基于含镉配合物的pH荧光传感器及其制备方法与流程

文档序号:16789189发布日期:2019-02-01 19:32阅读:292来源:国知局
基于含镉配合物的pH荧光传感器及其制备方法与流程

本发明属于化学技术领域,涉及配位聚合物,具体涉及基于含镉配合物的pH荧光传感器及其制备方法。



背景技术:

配位聚合物以其多种多样的拓扑结构和在催化、吸附、发光及磁性等方面的潜在应用而得到了广泛的关注(J. C. Jiang, O. M. Yaghi, Chem. Rev. 2015, 115, 6966)。在各种应用中,基于荧光配位聚合物的化学传感得到了特殊关注(L. L. Zhang, Z. X. Kang, X. L. Xin, D. F. Sun, CrystEngComm2016, 18, 193)。因为配位聚合物由金属离子或金属簇与有机配体组成,而有机配体与金属离子或金属簇有近乎无限种组合方式,因此配位聚合物有易于调节的物理和化学性质。这种特性有利于配位聚合物成为优秀的荧光传感器(S. Sanda, S. Parshamoni, S. Biswas, S. Konar, Chem. Commun. 2015, 51, 6576)。近年来,用于传感爆炸物、小分子、阴离子和金属离子的荧光配位聚合物已被广泛报道。但是,基于配位聚合物的pH荧光传感器很少有报道。据我们所知,到目前报道的还不到十例。在这些报道的基于配位聚合物的pH荧光传感器中,大部分是在一定的pH范围内,荧光强度与pH成线性关系,荧光强度缓慢变化(Y. Lu, B. Yan, Chem. Commun. 2014, 50, 13323)。这种pH传感器重复性较差,且不易观测荧光强度的变化。

众所周知,在环境监测、生物医学诊断及生物工程等很多方面pH都是一个非常重要的参数(X. Y. Xu, B. Yan, Dalton Trans. 2016, 45, 7078)。因此,pH传感器的开发是非常必要的。一个基于荧光配位聚合物的pH传感器分子中应该含有在一定的pH范围内能够结合H+或OH,但是不会破坏框架结构的官能团。另外,当传感外界刺激的时候,荧光传感器能够通过明显的荧光变化来模仿逻辑操作行为。基于pH荧光传感器的逻辑门具有通过输入简单的化学刺激信号而得到明显的光学输出信号的优点(Q. Lin, X. Zhu, Y. P. Fu, Y. M. Zhang, T. B. Wei, Dyes Pigm. 2015, 112, 280)。



技术实现要素:

本发明的目的是:提供一种基于含镉配合物的pH荧光传感器及其制备方法,在一定的pH范围内能够结合H+或OH,但是不会破坏框架结构,输入简单的化学刺激信号而得到明显的光学输出信号,并且通过荧光变化来模仿逻辑操作行为。

本发明的技术解决方案是该基于含镉配合物的pH荧光传感器具有下述化学式:[Cd(2,4'-tmbpt)2(5-OH-bdc)]∙5H2O,其中2,4'-tmbpt为1-((1H-1,2,4-三唑基)亚甲基)-3-(4-吡啶基)-5-(2-吡啶基)-1,2,4-三唑,5-OH-bdc为羧基去质子化的5-羟基-间苯二酸;它的晶体属于三斜晶系,空间群为P-1,晶胞参数为a = 9.229(4) Å,b = 10.198(3) Å,c = 26.1540(10) Å,α = 92.371(3)°,β = 99.274(4) °,γ = 114.364(4)°,V = 2197.0(12) Å3,结构为1D → 2D → 3D。

其中,所述的基于含镉配合物的pH荧光传感器的制备方法包括如下步骤:

(1)合成2,4'-tmbpt配体;

(2)将0.04 g (0.15 mmol)的Cd(CH3COO)2·2H2O,0.018 g (0.1 mmol)的5-羟基-间苯二酸,0.03 g (0.1 mmol)的2,4'-tmbpt,0.012 g (0.3 mmol)的NaOH与8 mL水的混合物在15 mL的带聚四氟乙烯内衬的反应釜中130°C密封加热72小时;

(3)反应结束后以10 °C/h的降温速率冷却至室温得到无色晶体,即为基于含镉配合物的pH荧光传感器。

本发明的优点是:1、其制备方法重复性强,产率高,产品性能稳定;2、基于含镉配合物的pH荧光传感器具有灵敏的pH传感性能,易于观测荧光强度变化,可以设计成具有INH功能的分子逻辑门。

附图说明

图1是传感器中的Cd(II)离子的配位环境图;

图2是传感器的1D链状结构图;

图3是传感器的1D → 2D多聚穿套结构图;

图4是传感器的1D → 2D → 3D超分子结构图;

图5是传感器在不同的pH水溶液中的发射光谱图;

图6是传感器在不同的pH水溶液中的发射强度图;

图7是传感器为分子逻辑门INH功能逻辑符号和真值表。

具体实施方式

下面结合附图和实例进一步说明本发明的技术方案,而不应理解为是对技术方案的限制。

实施例:合成2,4'-tmbpt配体;将0.04 g (0.15 mmol)的Cd(CH3COO)2·2H2O,0.018 g (0.1 mmol)的5-羟基-间苯二酸,0.03 g (0.1 mmol)的2,4'-tmbpt,0.012 g (0.3 mmol)的NaOH与8 mL水的混合物在15 mL的带聚四氟乙烯内衬的反应釜中130°C密封加热72小时;反应结束后以10 °C/h的降温速率冷却至室温得到无色晶体,即为基于含镉配合物的pH荧光传感器,产率35%。

上述所得的传感器的主要的红外吸收峰为:3351 (s), 3026 (w), 1621 (m), 1567 (s), 1511 (m), 1468 (m), 1419 (s), 1365 (s), 1299 (w), 1268 (w), 1201 (w), 1131 (w), 1012 (w), 987 (w), 889 (w), 838 (w), 798 (w), 778 (w), 727 (w), 692 (w), 667 (w), 502(w)。

上述所得的传感器的相关表征如下:

(1)晶体结构测定:其衍射数据是在Oxford Diffraction Gemini R Ultra衍射仪上收集的,采用Mo Kα射线 (λ = 0.71069 Å),温度为293 K;使用技术扫描进行校正;晶体结构是通过SHELXS-97程序以直接法解出,用全矩阵最小二乘法使用SHELEXL-97程序进行精修;非氢原子的温度因子用各向异性进行修正;详细的晶体测定数据见表1;重要的键长和键角数据见表2;晶体结构见图1。

上述所得的传感器的晶体属于三斜晶系,空间群为P-1,晶胞参数为a = 9.229(4) Å,b = 10.198(3) Å,c = 26.1540(10) Å,α = 92.371(3)°,β = 99.274(4) °,γ = 114.364(4)°,V = 2197.0(12) Å3。配合物展示了1D → 2D → 3D超分子结构;非对称单元里包括一个Cd(II)离子,两个2,4'-tmbpt配体,一个5-OH-bdc阴离子和五个晶格水分子;Cd(II)离子是六配位的八面体配位构型,与来自三个不同的2,4'-tmbpt配体的三个氮原子和来自两个不同的5-OH-bdc阴离子的三个氧原子配位(见图1);每个5-OH-bdc阴离子连接两个Cd(II)离子形成一个波浪形1D链;结构中有两种2,4'-tmbpt配体,分别采取单齿和双齿模式与Cd(II)离子配位;双齿的2,4'-tmbpt配体成对地侨联波浪链,形成一个梯形链;而单齿的2,4'-tmbpt配体从梯形链的两侧进一步与Cd(II)离子配位(见图2);有趣的是,双齿的2,4'-tmbpt配体上不配位的吡啶基团穿入相邻链的环中,形成一个1D → 2D的多聚穿套结构(见图3);相邻层中单齿2,4'-tmbpt配体上不配位的吡啶基进一步互相交叉,形成一个2D → 3D 的插指结构(见图4)。

(2)pH荧光传感性质研究(Edinburgh FLSP920荧光光谱仪):在1-2的pH范围内,荧光发射发生较大程度的淬灭;在3-11的pH范围内,337 nm处的发射峰强度随pH值增加发生较小变化;当pH增加到11时,337 nm处的发射峰强度变化较小,但404 nm处的肩峰强度明显增加;当pH增加到12时,337 nm处的发射峰消失,404 nm处的发射峰强度急剧增加;在12-14的pH范围内,404 nm处的发射峰强度随pH值增加发生较小变化(见图5和图6);因此,在11-12的pH范围内可作为pH荧光传感器。

(3)分子逻辑门功能研究:配合物的荧光发射强度定义为分子逻辑门的输出信号,滴加H+和滴加OH-分别定义为输入信号1和输入信号2;滴加H+(pH < 11)和OH- (pH > 12)及不加H+和OH-分别定义为1和0,在404 nm处的正常荧光发射强度(I404nm)大于1.5×105 a.u.定义为1,低于1.5×105 a.u.定义为0;按照上面的定义,荧光强度增加到1.5×105 a.u.以上仅能通过滴加OH-(pH > 12)不加H+来实现,因此输出信号读数为“1”;只加滴加H+(pH < 11),同时滴加等摩的H+和OH-,以及不加H+也不加OH-,都无法改变输出值,因此输出读数为“0”;该分子逻辑门的INH功能逻辑符号和真值表如图7所示。

表1为配合物的主要晶体学数据

表2为配合物的主要键长(Å)和键角[°]*

对称代码: #1 x, y + 1, z; #2 -x, -y + 1, -z + 2。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1