用于制造具有高氧化锆含量的熔凝块的方法与流程

文档序号:20887466发布日期:2020-05-26 17:38阅读:189来源:国知局
用于制造具有高氧化锆含量的熔凝块的方法与流程
本发明涉及用于制造具有高氧化锆含量的熔凝耐火块的方法,涉及通过该方法获得的块,以及涉及包括这种块的玻璃熔化炉。
背景技术
:在耐火块中,存在有区别的熔凝块(众所周知用于建造玻璃熔化炉)和烧结块。与烧结块不同,熔凝块最常包含结合结晶粒的晶间玻璃相。因此,由烧结块和熔凝块引起的问题以及为解决这些问题所采用的技术方案通常是不同的。因此,用于制造烧结块而开发的组合物在先验上本身不能用于制造熔凝块,反之亦然。熔凝块通常称为“电熔块”,是通过在电弧炉中将合适的原料的混合物熔化或通过任何其他合适的技术获得的。然后通常将熔化的材料浇铸在模具中,然后凝固。通常,然后将所获得的产品经受受控的冷却循环以使其在不破裂的情况下达到环境温度。该操作被本领域技术人员称为“退火”。在熔凝块中,具有非常高的氧化锆含量(vhzc)(通常包含大于80重量%、或甚至大于85重量%的氧化锆)的那些熔凝块,是由于其极高的耐腐蚀性的品质以及其不使所生产的玻璃着色和在所生产的玻璃中不产生缺陷的能力而众所周知的。fr1191665描述了一种使用锆石制造包含氧化锆、氧化铝和二氧化硅的耐火产品的方法。在强还原条件下,该方法导致产品具有高残留碳含量。由此产生渗出和/或起泡的风险,从而在玻璃中产生缺陷。此外,由于几乎所有的相都是结晶的,因此这些产品不能很好地适应热变化,特别是对于大尺寸的块。产品还呈现出与以大尺寸的块的形式使用不相容的孔隙率。因此,这些产品仅用作制造其他耐火产品的原料(颗粒形式)的来源。ep403387描述了具有高氧化锆含量的熔铸产品,以重量百分比计,包含4%至5%的二氧化硅sio2、约1%的氧化铝al2o3、0.3%的氧化钠和小于0.05%的p2o5。fr2701022描述了具有高氧化锆含量的熔铸产品,以重量百分比计,包含0.05%至1.0%的p2o5和0.05%至1.0%的氧化硼b2o3。fr2723583描述了具有高氧化锆含量的熔铸产品,以重量百分比计,包含3%至8%的二氧化硅sio2、0.1%至2.0%的氧化铝al2o3、0.05%至3.0%的氧化硼b2o3、0.05%至3%的bao+sro+mgo、0.05%至0.6%的na2o+k2o和小于0.3%的fe2o3+tio2。具有非常高的氧化锆含量的熔凝块(例如由sefpro公司生产和销售的er1195)通常是在氧化条件下制得的。如今,它们已广泛用于玻璃制造炉中。但是,其高成本会限制其使用,特别是限制其用于玻璃制造炉的上部结构。因此,需要用于制造氧化锆含量非常高的熔凝块的方法,该方法比目前的方法成本更低。本发明的目的是满足该需求。技术实现要素:本发明涉及用于制造耐火块的方法,以基于氧化物的重量百分比计,该耐火块包含大于80%、优选大于85%的氧化锆,该方法包括以下依次进行的步骤:a)在还原条件下,以重量百分比计,熔化包含大于50%的锆石的进料,以还原锆石并获得熔化的材料,b)对熔化的材料施加氧化条件,c)浇铸所述熔化的材料,d)冷却直到熔化的材料至少部分地凝固成块的形式,e)任选地,对所述块进行热处理、特别是退火热处理。如将在说明书的后续部分中更详细地观察到的,根据本发明的方法有利地使得通过熔化包含要制造的块的所有氧化物的进料能够以减少的成本快速地得到可用于玻璃制造炉的耐火块。特别地,在没有中间处理的情况下将锆石与其他原料直接引入进料中。根据本发明的方法还可以包括以下任选特征中的一者或多者:-继续步骤a)直到熔化的材料中的二氧化硅含量小于15%;-继续步骤b)直到熔化的材料中的碳含量小于500ppm;-在步骤a)中,以基于进料的重量百分比计,进料包含大于70%、优选大于80%的锆石;-在步骤a)中,以基于进料的重量百分比计,进料具有以下组成:还原剂的量、优选碳的量大于2.0%、优选大于4.0%和/或小于10.0%、优选小于8.0%;-以基于进料的重量百分比计,进料包含大于0.2%且小于3.0%、优选大于0.5%和/或小于2.5%、优选小于1.5%的氧化铝的量;-以基于进料的重量百分比计,进料包含大于0.5%和/或小于5.0%、优选大于1.0%且小于4.5%的钠源、优选碳酸钠的量;-以基于进料的重量百分比计,进料包含大于1.0%、优选大于4.0%和/或小于10.0%的氧化锆的稳定剂的总量。本发明另外涉及通过根据本发明的方法获得的块或可能已经通过根据本发明的方法获得的块。为了清楚,以下将这种块称为“根据本发明的块”。根据本发明的块优选具有以下化学组成,总计为100%:-zro2:大于82.0%且小于97.0%,-sio2:大于0.5%且小于15.0%,-al2o3:大于0.2%,-na2o:大于0.1%,-除zro2、sio2、al2o3和na2o以外的氧化物:小于10.0%,并且,更优选地,根据本发明的块具有以下化学组成,总计为100%:-zro2:大于86.0%,-sio2:大于2.5%,-al2o3:1.0%至3.0%,-na2o:小于0.5%,-除zro2、sio2、al2o3和na2o以外的氧化物:小于5.0%。优选地,在环境温度下,以重量百分比计,块的氧化锆的大于80%是单斜晶系的,或氧化锆的大于25%是四方晶系的。更优选地,根据本发明的块的重量大于10kg。此外,本发明涉及一种玻璃熔化炉,其包括根据本发明的块,特别是在升高到超过1000℃的温度的区域中包括根据本发明的块,尤其是在预定要与熔化的玻璃接触或与熔化炉的气氛接触的区域中包括根据本发明的块,特别是在上部结构中包括根据本发明的块。特别地,本发明涉及一种玻璃熔化炉,其包括上部结构,该上部结构包括根据本发明的块或由根据本发明的块构成。定义当通过使用使进料熔化直到获得熔化的材料、然后通过冷却使该材料凝固的方法获得块时,通常将该块称为是“熔凝的”。“进料”由引入炉中的全部原料构成。“熔化的材料”是为了保持其形状而需要保持在容器中的液体物质。它其中可以有一些固体颗粒,但是数量不足以使固体颗粒能够构成所述物质。块是所有尺寸超过10mm、优选地超过50mm、优选地超过100mm的物体,并且其与涂层不同,其是通过包括模制和脱模的操作的工艺获得的。块可以例如具有平行六面体的总体形状,或者替选地具有例如在fr2142624或ep354844中描述的“十字形”类型的形状。除非另有提到,否则与进料有关的所有含量均以基于进料的重量百分比计。颗粒是所有尺寸小于或等于10mm、优选小于5mm、优选小于2mm的物体。以基于颗粒的重量百分比计,“由一成分组成的”颗粒或“一成分的”颗粒(例如“氧化铝的”颗粒或“由氧化铝组成的”颗粒)是包含大于80%、优选大于90%、优选大于95%、优选大于98%、优选大于99%的该成分的颗粒。为了清楚起见,使用氧化物的化学式来表示组成中的这些氧化物的含量。例如,“zro2”、“sio2”或“al2o3”表示这些氧化物的含量,“氧化锆”、“二氧化硅”和“氧化铝”用于表示分别由zro2、sio2和al2o3构成的这些氧化物的结晶相。然而,元素zr、si和al也可以在其他相下存在,特别是以锆石的形式存在,即zrsio4相。除非另有提到,否则根据本发明的块中的氧化物的所有含量均为基于氧化物的重量百分比计。金属元素的氧化物的重量含量涉及以符合工业上的常规惯例的最稳定的氧化物形式表示的该元素的总含量。hfo2不能与zro2化学上分离。但是,根据本发明,在进料中没有有意地添加hfo2。因此,hfo2仅表示痕量的二氧化铪,该氧化物总是天然存在于氧化锆源中,其含量通常小于5%、通常小于2%。在根据本发明的块中,hfo2的重量含量优选小于5%、优选小于3%、优选小于2%。为了清楚起见,氧化锆和痕量的二氧化铪的总含量可以用“zro2”或“zro2+hfo2”无区别地表示。因此,hfo2不被包含在“除zro2、sio2、al2o3和na2o以外的氧化物”中。“杂质”理解为与原料一起引入的或由与这些成分的反应产生的不可避免的成分。杂质不是必需的成分,仅是可以接受的。例如,形成铁、钛、钒和铬的氧化物、氮化物、氮氧化物、碳化物、碳氧化物、碳氮化物和金属物种的组的一部分的化合物是杂质。附图说明在阅读下面的详细描述并查阅附图后,本发明的其他特征和优点将进一步显现,其中:-图1是实施例2的块的微观结构的照片;-图2是实施例2的块的照片。具体实施方式方法根据本发明的方法制造的块的组成取决于被熔凝的进料,但还取决于分别在步骤a)和步骤b)中应用的还原条件和氧化条件的条件。根据所期望的块的组成,对这些不同参数的控制是本领域技术人员完全知晓的。优选地,修改方法的参数,使得在步骤d)中获得的块具有如下化学组成:-zro2:大于82.0%、优选大于84.0%、优选大于86.0%和/或小于97.0%、或甚至小于95.0%、或甚至小于94.0%,zro2构成至100%的剩余部分,和/或-sio2:大于0.5%、优选大于1.5%、优选大于2.5%、优选大于4.0%、或甚至大于6.0%、大于8.0%、大于8.5%和/或小于15.0%、或甚至小于12.0%、小于10.0%、或甚至小于8.0%,和/或-al2o3:大于0.2%、优选大于1.0%和/或小于3.0%、优选小于2.0%,和/或-na2o:大于0.1%、或甚至大于0.2%和/或小于0.6%、优选小于0.5%、或甚至小于0.4%,和/或-b2o3:大于0.1%、或甚至大于0.2%和/或小于0.6%、优选小于0.5%、或甚至小于0.4%,和/或-除zro2、sio2、al2o3、na2o和b2o3以外的氧化物:小于10.0%、优选小于9.0%、更优选小于8.0%、小于5.0%、或甚至小于3.0%、或小于2.0%、或小于1.0%、或小于0.5%。该进料包含大于50重量%的锆石。锆石可以提供全部或部分的氧化锆zro2。如果需要,可以将可能稳定化的氧化锆的颗粒添加到进料中。优选地,根据在步骤d)中获得的块中所期望的氧化锆的稳定化,以众所周知的方式也修改进料。特别地,进料可以包括大于0.5%、大于1.5%、大于3.0%、大于4.0%、大于5.0%、或甚至大于6.0%和/或小于10.0%、小于9.0%、或甚至小于8.0%的氧化锆的稳定剂,特别是cao和/或y2o3和/或mgo和/或ceo2,优选cao和/或y2o3。特别地,进料可以包括大于0.5%、大于1.5%、大于2.0%和/或小于5.0%、小于4.0%、或甚至小于3.0%的y2o3。根据一个实施方式,修改进料,使得在环境温度下,以重量百分比计,块的氧化锆的大于80%、优选大于90%、或甚至大于99%或基本上100%是单斜晶系的。根据允许改进块的关于密接、起泡和热变化的性能的另一实施方式,修改进料,使得块的氧化锆的小于75%、优选小于70%是单斜晶系的。优选地,修改进料,使得在环境温度下,以重量百分比计,块的氧化锆的大于25%、优选大于30%被稳定化、优选以四方晶型被稳定化。优选地,修改进料,使得氧化物al2o3、b2o3、na2o、k2o、y2o3、bao、sro、mgo、cao、ceo2、fe2o3、tio2、ta2o5和nb2o5的总量占在步骤d)中获得的块的重量的小于10.0%、优选小于9.0%、更优选小于8.0%、或甚至小于5.0%、或甚至小于3.0%。优选地,修改进料,使得氧化物al2o3、b2o3、y2o3和cao各自占在步骤d)中获得的块的重量的小于3.0%、优选小于2.0%、更优选小于1.5%。优选地,修改进料,使得氧化物na2o、k2o、bao、sro、mgo、ceo2、fe2o3、tio2、ta2o5和nb2o5各自占在步骤d)中获得的块的重量的小于1.0%、优选小于0.9%、更优选小于0.8%、或甚至小于0.6%、或甚至小于0.5%。优选地,除zro2、sio2、al2o3、na2o、b2o3、y2o3、cao、mgo和ceo2以外的氧化物是杂质。优选地,进料由粉末的混合物构成。优选地,以重量百分比计,进料具有以下组成:-锆石的颗粒:大于60%、优选大于70%、优选大于80%、优选大于85%,和/或-还原剂的颗粒、优选碳的颗粒:大于2.0%、优选大于3.0%、优选大于4.0%、或甚至大于5.0%和/或小于10.0%、优选小于8.0%,和/或-氧化铝的颗粒:大于0.2%、优选大于0.5%、或甚至大于0.8%和/或优选小于3.0%、优选小于2.5%、优选小于2.0%、或甚至小于1.5%、或甚至小于1.0%,和/或-钠源的颗粒、优选碳酸钠的颗粒:大于0.5%、优选大于1.0%、优选大于1.5%、优选大于2.0%、或甚至大于3.0%、或甚至大于3.5%和/或优选小于5.0%、优选小于4.5%、或甚至小于4.0%,和/或-硼氧化物的颗粒:大于0.5%、或甚至大于1.0%、或甚至大于1.5%、或甚至大于2.0%和/或优选小于5.0%、优选小于4.0%、或甚至小于3.0%,和/或-其他颗粒,即除锆石的颗粒、还原剂的颗粒、氧化铝的颗粒、钠源的颗粒和硼氧化物的颗粒之外的其他颗粒:小于10%、优选小于5%、或甚至小于3%、或甚至小于1%、或甚至小于0.5%、或甚至小于0.1%。还原剂的颗粒优选为焦炭的颗粒和/或木炭的颗粒和/或铝的颗粒。优选地,还原剂的颗粒是焦炭的颗粒,以重量百分比计,其优选包含大于95.0%的碳、或甚至大于96.5%的碳、或甚至大于98.0%的碳、或甚至大于99.0%的碳。优选地,还原剂的颗粒是沥青焦炭的颗粒。优选地,进料一方面包括氧化铝的颗粒,另一方面包括钠源的颗粒和/或硼源的颗粒。有利地,由此导致形成赋予良好的抗热机械应力性的硅酸盐化的相。在一个实施方式中,在步骤b)中,将氧化铝的颗粒和钠源的颗粒添加到熔化的材料的浴中。锆石和/或还原剂和/或氧化铝和/或钠源和/或硼源可以以不同于颗粒形式的形式、以相同的量提供。然而,颗粒形式是优选的。在步骤a)中,在还原条件下进行熔化,以使锆石至少部分地、优选基本上完全地分离为氧化锆和二氧化硅的形式。二氧化硅逐步地挥发。进料中存在的其他氧化物的量基本上不受还原条件的影响。因此,保持还原条件直到达到块中所期望的二氧化硅含量。然后,在步骤b)中,进展到氧化条件使二氧化硅含量稳定。本领域技术人员众所周知的所有能够获得还原条件的技术都是可能的。特别地,熔化优选地通过电阻炉操作进行,将电极浸入到进料中,或通过短电弧的联合作用进行,优选地在没有搅拌的情况下。获得短电弧所需的电压和电流取决于本领域技术人员众所周知的许多参数,例如炉的尺寸、电极的数量和尺寸。优选地,熔化在高于2000℃的温度下进行优选小于2小时、或甚至小于1小时30分钟、或甚至小于1小时且优选地大于30分钟、或甚至大于45分钟的时间。优选地,保持还原条件至少直到以重量百分比计大于80%、大于90%、优选基本上100%的进料转化为熔化的材料。在步骤b)中,将在步骤a)结束时获得的熔化的材料的浴保持在熔化状态并经受氧化条件。设想所有可以获得氧化条件的技术。氧化条件优选通过中等长的不产生还原的电弧和有利于再氧化的搅拌的联合作用获得。优选地,采用在专利fr1208577及其附加专利第75893号和第82310号中描述的使用长电弧的熔化方法。该方法包括使用电弧炉(该电弧炉的电弧在熔化的材料的浴和远离该浴的至少一个电极之间流动),以及调节电弧的长度,使得其还原作用减小到最小值,同时保持熔化浴上方的氧化气氛并同时搅拌所述浴,一方面,通过电弧本身的作用,或另一方面,通过向浴中喷射氧化气体(例如,空气或氧气),或此外通过向浴中添加释放氧气的物质(例如过氧化物或硝酸盐)。氧化条件的施加主要作用于残留的碳含量。优选地,保持氧化条件直到熔化的材料的浴中的碳含量小于250ppm、或甚至小于200ppm、或甚至小于100ppm。优选地,步骤b)的持续时间小于1小时、或甚至小于45分钟、或甚至小于30分钟且大于5分钟、或甚至10分钟、或甚至20分钟。步骤b)允许主要使用锆石作为原料,同时限制了所获得的块中的残留的碳含量和孔隙率。从而降低了块的制造成本。在步骤c)中,通常将熔化的材料浇铸在模具中。优选地,模具具有这样的尺寸:允许制造所有尺寸均超过100mm的块和/或大于10kg的块。在步骤d)中,冷却优选以小于100℃/h、优选小于50℃/h、优选小于20℃/h的速率进行,每小时约10℃的速率是非常合适的。在步骤e)中,可以使从步骤d)得到的块经受退火。特别地,当模具中浇铸的熔化的材料至少部分地凝固以获得刚性块时,将该块从模具中取出并置于有利于控制其冷却的环境中。该方法还可以包括附加的机加工步骤,从而可以赋予块所期望的尺寸。块在步骤d)中获得的块优选包含大于80%、优选大于85%的氧化锆。非常高的氧化锆含量使得可以满足高耐腐蚀性的要求,而不产生有害于所制造的玻璃的品质的缺陷。优选地,以重量百分比计,块的锆的大于80%、大于90%、大于95%、优选大体上100%是氧化锆的形式。二氧化硅的存在是有利的,晶间玻璃相的形成使得可以有效地适应氧化锆在其可逆的同素异形变换过程中体积的变化。但是,过高的二氧化硅含量会通过石子(由于耐火块的内聚力的损失而导致的耐火块的碎片)的释放而在玻璃中产生缺陷,并使耐腐蚀性下降。以基于块的重量百分比计,残留的碳含量优选小于500ppm、优选小于250ppm、优选小于200ppm、或甚至小于100ppm。优选地,块的总孔隙率小于15%、或甚至小于10%、或甚至小于5%。根据实施方式,特别是就用于上部结构或槽的块而言,块的总孔隙率小于5%、或甚至小于2%、或甚至小于1%。实施例出于说明本发明的目的,给出以下非限制性实施例。这些实施例中使用了以下原料:-含有33%的二氧化硅的锆砂,-由pechiney公司出售的且平均含有99.4%的氧化铝的ac44型氧化铝,-碳酸钠,na2o的来源,-沥青焦炭,包含约98%的碳。在步骤a)中,将进料引入具有两个直径为130mm的石墨电极的héroult型单相电弧炉的直径为约1m的槽中。对于实施例1至实施例5,将所有原料按照表1中给出的比例混合,并在开始熔化之前放入该槽中。实施例6与实施例1至实施例5的不同之处在于,在步骤b)开始时,将氧化铝和碳酸钠引入由其他原料获得的熔化的材料的浴中。然后在还原条件下通过电阻炉操作将进料熔凝,电压约为130v,电流为2300a,所供应的比电能大于2kwh/kg进料。在步骤b)中,如专利fr1208577中所描述的,使用长电弧在氧化条件下,将熔化的材料的浴保持15分钟至40分钟,电压约为210v,对于实施例2和实施例4,分别注入240升或120升的氧气。然后将熔化的材料浇铸在模具中,以获得180x180x350mm3格式的块。表1(基于进料的重量百分比)实施例123456锆石(z)89.2%88.0%88.6%88.6%83.1%88.0%沥青焦炭(c)6.7%6.6%6.7%6.7%6.3%6.6%氧化铝(a)0.7%0.7%0.7%0.7%0.7%0.7%碳酸钠(s)3.4%4.7%4.0%4.0%3.8%4.7%石灰////4.7%/氧化钇////1.4%/引入(a)和(s)的步骤a)a)a)a)a)b)注入氧气否是否是否否表2给出了获得的块的化学分析;它是通过x射线荧光光谱法进行的平均化学分析,并且以重量百分比给出。结晶相通过x射线衍射来确定,并在表2中给出;“z-m”表示单斜氧化锆,“z-t”表示四方氧化锆。表2实施例123456zro288.5%88.4%89.0%86.4%84.7%90.8%sio28.7%9.1%8.9%11.1%10.3%7.1%al2o31.6%1.9%1.5%1.7%1.7%1.5%na2o0.3%0.3%0.3%0.4%0.4%0.2%cao////1.9%/y2o3////0.7%/除上述以外的氧化物0.9%0.3%0.3%0.4%0.3%0.4%残留的c(ppm)<20040<200<200<200<200相z-mz-mz-mz-mz-m,z-tz-m所获得的块的密度是5.1至5.4,并且具有硅酸盐化的相中的氧化锆枝晶形式的结构(图1对应于实施例2)。这些实施例已允许观察到,通过使用锆石作为氧化锆的主要来源,可以得到具有非常高的氧化锆含量且基本上没有裂缝的块,如图2所示。这些块有利地完全适合在工业条件下使用。此外,其他试验已允许证实,对于具有非常高的氧化锆含量的材料公认的性能、特别是对玻璃制造炉的蒸气导致的腐蚀的抗性,通过使用根据本发明的方法基本上没有下降。将根据本发明的块的样品(实施例2)与产品er1195的样品比较。将具有100mm的长度和24mm的直径的棒形式的样品在1500℃下经受4小时的两个循环,温度的升高和降低是100℃/h。测量在这两个循环后样品的体积变化(以%表示),对应于以%表示的渗出值。根据参考产品的值,获得的值小于3%。当然,本发明不限于以说明性和非限制性示例的方式描述和表示的实施方式。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1