纤维布上,控制涂覆量为100g/m2,晾干后放入温度为40℃的真空烘箱中,烘烤10h,得到耐高温碳纤维布;将上述耐高温碳纤维布裁成方块布,用耐火瓷粉作为中间隔热层,控制中间隔热层厚度为方块布厚度的0.5倍,将方块布叠放后放入模具中,先预热至70℃,随后放入平板硫化仪中加热至100℃,保温使酚醛树脂完全融化,再升温至120℃预固化40min,最后放入热压机中,控制热压温度为180℃,热压压力为5mpa,热压固化6h,取出冷却至室温后,得到增韧抗压耐烧蚀材料。

取175ml甲基硅油加入带有温度计和回流装置的三口烧瓶中,在氮气保护下将三口烧瓶移入沙浴锅中,控制沙浴温度为425℃,保温反应1h后,升温至470℃,继续保温反应45min,反应结束后自然冷却至室温,得到产物;向上述产物中加入250ml二甲苯,搅拌混合13min后过滤,得到滤液,将滤液转入旋转蒸发仪中,在85℃下旋蒸浓缩45min,得到浓缩液,取35g硼化锆加入到粉碎机中粉碎35min,得到硼化锆粉末,将硼化锆粉末、浓缩液、150ml去离子水加入烧杯中,搅拌混合17min后,得到结合剂;按重量份数计,将45份白刚玉、35份黑曜岩、9份可膨胀石墨加入粉碎机中粉碎至颗粒直径为2mm后倒入混砂机中,再向混砂机中加入13份氧化铝粉、0.4份聚丙烯酸钠、4份二氧化锆、7份石墨烯,搅拌混合15min,再依次加入9份结合剂,研磨过200目筛,得到耐火瓷粉;将苯氧基聚磷腈和酚醛树脂按质量比为1︰7混合溶解于四氢呋喃中,溶解完全得到耐高温溶液,随后将耐高温溶液涂覆于碳纤维布上,控制涂覆量为110g/m2,晾干后放入温度为45℃的真空烘箱中,烘烤11h,得到耐高温碳纤维布;将上述耐高温碳纤维布裁成方块布,用耐火瓷粉作为中间隔热层,控制中间隔热层厚度为方块布厚度的0.5倍,将方块布叠放后放入模具中,先预热至75℃,随后放入平板硫化仪中加热至105℃,保温使酚醛树脂完全融化,再升温至125℃预固化45min,最后放入热压机中,控制热压温度为190℃,热压压力为5mpa,热压固化6h,取出冷却至室温后,得到增韧抗压耐烧蚀材料。

取200ml甲基硅油加入带有温度计和回流装置的三口烧瓶中,在氮气保护下将三口烧瓶移入沙浴锅中,控制沙浴温度为430℃,保温反应2h后,升温至480℃,继续保温反应50min,反应结束后自然冷却至室温,得到产物;向上述产物中加入300ml二甲苯,搅拌混合15min后过滤,得到滤液,将滤液转入旋转蒸发仪中,在90℃下旋蒸浓缩50min,得到浓缩液,取40g硼化锆加入到粉碎机中粉碎40min,得到硼化锆粉末,将硼化锆粉末、浓缩液、200ml去离子水加入烧杯中,搅拌混合20min后,得到结合剂;按重量份数计,将50份白刚玉、40份黑曜岩、10份可膨胀石墨加入粉碎机中粉碎至颗粒直径为3mm后倒入混砂机中,再向混砂机中加入15份氧化铝粉、0.5份聚丙烯酸钠、5份二氧化锆、8份石墨烯,搅拌混合20min,再依次加入10份结合剂,研磨过200目筛,得到耐火瓷粉;将苯氧基聚磷腈和酚醛树脂按质量比为1︰7混合溶解于四氢呋喃中,溶解完全得到耐高温溶液,随后将耐高温溶液涂覆于碳纤维布上,控制涂覆量为120g/m2,晾干后放入温度为50℃的真空烘箱中,烘烤12h,得到耐高温碳纤维布;将上述耐高温碳纤维布裁成方块布,用耐火瓷粉作为中间隔热层,控制中间隔热层厚度为方块布厚度的0.5倍,将方块布叠放后放入模具中,先预热至80℃,随后放入平板硫化仪中加热至110℃,保温使酚醛树脂完全融化,再升温至130℃预固化50min,最后放入热压机中,控制热压温度为200℃,热压压力为6mpa,热压固化7h,取出冷却至室温后,得到增韧抗压耐烧蚀材料。

对比例以苏州市某公司生产的耐烧蚀材料作为对比例对本发明制得的增韧抗压耐烧蚀材料和对比例中的耐烧蚀材料进行检测,检测结果如表1所示:

拉伸性能测定

按照gb/t1447-2005标准进行测定。

弯曲强度和弯曲模量测定

按照gb/t1449-2005标准进行测定。

线烧蚀率及质量损失率测定

按照国军标gjb323a进行。利用氧乙炔烧蚀试验机分别测试本发明制得的增韧抗压耐烧蚀材料和对比例中的耐烧蚀材料的线烧蚀率和质量烧蚀率。实验条件为氧气压力0.4mpa、乙炔压力0.095mpa、喷嘴直径2.0mm,热流密度4186kw/m2,烧蚀时间为8s,试样尺寸为直径30mm,厚度为10mm。

表1性能测定结果

根据表1中数据可知,本发明制得的增韧抗压耐烧蚀材料,具有较高的弯曲模量、热变形温度和较低的线烧蚀率和质量烧蚀率,提高了材料的耐烧蚀性能和绝热性能,具有广阔的使用前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1