静电驱动的仿生超分子组装体的用途的制作方法

文档序号:3657891阅读:256来源:国知局
专利名称:静电驱动的仿生超分子组装体的用途的制作方法
技术领域
本发明涉及一种静电驱动的仿生超分子组装体的用途。
背景技术
两亲嵌段共聚物在药物传递、基因传递、生物传感器等领域有着广泛的应用。通过控制共聚物的组成和组装条件能够得到胶束、囊泡、蠕虫状等各种不同的结构组装。最近, 聚合物-金属粒子纳米复合物在药物传递、基因传递、生物传感器等领域的应用越来越受到广泛的关注。聚合物-金属粒子纳米复合物可以通过将表面改性过的金属纳米粒子结合进入聚合物组装体的疏水部分或者原位还原生成金属纳米粒子。然而这通常需要对金属纳米粒子的表面进行复杂的修饰。并且聚合物-金属粒子纳米复合物的性能大大依赖于纳米粒子在聚合物基质中的分布情况。因此通过简易的方法制备出分布精确控制的聚合物-金属粒子纳米复合物仍然是很大的挑战。普通的聚合物组装体是由通过共价键连接的共聚物制备的,然而共聚物的合成过程相对繁琐,并且操作条件要求比较高。通过可逆的、非共价键连接起来的超分子共聚物提供了一种构建聚合物组装体的方便有效的方法。静电作用相比于其它的非共价键作用力, 如氢键、金属配体螯和作用、主客体作用等具有诸多优势首先,通过静电结合的方法能够将通过普通合成方法难以制备出来的嵌段共聚物变为现实。其次,末端带有正电或负电功能基团的聚合物能够通过自由基聚合时的链转移反应比较简便的制得,而不需要复杂繁琐的离子或可控自由基聚合物反应操作。第三,考虑到在生物体系中静电作用是极为普遍的, 因此静电作用的毒性是比较低的。更为重要的是和通过共价键连接的共聚物制备的组装体相比较,通过静电作用制备的超分子组装体具有在离子结合界面进一步功能化的潜力。这种超分子组装体能够控制表面带有电荷的纳米粒子分布于组装体的特定位置。

发明内容
本发明的目的是克服现有技术的不足,提供一种静电驱动的仿生超分子组装体的用途。静电驱动的仿生超分子组装体的用途是静电驱动的仿生超分子组装体用于包埋纳米粒子;静电驱动的仿生超分子组装体由末端含羧基的疏水聚合物和末端含氨基的亲水聚合物组成,其中末端含羧基的疏水聚合物和末端含氨基的亲水聚合物通过氨基与羧基之间的静电作用结合在一起,末端含羧基的疏水聚合物和末端含氨基的亲水聚合物的重量比为 1:100 100:1。所述的静电驱动的仿生超分子组装体包埋纳米粒子的方法包括以下步骤
1)将末端含羧基的疏水性聚合物溶于四氢呋喃中制备成重量浓度为0.01 20%的溶液C;
2)将末端含氨基的亲水性聚合物溶于乙醇制备成重量浓度为0.005 10%的溶液D ;
3)将表面含正电荷的纳米粒子溶于四氢呋喃中制备成重量浓度为0.001 2%的溶液E ;
4)将1重量份溶液C与1重量份溶液D混合进行自组装反应1 100分钟,再加入0. 5 重量份溶液E进行自组装反应1 50分钟,加入1 100重量份水,然后进行透析处理,冷冻干燥除去水,得到包埋有纳米粒子仿生超分子组装体。所述的表面含正电荷的纳米粒子粒径为1 20纳米。所述的表面含正电荷的纳米粒子为表面含正电荷的金纳米粒子、表面含正电荷的银纳米粒子、表面含正电荷的钼纳米粒子、表面含正电荷的锑化镉纳米粒子、表面含正电荷的硫化镉纳米粒子或表面含正电荷的二氧化硅纳米粒子。本发明与现有技术相比具有的有益效果是
1、末端带有正电或负电功能基团的聚合物能够通过自由基聚合时的链转移反应比较简便的制得,而不需要复杂繁琐的离子或可控自由基聚合物反应操作;
2、通过静电驱动的仿生超分子组装体制备过程简单,所得组装体在纯水环境中稳定性良好;
3、所得超分子组装体并且能够有效的调控纳米粒子分布于组装体的特定区域,不需要对金属纳米粒子的表面进行复杂的修饰;金属纳米粒子的位置能够精确控制而金属纳米粒子的分布对于复合物最终的性能是至关重要的。


图1 (a)是末端为羧基的聚苯乙烯的核磁图1 (b)是末端为胺基的聚甲基丙烯酸磷酸胆碱酯的核磁图; 图2 (a)是末端为羧基的聚苯乙烯和末端为胺基的聚甲基丙烯酸磷酸胆碱酯组装出的碗形组装体透射电镜和扫描电镜图2 (b)是末端为羧基的聚苯乙烯和末端为胺基的聚甲基丙烯酸磷酸胆碱酯组装出的多孔球形组装体透射电镜和扫描电镜图3 (a)是末端为羧基的聚苯乙烯和末端为胺基的聚甲基丙烯酸磷酸胆碱酯组装出的碗形组装体包埋金纳米粒子透射电镜图3 (b)是末端为羧基的聚苯乙烯和末端为胺基的聚甲基丙烯酸磷酸胆碱酯组装出的多孔球形组装体包埋金纳米粒子透射电镜图。
具体实施例方式本发明公开了一种静电驱动的仿生超分子组装体及其制备和用途。仿生超分子组装体由末端含羧基的疏水聚合物和末端含氨基的亲水聚合物组成,其中亲水聚合物和疏水聚合物通过氨基与羧基之间的静电作用结合在一起。仿生超分子组装体的制备方法包括, 将亲水聚合物和疏水聚合物组分分别溶于溶剂制备成溶液,将两种聚合物混和后进一步加入水进行自组装,获得仿生超分子组装体。这种通过静电驱动所得到的仿生超分子组装体, 可以进一步作为模板驱动金属纳米粒子的模板组装。下面的实施例是对本发明的进一步说明,而不是限制本发明的范围。实施例1
1)疏水聚合物的合成在50mL圆底烧瓶中加入苯乙烯5. 75 ml,3_巯基丙酸0. 22 mL,偶氮二异丁腈0. 082克和25 mL四氢呋喃,通过冷冻抽真空三次循环除掉氧气,而后在75 ° C下反应M小时。所得溶液经浓缩后,用冷的无水甲醇沉析三次,除去未结合的3-巯基丙酸。然后将固体收集50 ° C下干燥过夜,得到末端为羧基的聚苯乙烯。核磁和GPC结果证明产物具有预期结构,见图1 (a);
2)亲水聚合物的合成在50mL圆底烧瓶中加入甲基丙烯酸磷酸胆碱酯4. 42克,巯基乙胺盐酸盐0. 0852克,偶氮二异丁腈0. 0246克和25mL无水乙醇,通过冷冻抽真空三次循环除掉氧气,而后在75° C下反应M小时。所得溶液经浓缩到5mL,加入KOH 0. 042克和Na2SO4 1.5克,搅拌5小时后,将溶液过滤除去盐分,将胺基盐酸盐转化为胺基形式。用 THF沉析两次,再用无水乙醚沉析一次,以除去未结合的巯基乙胺盐酸盐。然后将固体收集 50 ° C下干燥过夜,得到末端为胺基的聚甲基丙烯酸磷酸胆碱酯。核磁和GPC结果证明产物具有预期结构,见图1 (b);
3)聚合物溶液的配制将聚苯乙烯溶解于四氢呋喃中制备成重量浓度为10mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存。将聚甲基丙烯酸磷酸胆碱酯溶于无水甲醇中配成5 mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存;
4)静电驱动超分子组装体的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。逐滴加入去离子水10 mL,然后透析除去有机溶剂,得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体,见图2 (a)和图2 (b);
5)金纳米粒子的制备将30mL氯金酸30 mmol/L的水溶液加入到80 mL四辛基溴化铵50 mmol/L的甲苯溶液中,然后剧烈搅拌1小时。再加入十二硫醇170毫克,然后再剧烈搅拌下加入25 mL硼氢化钠0.4 mol/L的水溶液,然后在避光条件下搅拌3小时。有机相分离出来后浓缩到10 mL,然后倒入400 mL无水乙醇于-18° C下放置4 h使金纳米粒子沉析出来,然后将褐色沉淀收集起来,用无水乙醇冲洗数次,真空干燥,得到疏水性的金纳米粒子。然后将固体溶于四氢呋喃中配成1 mg/mL的溶液于4 ° C下避光保存。透射电镜结果证明成功得金纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L 聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 PL金纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体,见图3 (a)和图3 (b)。
实施例2:
1)疏水聚合物的合成在50mL圆底烧瓶中加入甲基丙烯酸甲酯5.33 mL,3-巯基丙酸0. 22 mL,偶氮二异丁腈0.082克和25 mL四氢呋喃,通过冷冻抽真空三次循环除掉氧气, 而后在75 ° C下反应M小时。所得溶液经浓缩后,用冷的无水甲醇沉析三次,除去未结合的3-巯基丙酸。然后将固体收集50 ° C下干燥过夜,得到末端为羧基的聚甲基丙烯酸甲酯。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制将聚甲基丙烯酸甲酯溶解于四氢呋喃中制备成重量浓度为10mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存。将聚甲基丙烯酸磷酸胆碱酯溶于无水甲醇中配成5 mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存;
4)静电驱动超分子组装体的制备将10μ L聚甲基丙烯酸甲酯的10 mg/mL溶液和 10 μ L聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后逐滴加入去离子水10 mL,然后透析除去有机溶剂, 得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体;
5)金纳米粒子的制备同实施例1。透射电镜结果证明成功得金纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10μ L聚甲基丙烯酸甲酯的10 mg/mL溶液和 10 μ L聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 PL金纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例3:
1)疏水聚合物的合成在50mL圆底烧瓶中加入甲基丙烯酸十八酯16.9克,3-巯基丙酸0. 22 mL,偶氮二异丁腈0.082克和25 mL四氢呋喃,通过冷冻抽真空三次循环除掉氧气,而后在75 ° C下反应M小时。所得溶液经浓缩后,用冷的无水甲醇沉析三次,除去未结合的3-巯基丙酸。然后将固体收集50 ° C下干燥过夜,得到末端为羧基的甲基丙烯酸十八酯。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制将聚甲基丙烯酸十八酯溶解于四氢呋喃中制备成重量浓度为 10 mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存。 将聚甲基丙烯酸磷酸胆碱酯溶于无水甲醇中配成5 mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存;
4)静电驱动超分子组装体的制备将10μ L聚甲基丙烯酸十八酯的10 mg/mL溶液和10 μ L聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后逐滴加入去离子水10 mL,然后透析除去有机溶剂,得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体;
5)金纳米粒子的制备同实施例1。透射电镜结果证明成功得金纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10μ L聚甲基丙烯酸十八酯的10 mg/mL溶液和10 μ L聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 PL金纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例4:
1)疏水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成在50mL圆底烧瓶中加入甲基丙烯酸聚氧化乙烯酯(分子量 360)5. 36克,巯基乙胺盐酸盐0. 0852克,偶氮二异丁腈0. 0246克和25mL无水乙醇,通过冷冻抽真空三次循环除掉氧气,而后在75° C下反应M小时。所得溶液经浓缩到5mL,加入KOH 0. 042克和Na2SO4 1. 5克,搅拌5小时后,将溶液过滤除去盐分,将胺基盐酸盐转化为胺基形式。再用乙醚沉析两次,以除去未结合的巯基乙胺盐酸盐。然后将固体收集50 ° C 下干燥过夜,得到末端为胺基的聚甲基丙烯酸聚氧化乙烯酯。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制将聚苯乙烯溶解于四氢呋喃中制备成重量浓度为10mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存。将聚甲基丙烯酸聚氧化乙烯酯溶于无水甲醇中配成5 mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存;
4)静电驱动超分子组装体的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L聚甲基丙烯酸聚氧化乙烯酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后逐滴加入去离子水10 mL,然后透析除去有机溶剂,得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体;
5)金纳米粒子的制备同实施例1。透射电镜结果证明成功得金纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L 聚甲基丙烯酸聚氧化乙烯酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中 (体积比为1/1),搅拌30分钟。然后加入10 μ L金纳米粒子的四氢呋喃1 mg/mL的溶液, 再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。 实施例5:
1)疏水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成在50mL圆底烧瓶中加入甲基丙烯酸葡萄糖酯(分子量四2) 4. 35克,巯基乙胺盐酸盐0. 0852克,偶氮二异丁腈0. 0246克和25mL无水乙醇,通过冷冻抽真空三次循环除掉氧气,而后在75° C下反应M小时。所得溶液经浓缩到5mL,加入KOH 0. 042克和Na2SO4 1. 5克,搅拌5小时后,将溶液过滤除去盐分,将胺基盐酸盐转化为胺基形式。再用乙醚沉析两次,以除去未结合的巯基乙胺盐酸盐。然后将固体收集50 ° C下干燥过夜,得到末端为胺基的聚甲基丙烯酸葡萄糖酯。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制将聚苯乙烯溶解于四氢呋喃中制备成重量浓度为lOmg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存。将聚甲基丙烯酸葡萄糖酯溶于无水甲醇和水的混合溶剂(体积比2/3)中配成5 mg/mL的溶液,然后用孔径为220 nm的聚四氟乙烯滤膜过滤,所得溶液于4 ° C下保存;
4)静电驱动超分子组装体的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L聚甲基丙烯酸葡萄糖酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后逐滴加入去离子水10 mL,然后透析除去有机溶剂,得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体;
5)金纳米粒子的制备同实施例1。透射电镜结果证明成功得金纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L 聚甲基丙烯酸葡萄糖酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 PL金纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例6:
1)疏水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制同实施例1。所得溶液于4° C下保存;
4)静电驱动超分子组装体的制备同实施例1。透射电镜和动态光散射结果证明成功得到组装体;
5)银纳米粒子的制备将30mL硝酸银30 mmol/L的水溶液加入到80 mL四辛基溴化铵50 mmol/L的甲苯溶液中,然后剧烈搅拌1小时。再加入十二硫醇170毫克,然后再剧烈搅拌下加入25 mL硼氢化钠0.4 mol/L的水溶液,然后在避光条件下搅拌3小时。有机相分离出来后浓缩到10 mL,然后倒入400 mL无水乙醇于-18° C下放置4 h使金纳米粒子沉析出来,然后将褐色沉淀收集起来,用无水乙醇冲洗数次,真空干燥,得到疏水性的金纳米粒子。然后将固体溶于四氢呋喃中配成1 mg/mL的溶液于4 ° C下避光保存。透射电镜结果证明成功得银纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10 μ L聚苯乙烯的10 mg/mL溶液和10 μ L 聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 PL银纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到银纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例7:
1)疏水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制同实施例1。所得溶液于4° C下保存;
4)静电驱动超分子组装体的制备同实施例1。透射电镜和动态光散射结果证明成功得到组装体;
5)钼纳米粒子的制备将30mL氯钼酸30 mmol/L的水溶液加入到80 mL四辛基溴化铵50 mmol/L的甲苯溶液中,然后剧烈搅拌1小时。再加入十二硫醇170毫克,然后再剧烈搅拌下加入25 mL硼氢化钠0.4 mol/L的水溶液,然后在避光条件下搅拌3小时。有机相分离出来后浓缩到10 mL,然后倒入400 mL无水乙醇于-18° C下放置4 h使金纳米粒子沉析出来,然后将褐色沉淀收集起来,用无水乙醇冲洗数次,真空干燥,得到疏水性的金纳米粒子。然后将固体溶于四氢呋喃中配成1 mg/mL的溶液于4 ° C下避光保存。透射电镜结果证明成功得钼纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10μ L聚苯乙烯的10 mg/mL溶液和10 μ L 聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 PL钼纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到钼纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例8 1)疏水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
2)亲水聚合物的合成同实施例1。核磁和GPC结果证明产物具有预期结构;
3)聚合物溶液的配制同实施例1。所得溶液于4° C下保存;
4)静电驱动超分子组装体的制备同实施例1。透射电镜和动态光散射结果证明成功得到组装体;
5)硫化镉纳米粒子的制备在锥形瓶中加入CdSO4· 8 / 3H20 (0.01 mol),用25 mL 蒸馏水溶解,将十二硫醇(0.02 mol)在搅拌情况下缓慢滴入,生成一层白色絮状物;继续搅拌10 min后,加入十六烷基三甲基溴化铵(0.005 mol)的25 mL蒸馏水溶液,溶液变为白色混浊,表面有一层泡沫;搅拌5 h后,加入不同量的饱和H2S溶液,溶液变为淡黄色,搅拌反应12 h。将生成的CdS纳米胶粒溶液用甲苯和丙酮混合液萃取,而后将CdS纳米胶粒溶液旋转蒸发至10 mL,再用200 mL乙醇沉析3次,离心分离除去沉淀,上层清液在室温下自然蒸发干燥,再用20 mL乙醇洗涤3次,所得固体在真空下干燥。所得硫化镉纳米粒子溶于四氢呋喃中配成1 mg/mL的溶液于4 ° C下避光保存。透射电镜结果证明成功得硫化镉纳米粒子;
6)纳米粒子聚合物复合粒子的制备将10 μ L聚苯乙烯的10 mg/mL溶液和10 μ L 聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入10 μ L硫化镉纳米粒子的四氢呋喃1 mg/mL的溶液, 再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到硫化镉纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例9 同实施例1,静电驱动超分子组装体的制备将60 μ L聚苯乙烯的10 mg/mL溶液和60 μ L聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。逐滴加入去离子水10 mL,然后透析除去有机溶剂,得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体。纳米粒子聚合物复合粒子的制备将60 μ L聚苯乙烯的10 mg/mL溶液和60 μ L 聚甲基丙烯酸磷酸胆碱酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入60 PL金纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。实施例10 同实施例5,静电驱动超分子组装体的制备将30 μ L聚苯乙烯的10 mg/mL溶液和30 μ L聚甲基丙烯酸葡萄糖酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后逐滴加入去离子水10 mL,然后透析除去有机溶剂,得到超分子组装体。透射电镜和动态光散射结果证明成功得到组装体。纳米粒子聚合物复合粒子的制备将30 μ L聚苯乙烯的10 mg/mL溶液和30 μ L 聚甲基丙烯酸葡萄糖酯的5 mg/mL溶液加入2 mL四氢呋喃和无水乙醇的混合溶剂中(体积比为1/1),搅拌30分钟。然后加入30 PL金纳米粒子的四氢呋喃1 mg/mL的溶液,再搅拌 30分钟,逐滴加入去离子水10 mL,再经过透析除去有机溶剂,得到金纳米粒子聚合物复合粒子。透射电镜和动态光散射结果证明成功得到组装体。
权利要求
1.一种静电驱动的仿生超分子组装体的用途,其特征在于静电驱动的仿生超分子组装体用于包埋纳米粒子;静电驱动的仿生超分子组装体由末端含羧基的疏水聚合物和末端含氨基的亲水聚合物组成,其中末端含羧基的疏水聚合物和末端含氨基的亲水聚合物通过氨基与羧基之间的静电作用结合在一起,末端含羧基的疏水聚合物和末端含氨基的亲水聚合物的重量比为1:100 100:1。
2.根据权利要求1所述的一种静电驱动的仿生超分子组装体的用途,其特征在于所述的静电驱动的仿生超分子组装体包埋纳米粒子的方法包括以下步骤1)将末端含羧基的疏水性聚合物溶于四氢呋喃中制备成重量浓度为0.01 20%的溶液C;2)将末端含氨基的亲水性聚合物溶于乙醇制备成重量浓度为0.005 10%的溶液D ;3)将表面含正电荷的纳米粒子溶于四氢呋喃中制备成重量浓度为0.001 2%的溶液E ;4)将1重量份溶液C与1重量份溶液D混合进行自组装反应1 100分钟,再加入0.5 重量份溶液E进行自组装反应1 50分钟,加入1 100重量份水,然后进行透析处理,冷冻干燥除去水,得到包埋有纳米粒子仿生超分子组装体。
3.根据权利要求1所述的一种静电驱动的仿生超分子组装体的用途,其特征在于所述的表面含正电荷的纳米粒子粒径为1 20纳米。
4.根据权利要求1所述的一种静电驱动的仿生超分子组装体的用途,其特征在于所述的表面含正电荷的纳米粒子为表面含正电荷的金纳米粒子、表面含正电荷的银纳米粒子、 表面含正电荷的钼纳米粒子、表面含正电荷的锑化镉纳米粒子、表面含正电荷的硫化镉纳米粒子或表面含正电荷的二氧化硅纳米粒子。
全文摘要
本发明公开了一种静电驱动的仿生超分子组装体的用途。静电驱动的仿生超分子组装体用于包埋纳米粒子;静电驱动的仿生超分子组装体由末端含羧基的疏水聚合物和末端含氨基的亲水聚合物组成,其中末端含羧基的疏水聚合物和末端含氨基的亲水聚合物通过氨基与羧基之间的静电作用结合在一起,末端含羧基的疏水聚合物和末端含氨基的亲水聚合物的重量比为1:100~100:1。本发明的仿生超分子组装体具有良好的生物相容性,能够精确控制纳米粒子在组装体中的分布,在基因和药物传递、生物传感器等领域具有广泛的应用前景。
文档编号C08L25/06GK102432957SQ20111032738
公开日2012年5月2日 申请日期2009年12月22日 优先权日2009年12月22日
发明者徐建平, 徐方明, 计剑 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1