一种耐热阻尼高硬度聚氨酯弹性体材料及其制备方法与流程

文档序号:12054666阅读:303来源:国知局
一种耐热阻尼高硬度聚氨酯弹性体材料及其制备方法与流程

本发明属于聚氨酯弹性体领域,特别涉及一种耐热阻尼高硬度聚氨酯弹性体材料及其制备方法。



背景技术:

聚氨酯弹性体具有许多的优良特性,比如优异的机械性能、高耐磨性、耐低温性、耐溶剂性以及良好的电绝缘性等,因而被广泛应用于各个行业。聚氨酯也是国内外研究较多且具有实用价值的高分子阻尼材料。聚氨酯的化学结构中存在的大量的氢键、一定程度的微相分离结构,因此具有较高的阻尼损耗因子。聚氨酯还可以方便地通过调节软硬链段比例来获得较宽温度范围内的高阻尼性能。聚氨酯阻尼产品可以有效地保护和提高机电设备的运行效率与性能,减少机电设备噪声与振动、以及对人类活动和周围环境及舒适度的影响,具有极其广泛的应用前景。

但普通的聚氨酯材料一般耐热性都比较差,其使用温度一般不超过80℃,100℃以上材料会软化变形,机械性能明显减弱,严重限制了其在高温环境下的广泛应用,例如航空航天器发动机等领域。另外在一些特定的高载荷、小变形的工况条件下又要求聚氨酯材料具有较高的硬度。因此,制备耐热性能优良并具有较高阻尼性能的高硬度聚氨酯材料成为当前聚氨酯材料研究的一个热点。



技术实现要素:

本发明的目的在于提供一种耐热阻尼高硬度聚氨酯弹性体材料及其制备方法,得到的弹性体力学性能完善,硬度高,耐热性能优异,同时具有较高的阻尼性能,可以满足在高温、高阻尼、宽温域要求模量稳定等环境条件下的使用。

为实现上述目的,本发明所采用的技术方案如下:

一种耐热阻尼高硬度聚氨酯弹性体,其原料的重量份组成包括:聚四氢呋喃二醇20~40份,聚己内酯二醇20~40份,甲苯二异氰酸酯20~24份,3,3’-二氯-4,4’-二氨基-二苯基甲烷10~13份,催化剂0.1~0.2份,膨胀石墨0.6~1.2份,纳米二氧化硅3~6份,各组分的重量百分比之和为100%。

本发明提供的耐热阻尼高硬度聚氨酯弹性体的制备方法,包括如下步骤:

步骤一,原料称取:按照原料重量百分比,分别称取原料;

步骤二,制备聚氨酯弹性体预聚体:将聚四氢呋喃二醇、聚己内酯二醇按配比混合均匀,并进行真空脱水,然后在氮气保护下加入甲苯二异氰酸酯,经油浴加热反应、真空脱泡制备得到聚氨酯弹性体预聚体,密封保存待用;

步骤三,在步骤二制得的聚氨酯弹性体预聚体中按配比加入膨胀石墨和纳米二氧化硅,真空条件下机械搅拌,混合均匀,得到组分A;

步骤四,将步骤三得到的预聚体/填料混合物组分A加热并按配比加入催化剂和扩链剂3,3’-二氯-4,4’-二氨基-二苯基甲烷,搅拌均匀,倒入模具,在平板硫化机上固化成型,经后熟化后制备得到耐热阻尼高硬度聚氨酯弹性体。

本发明原料组成中所述的催化剂选自二辛酸二丁基锡、二月硅酸二丁基锡、N-乙基吗啡啉中的一种或者多种混合物。

进一步,在步骤二中,制备聚氨酯弹性体预聚体的步骤如下:将聚四氢呋喃二醇和聚己内酯二醇按配比加入容器中,混合均匀,加热至100~110℃后,真空脱水3h,随后降温至80℃,在氮气保护下,按配比加入甲苯二异氰酸酯,反应1.5h,真空脱泡30min,制备得到聚氨酯弹性体预聚体。

进一步,在步骤三中,聚氨酯弹性体预聚体、膨胀石墨和纳米二氧化硅的重量比为100:1~2:5~10。

进一步,在步骤三中,聚氨酯弹性体预聚体、膨胀石墨和纳米二氧化硅在真空条件下高速机械搅拌4~6h使其分散均匀。

进一步,在步骤四中,将预聚体/填料混合物组分A加热至90℃,将扩链剂3,3’-二氯-4,4’-二氨基-二苯基甲烷加热至110℃,待其完全熔化后与组分A和催化剂充分混合,在平板硫化机上120℃20分钟固化成型,再在105℃下熟化8h,制备得到耐热阻尼高硬度聚氨酯弹性体。

本发明中,首先选择聚四氢呋喃二醇和聚己内酯二醇与甲苯二异氰酸酯反应制备得到聚氨酯弹性体预聚体,聚己内酯的加入显著提高了聚氨酯弹性体材料的耐热性能。扩链剂3,3’-二氯-4,4’-二氨基-二苯基甲烷的刚性结构也使材料的耐温性能得到提高。本发明还通过无机填料对预聚体进行改性。膨胀石墨和纳米二氧化硅的加入增加了高分子链段和填料之间的摩擦,使分子运动加剧,提高了材料的阻尼性能。本发明所制得的聚氨酯弹性体材料,不仅具备普通聚氨酯弹性体的优点,具有高强度、耐磨性优良、耐油性能优异、耐低温、减震等性能,还具有一般聚氨酯弹性体不具备的高耐热性和高阻尼性,同时硬度可达邵氏A90度以上。该种聚氨酯弹性体在高温缓冲阻尼材料领域有潜在的使用价值和发展前景。

附图说明

图1为制备的聚氨酯弹性体储能模量与温度的关系图,

图2为室温25℃下损耗因子和频率的关系图。

具体实施方案

下面,通过具体实施例对本发明的技术方案进行详细说明,但本发明绝不局限于这些实施例。

实施例1

一种耐热阻尼高硬度聚氨酯弹性体的制备方法,包括以下步骤:

步骤一,按照如下原料重量份配比,分别称取原料:聚四氢呋喃二醇40份,聚己内酯二醇21份,甲苯二异氰酸酯22.1份,3,3’-二氯-4,4’-二氨基-二苯基甲烷11.4份,二月硅酸二丁基锡0.1份,膨胀石墨1.2份,纳米二氧化硅3.2份,各组分的重量百分比之和为100%。

步骤二,制备聚氨酯弹性体预聚体:将聚四氢呋喃二醇和聚己内酯二醇加入容器中,混合均匀,加热至100~110℃后,真空脱水3h,随后降温至80℃,在氮气保护下加入甲苯二异氰酸酯,反应1.5h,真空脱泡30min,制备得到聚氨酯弹性体预聚体。

步骤三,在步骤二制得的聚氨酯弹性体预聚体中加入膨胀石墨和纳米二氧化硅,在真空条件下高速机械搅拌4~6h使其分散均匀,得到组分A。

步骤四,将步骤四得到的预聚体/填料混合物组分A加热至90℃,将扩链剂3,3’-二氯-4,4’-二氨基-二苯基甲烷加热至110℃,待其完全熔化后与组分A和催化剂充分混合,搅拌均匀,倒入模具,在平板硫化机上120℃20分钟固化成型,再在105℃下熟化8h,制备得到高硬度耐热阻尼聚氨酯弹性体。

实施例2

实施例2制备耐热阻尼高硬度聚氨酯弹性体的方法与实施例1相同,不同的是所用原料重量百分比不同,实施例2所用原料重量百分比为:聚四氢呋喃二醇30.6份,聚己内酯二醇30.6份,甲苯二异氰酸酯21.5份,3,3’-二氯-4,4’-二氨基-二苯基甲烷11.0份,催化剂二月硅酸二丁基锡0.1份,膨胀石墨0.9份,纳米二氧化硅6.1份,各组分重量百分比之和为100%。

实施例3

实施例3制备耐热阻尼高硬度聚氨酯弹性体的方法与实施例1相同,不同的是所用原料重量百分比不同,实施例3所用原料重量百分比为:聚四氢呋喃二醇31.4份,聚己内酯二醇31.4份,甲苯二异氰酸酯22份,3,3’-二氯-4,4’-二氨基-二苯基甲烷11.3份,催化剂0.1份,膨胀石墨0.6份,纳米二氧化硅3.1份,各组分重量百分比之和为100%。

实施例4

实施例4制备耐热阻尼高硬度聚氨酯弹性体的方法与实施例1相同,不同的是所用原料重量百分比不同,实施例4所用原料重量百分比为:聚四氢呋喃二醇30.8份,聚己内酯二醇30.8份,甲苯二异氰酸酯21.6份,3,3’-二氯-4,4’-二氨基-二苯基甲烷11份,催化剂二月硅酸二丁基锡0.1份,膨胀石墨0.9份,纳米二氧化硅4.6份,各组分重量百分比之和为100%。

实验验证性能

实施例1-4所制备的聚氨酯弹性体硬度都可达到邵氏90以上,并具备高耐热性。本发明将无机填料膨胀石墨和纳米白炭黑加入聚氨酯预聚体中,制备的聚氨酯/膨胀石墨/纳米白炭黑复合材料具有较高的阻尼性能,主要原因在于:一、填料与聚氨酯分子链段摩擦产生内耗;二、无机填料之间相互摩擦产生内耗。

使用动态机械分析仪(DMA)对本发明实施例制备的聚氨酯弹性体进行耐热性能及阻尼性能进行检测。图1为制备的聚氨酯弹性体储能模量与温度的关系图,图2为室温25℃下损耗因子和频率的关系图。由图1可知,本发明合成的聚氨酯弹性体储能模量在140℃下保持稳定。由图2可知,添加无机填料膨胀石墨和纳米二氧化硅后,材料的损耗因子在室温下显著上升。

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1