一种碳化硅泡沫陶瓷的制备方法与流程

文档序号:17082277发布日期:2019-03-09 00:25阅读:1094来源:国知局

本发明属于材料技术领域,具体涉及一种碳化硅泡沫陶瓷的制备方法,该方法具体提供了一种通过原位固化剂和发泡剂进行料浆发泡固化成型,来实现不同孔隙大小碳化硅泡沫陶瓷的新型发泡成型制备技术。



背景技术:

泡沫陶瓷是具有高孔隙率的多孔陶瓷材料,其孔隙结构类似液气体系中泡沫,因而得名。利用其丰富的孔隙结构,泡沫陶瓷具有优异的隔热保温、吸音降噪功能,并可用作高比表面积的催化剂载体,从而在建筑、化工、冶金、国防、航空航天、医疗等众多领域有着广泛应用。

根据产品使用目的不同,泡沫陶瓷通常可分为两种类型:一类的孔隙结构基本全为连通、开放的孔隙,主要用于过滤、负载催化剂等;另一类的孔隙结构绝大部分为孤立的封闭孔隙,主要起到隔热、隔音等作用。在泡沫陶瓷的材质方面,氧化铝、氧化锆等氧化物,以及碳化硅、氮化硅等非氧化物陶瓷均有应用。其中,碳化硅(sic)泡沫陶瓷因碳化硅材料本身所具有的耐腐蚀、低膨胀、高导热、耐高温、抗氧化、高硬度等特点,在高温金属液过滤、高温气体除尘、废气催化净化、废水处理等领域得重要应用。应用于这些方面时,须要泡沫陶瓷具有大量连通、开放的孔隙结构,且孔隙尺寸根据使用目的不同会有较大差异。

碳化硅泡沫陶瓷通常采用烧失法、模板法或发泡法制备。烧失法是在碳化硅陶瓷成型粉料或料浆中混入可在高温下分解、气化的烧失剂(常用的有聚苯乙烯、聚丙烯腈、聚氨酯等高分子聚合物小球,或木屑、碳颗粒等),在高温烧成时烧失剂分解排出,留下孔隙。模板法一般是利用具有空间网络结构的高分子聚合物骨架(常用的为聚苯乙烯泡沫),用碳化硅料浆浸渍后,使料浆中的固体颗粒附着于骨架表面;在高温烧成时有机骨架分解排出,获得具有相似空间网络结构的泡沫陶瓷体。也有文献报道,采用天然植物茎秆碳化后所形成的多孔模板,在高温下浸渍液态硅,使硅与模板中的碳反应形成具多孔结构的碳化硅陶瓷。发泡法则是制备高粘度的碳化硅料浆,通过高速搅拌发泡,形成大量气泡,待料浆凝固、干燥后,得到泡沫陶瓷坯体。以上制备工艺中,天然植物碳化模板浸液态硅的方法,成本高昂,且孔隙结构不易控制,因此应用非常有限。发泡法制备泡沫陶瓷时,因料浆凝固时间长,气泡容易破裂,故难以获得大孔隙、高连通孔隙率的泡沫陶瓷产品。而烧失法和模板法,都须要在高温下将造孔剂或模板分解为气体后排出。在该过程中会产生大量具有刺激性气味的烟气,特别在以高分子聚合物作为造孔剂或骨架时,会形成大量氮氧化物等有害气体,以及不完全燃烧的烟尘。由于碳化硅为非氧化物陶瓷,需要在非氧化的气氛下烧成,而造孔剂或有机模板的分解需要大量氧气,因此碳化硅泡沫陶瓷坯体需要先在氧化气氛中低温烧制,排除有机成分,并部分烧结后,再于非氧化气氛下进行高温烧成。操作繁琐,效率低下,且易造成产品损坏。



技术实现要素:

本发明的目的是克服烧失法、模板法和普通发泡法的不足之处,提供了一种碳化硅泡沫陶瓷的制备方法,该方法通过原位固化剂和发泡剂进行料浆发泡固化成型,来实现不同孔隙大小的碳化硅泡沫陶瓷的新型发泡成型制备技术。

本发明的目的是通过以下方式实现的:

将含有碳化硅的陶瓷粉体原料与陶瓷纤维加水、分散剂混合形成料浆,加热后,再加入原位固化剂和发泡剂进行发泡固化成型,再经干燥、烧成,得到碳化硅泡沫陶瓷。

所述的含有碳化硅的陶瓷粉体原料为碳化硅(sic)和烧结助剂;烧结助剂为二氧化硅(sio2)、氧化铝(al2o3)、三氧化二钇(y2o3)、稀土氧化物粉体。

所述的加热温度为40~80℃。

所述的原位固化剂为聚乙烯醇、海藻酸钠、琼脂糖、魔芋胶、黄原胶中的一种或两种混合。

所述的粉体原料与原位固化剂的质量比为1:0.002~0.05。

所述的发泡剂为十二烷基苯磺酸钠、十二烷基硫酸钠、十八烷基硫酸钠、硬质酸钠中的一种。

所述的粉体原料与发泡剂的质量比为1:0.001~0.02。

所述陶瓷纤维包括碳化硅纤维、氮化硅纤维、氧化铝纤维、莫来石纤维、硅酸铝纤维、碳纤维中的一种或多种;纤维直径≤50μm,长度≤2.0mm。陶瓷纤维的加入量为粉体原料总体积的5~30%,优选5~20%。

所述粉体原料的纯度为工业级,粉体原料中位径d50≤1.5μm。

上述料浆具体制备步骤是将碳化硅、二氧化硅、氧化铝、三氧化二钇、稀土氧化物粉体以及陶瓷纤维按比例称量后,加水、分散剂进行球磨或搅拌均匀混合。球磨或搅拌时间为2~8小时。本发明以碳化硅(sic)、二氧化硅(sio2)、氧化铝(al2o3)、三氧化二钇(y2o3)、稀土氧化物粉体为粉体原料,配比以质量比表示为sic:sio2:al2o3:y2o3:稀土氧化物为70~90:0.8~7.5:2.5~22.5:1.3~18.8:0~8,优选sic:sio2:al2o3:y2o3:稀土氧化物为70~90:1.1~5.0:5.7~22.5:1.3~8.6:1.0~5.0。

优选粉体原料、水、分散剂、球磨介质质量比为1:1~3:0.005~0.02:0~1。

所述原料中的稀土氧化物包括氧化镧(la2o3)、氧化铈(ceo2)、氧化钐(sm2o3)中的一种或多种。

所述分散剂包括聚丙烯酸、聚丙烯酸铵、聚氧乙烯、聚甲基丙烯酸、聚乙烯吡咯烷酮、聚乙烯亚胺、聚天冬氨酸、聚环氧琥珀酸中的一种或多种,优选分散剂为聚丙烯酸铵、聚乙烯吡咯烷酮中的一种或两种混合。

上述发泡固化成型步骤是将混合均匀的料浆加热后,加入原位固化剂,继续球磨或搅拌,再加入发泡剂,继续球磨或搅拌后得到的料浆注入模具,在室温下固化后脱模,再将所得坯体彻底干燥。所述加热温度为40~80℃。加入原位固化剂,球磨或搅拌的时间为0.5~2小时,优选0.5~1小时;加入发泡剂后,继续球磨或搅拌5~30分钟。固化条件为注入模具中的料浆在室温(20~25℃)下固化12~36小时,彻底干燥的条件为在70~150℃烘箱中彻底干燥。

上述烧成是将干燥后的坯体在1550~1950℃温度下,n2或ar气氛中烧成,得到sic泡沫陶瓷制品。所述烧成的具体制度可以为将坯体装入石墨匣钵中,在1个大气压(常压)的n2或ar气氛中,以15~20℃/min的升温速度从室温升温至1550~1950℃,保温1~2小时,烧成结束后制品随炉冷却。

上述碳化硅泡沫陶瓷的优选制备方法具体可包括以下步骤:

以sic、sio2、al2o3、y2o3、la2o3为原料,将各原料按sic:sio2:al2o3:y2o3:la2o3质量比75~85:2~6:6~18:2~9:1~3进行混合,并加入粉体原料总体积10~20%的碳化硅纤维,以聚丙烯酸铵为分散剂,原料粉体、水、分散剂、球磨介质质量比为1:1~2:0.01~0.02:0.5~1,球磨2~6小时,获得混合均匀的原料料浆;将所得原料料浆加热至40~80℃,加入聚乙烯醇,原料料浆中全部粉体原料与聚乙烯醇的质量比为1:0.01~0.05,继续球磨0.5~1小时;之后再加入十二烷基苯磺酸钠,原料料浆中全部粉体原料与十二烷基苯磺酸钠的质量比为1:0.005~0.01,继续球磨5~20分钟后,出料注入模具中;注入模具中的料浆在室温(20~25℃)下固化12~36小时后脱模,所得坯体在70~150℃烘箱中彻底干燥。将坯体在1450~1750℃温度下、n2或ar气氛中烧成,得到sic泡沫陶瓷制品。

与现有技术相比,本发明的优势如下:

(1)采用发泡+原位固化工艺制备泡沫陶瓷坯体,可以通过对原位固化剂、发泡剂、料浆温度、发泡时间的调节,有效地控制料浆粘度和发泡膨胀率,从而按产品要求实现不同的孔隙率、孔隙尺寸、孔隙分布,具有高度的生产灵活性,可适用于各类泡沫陶瓷的制备要求。

(2)采用发泡和原位固化工艺制备泡沫陶瓷坯体,仅须使用少量有机成分(分散剂、原位固化剂、发泡剂等有机添加剂总量≤10%),远少于烧失法、模板法中大量造孔剂或有机骨架的用量,从而避免了在烧成过程中产生大量烟气及有害气体,大大减轻了对环境和人员健康的不良影响。

(3)原料中加入陶瓷纤维,在料浆固化过程中可以起到支撑坯体结构的作用,从而可以形成大尺寸孔隙(≥1mm)和高孔隙率,避免了普通发泡法中无法形成大孔隙、获得高孔隙率的问题。

(4)由于坯体中有机成分含量低,故烧成过程中其分解排除需氧量少,因此不必设置专门的氧化排除工艺,可在烧成过程的低温阶段完成有机成分的排除,避免了两次烧成造成的效率低下、产品损伤等问题。

(5)泡沫陶瓷产品的孔为不规则排列孔隙,会导致泡沫陶瓷强度大幅下降,本发明方法得到的产品在保持较高的强度的同时获得高达近90%的孔隙率。

具体实施方式

以下通过具体实施例及对比例进一步说明本发明。但实施例的具体细节仅用于解释本发明,不应理解为对本发明总的技术方案的限定。

实施例1

以sic、sio2、al2o3、y2o3、la2o3为粉体原料,粉体原料中位径d50≤1.5μm,将各原料按sic:sio2:al2o3:y2o3:la2o3质量比80:2:12:4:2进行混合,加入粉体原料总体积5%的碳化硅纤维(纤维直径≤50μm,长度≤2.0mm),以聚丙烯酸铵为分散剂,原料粉体、水、分散剂、球磨介质质量比为1:1.5:0.01:1,球磨6小时,获得混合均匀的原料料浆;将所得原料料浆加热至60℃,加入聚乙烯醇,原料料浆中粉体原料与聚乙烯醇的质量比为1:0.03,继续球磨0.5小时;之后再加入十二烷基苯磺酸钠,原料料浆中粉体原料与十二烷基苯磺酸钠的质量比为1:0.005,继续球磨10分钟后,出料注入模具中;注入模具中的料浆在室温下固化18小时后脱模,所得坯体在80℃烘箱中彻底干燥。将坯体在1650℃温度下ar气氛中烧成,得到sic泡沫陶瓷制品。

该陶瓷显孔隙率81.3%,主要孔隙尺寸为毫米级(≥1mm),弯曲强度6.4mpa。

实施例2

以sic、sio2、al2o3、y2o3、sm2o3为粉体原料,粉体原料中位径d50≤1.5μm,将各原料按sic:sio2:al2o3:y2o3:sm2o3质量比85:1:9:3:2进行混合,并加入粉体原料总体积15%的氧化铝纤维(纤维直径≤50μm,长度≤2.0mm),以聚甲基丙烯酸为分散剂,原料粉体、水、分散剂质量比为1:1.2:0.01,搅拌机搅拌6小时,获得混合均匀的原料料浆;将所得原料料浆加热至80℃,加入琼脂糖,原料料浆中全部粉体原料与琼脂糖的质量比为1:0.02,继续球磨0.5小时;之后再加入十二烷基硫酸钠,原料料浆中全部粉体原料与十二烷基硫酸钠的质量比为1:0.005,继续搅拌10分钟后,出料注入模具中;注入模具中的料浆在室温下固化12小时后脱模,所得坯体在80℃烘箱中彻底干燥。将坯体在1850℃温度下ar气氛中烧成,得到sic泡沫陶瓷制品。

该陶瓷显孔隙率75.8%,主要孔隙尺寸为亚毫米级(100~1000μm),弯曲强度9.7mpa。

实施例3

以sic、sio2、al2o3、y2o3、sm2o3为粉体原料,粉体原料中位径d50≤1.5μm,将各原料按sic:sio2:al2o3:y2o3:sm2o3质量比85:1:9:3:2进行混合,并加入粉体原料总体积10%的氧化铝纤维(纤维直径≤50μm,长度≤2.0mm),以聚乙烯吡咯烷酮为分散剂,原料粉体、水、分散剂质量比为1:2:0.01,搅拌机搅拌6小时,获得混合均匀的原料料浆;将所得原料料浆加热至70℃,加入琼脂糖,原料料浆中全部粉体原料与琼脂糖的质量比为1:0.01,继续球磨0.5小时;之后再加入十二烷基硫酸钠,原料料浆中全部粉体原料与十二烷基硫酸钠的质量比为1:0.001,继续搅拌20分钟后,出料注入模具中;注入模具中的料浆在室温下固化24小时后脱模,所得坯体在80℃烘箱中彻底干燥。将坯体在1850℃温度下ar气氛中烧成,得到sic泡沫陶瓷制品。

该陶瓷显孔隙率88.7%,主要孔隙尺寸为毫米级(≥1mm),弯曲强度4.1mpa。

对比例1

以sic、sio2、al2o3、y2o3、la2o3为粉体原料,将各原料按sic:sio2:al2o3:y2o3:la2o3质量比80:2:12:4:2进行混合,原料粉体、水质量比为1:1.5,搅拌机低速搅拌6小时,获得混合均匀的高粘度原料料浆,然后高速搅拌0.5小时,出料注入模具中;注入模具中的料浆在室温下静置24小时后,再于80℃烘箱中干燥8小时后,脱模得到坯体。将坯体在1850℃温度下ar气氛中烧成,得到sic泡沫陶瓷制品。

该陶瓷显孔隙率35.8%,主要孔隙尺寸为微米级(10~100μm),弯曲强度8.5mpa。

对比例2

以sic、sio2、al2o3、y2o3、la2o3为粉体原料,将各原料按sic:sio2:al2o3:y2o3:la2o3质量比80:2:12:4:2进行混合,原料粉体、水质量比为1:2,搅拌机低速搅拌6小时,获得混合均匀的高粘度原料料浆,然后高速搅拌0.5小时,出料注入模具中;注入模具中的料浆在室温下静置24小时后,再于80℃烘箱中干燥12小时后,脱模得到坯体。将坯体在1850℃温度下ar气氛中烧成,得到sic泡沫陶瓷制品。

该陶瓷显孔隙率52.1%,主要孔隙尺寸为微米级(10~100μm),弯曲强度3.2mpa。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1