一种可功能化的高分子材料及其制备方法与流程

文档序号:12993080阅读:373来源:国知局
一种可功能化的高分子材料及其制备方法与流程

本发明涉及一种基于co2/二烯烃的可功能化的高分子材料的制备方法。



背景技术:

二氧化碳因其来源广泛、易得、可再生以及无毒等特点,是目前最具吸引力的c1化工原料。目前,基于二氧化碳的产品大多集中在小分子化合物领域,而在高分子材料领域的案例研究甚少,二氧化碳和环氧树脂通过c-o键的形成而发展出来的聚碳酸酯是目前唯一被工业化的二氧化碳基高分子材料。传统的“六大合成塑料”多是基于聚烯烃的主链为c-c键的高分子化合物,而二氧化碳与环氧树脂制备聚碳酸酯这一过程并无c-c键形成,并未真正实现二氧化碳的还原。因此,发展二氧化碳和烯烃的高分子共聚物是可持续高分子工业发展的一个重大的挑战。尽管长期以来,人们在探究co2与烯烃直接聚合合成高分子共聚物方面做了很多努力,尝试了二烯烃、乙烯基酯类、丙烯腈等单体,但得到的产物多为分子量较低的寡聚物,一直未实现烯烃与二氧化碳的直接共聚。

1976年,inoue等人首次将二氧化碳与丁二烯采用催化偶联的方法合成得到一种五元环的内酯产物(2-ethylidenehept-5-en-4-olide)。随后,musco等在同样的催化偶联反应中合成得到了另一种六元环内酯,3-ethylidene-6-vinyltetrahydro-2h-pyran-2-one(l)。自1983年始,behr的团队对这一六元环内酯的选择性合成和下游产品的发展做了大量工作,系统性的探究了多种反应条件的影响,发展了多种下游产品,并最终实现了l的小型工厂化生产。内酯l的分子内含有两种不同的碳碳双键以及一个环酯结构,具有潜在的聚合活性,但在过去的几十年中对从这一内酯中间体合成高分子的报道很少或仅得到寡聚物。近年,日本研究小组nozaki等人报道了一例以二氧化碳与丁二烯为原料经过这一内酯中间单体(l)成功的得到了产率为59%、分子量约1.9万的高分子产物。但这一反应中,要采用多种自由基引发剂如v-40、aibn等、溶剂、以及一些金属化合物(如mxn;m=fe,zn,zr,cu;x=br,cl.)作添加剂。基于未来绿色可再生资源的高分子工业的需求,开发新的二氧化碳基高分子聚合方法,提高这一类高分子聚合过程的转化率,得到分子量高的聚合物材料是高分子领域的重要研究课题。



技术实现要素:

本发明的目的是提供一种基于co2/二烯烃的可功能化的高分子材料的制备方法,用以发展新型的co2基等绿色可持续高分子材料,推动未来可持续高分子材料工业的发展。

为了达到上述目的,本发明提供了一种可功能化的高分子材料,其特征在于,其结构式为:

其中,n为整数。

优选地,所述的基于co2/二烯烃的可功能化的高分子材料的分子量mn为5×104~28×104g/mol。

优选地,所述的基于co2/二烯烃的可功能化的高分子材料的分子量分布系数为1.35-3.29。

本发明还提供了上述的基于co2/二烯烃的可功能化的高分子材料的制备方法,其特征在于,包括:将式(l)所示的δ-内酯作为聚合单体,在无溶剂、无添加剂、催化剂存在或无催化剂的条件下,直接在某种气氛中加热至一定温度反应一段时间,实现该单体的本体聚合得到可功能化的高分子材料。

优选地,所述的δ-内酯通过钯金属催化的二氧化碳与二烯烃偶联反应得到。

优选地,所述的δ-内酯的合成方法:将pd(acac)2,p(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,滴加1,3-丁二烯,pd(acac)2、p(cy)3和1,3-丁二烯的比例为0.1-0.3mmol:0.3-1mmol:5-20ml,随后向反应釜中充二氧化碳40-70bar,加热至70-90℃反应24-48小时,反应结束,通过过柱分离提纯得到δ-内酯。

优选地,所述的气氛为空气、氮气和氧气中的至少一种。

优选地,所述的气氛的用量为2-50ml/每1.02molδ-内酯,或压力为1atm。

优选地,所述的温度为60-180℃。

优选地,所述的催化剂为辛酸亚锡、二月桂酸二丁基锡及三氟甲磺酸锡中的至少一种。

更优选地,当催化剂存在时,δ-内酯与催化剂的摩尔比例为50-100:1。

优选地,所述的反应时间为12-72小时。

本发明所述的高分子主链中含有四种不同的结构单元(分别称之为α、β、γ、δ),主链中保留了多种c=c双键和环酯结构,为后修饰改性提供了多个功能化位点。

与现有技术相比,本发明的有益效果是:

本发明在在无任何溶剂、添加剂或催化剂的条件下,只要把纯原材料在空气或氧气中简单加热即可得到相应的高分子材料,且得到的高分子产品具备较大的功能化潜能。本发明具有成本低、毒性低、产率高、所得高分子产品分子量高、制备的高分子产品可轻易被功能化等优点。该发明得到高分子热分解温度为350℃-450℃,玻璃化转变温度为115℃-129℃,该热性质决定poly-l有望被用作从可持续原料所得的高温工程塑料。此外,该发明得到的高分子(poly-l)主链中含有大量烯烃结构,可以对烯烃进行相应的功能化改性实现未来其在特定领域的应用。例如,硫醇-烯烃的“点击”反应被广泛用于高分子的后修饰,在表面改性、生物医用等领域有大量的应用。

附图说明

图1a为实施例的反应过程;

图1b为所得高分子结构分析的h谱图;

图1c为所得高分子结构分析的固态核磁13c谱图;

图2a为实施实例1所得高分子产品的核磁h谱图;

图2b为实施例1所得高分子产品的核磁c谱图;

图2c为实施例1所得高分子产品的gpc图;

图2d为实施例1所得高分子产品的tg图;

图2e为实施例1所得高分子产品的dsc图;

图3a为实施例2的高分子产品的核磁h谱图;

图3b为实施例2所得高分子产品的gpc图;

图3c为实施例2所得高分子产品的tg图;

图4a为实施例3的高分子产品的核磁h谱图;

图4b为实施例3所得高分子产品的gpc图;

图4c为实施例3所得高分子产品的tg图;

图5为实施例4所得高分子产品的tg图;

图6a为实施例5的高分子产品的核磁h谱图;

图6b为实施例5所得高分子产品的tg图;

图6c为实施例5所得高分子产品的dsc测试图;

图7a为实施例6的高分子产品的核磁h谱图;

图7b为实施例6所得高分子产品的tg图;

图8为实施例7所得高分子产品的核磁h谱图;

图9a和9b为应用实例的高分子改性后产品的核磁h谱图。

具体实施方式

下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

实施例1

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成。随后向反应釜中充二氧化碳50bar,加热至90℃反应40小时。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。内酯的核磁数据如下:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,氮气氛围下将1mmol的δ-内酯(l)加入5ml的反应瓶中,加入磁力搅拌子,盖上盖子。将反应瓶转移出手套箱,打开瓶盖将样品瓶完全暴露于空气氛中,在无溶剂、无添加剂、无催化剂的条件下,直接加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为96%。将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为7.9×104g/mol,分子量分布系数为3.29。对样品分别进行tg和dsc测试,分解温度为360℃,最大分解温度为428℃,玻璃化转变温度为129.61℃。其中,核磁h、c谱图,gpc测试谱图,tg和dsc测试谱图如图2a-2e所示。

实施例2

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,氮气氛围下,将1mmol的δ-内酯(l)加入5ml的反应瓶中,加入磁力搅拌子,盖上盖子。将反应瓶转移出手套箱,打开瓶盖将样品瓶完全暴露于空气氛中,在无溶剂、无添加剂、无催化剂的条件下,直接加热至150℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为88%。将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为10.6×104g/mol,分子量分布系数为2.91。样品的起始分解温度为360℃,最大分解温度为440℃。其中,核磁h谱,gpc测试谱图,tg测试谱图如图3a-3c所示。

实施例3

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,在手套箱中,氮气氛围下,将1mmol的δ-内酯(l)加入5ml的反应瓶中,加入磁力搅拌子,盖上盖子。将反应瓶转移出手套箱,打开瓶盖将样品瓶完全暴露于空气氛中,在无溶剂、无添加剂、无催化剂的条件下,直接加热至120℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为69%。将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为12.5×104g/mol,分子量分布系数为1.44。样品的起始分解温度为320℃,最大分解温度为430℃。其中,核磁h谱,gpc、tg测试谱图如图4a-4c所示。

实施例4

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,氮气氛围下,将1mmol的δ-内酯(l)加入5ml的反应瓶中,加入磁力搅拌子,盖上盖子。将反应瓶转移出手套箱,打开瓶盖将样品瓶完全暴露于空气氛中,在无溶剂、无添加剂、无催化剂的条件下,直接加热至90℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为37%。将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为16.7×104g/mol,分子量分布系数为2.70。样品的起始分解温度为320℃,最大分解温度为430℃。其中,tg测试谱图如图5所示。

实施例5

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,在氮气保护下将1mmol的δ-内酯(l)加入50ml的schlenk反应管中,加入磁力搅拌子,盖上盖子,反应瓶中的氮气压力为1atm。将反应瓶转移出手套箱,向反应瓶中注射40ml空气,在无溶剂、无添加剂、无催化剂的条件下,直接加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为74%。将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为20.3×104g/mol,分子量分布系数为2.78。样品的起始分解温度为375℃,最大分解温度为445℃,玻璃化转变温度为115.43℃。其中,核磁h谱,tg、dsc测试谱图如图6a-6c所示。

实施例6

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,氮气氛围下将1mmol的δ-内酯(l)加入50ml的schlenk反应管中,加入磁力搅拌子,盖上盖子,反应瓶氮气压力为1atm。将反应瓶转移出手套箱,向反应瓶中注射30ml空气,在无溶剂、无添加剂、无催化剂的条件下,直接加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为36%。将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为23.9×104g/mol,分子量分布系数为1.75。样品的起始分解温度为380℃,最大分解温度为462℃。其中,tg测试谱图如图7a-7b所示。

实施例7

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,氮气氛围下将1mmol的δ-内酯(l)加入10ml的schlenk反应管中,加入磁力搅拌子,盖上盖子,其中反应瓶中氮气压力为1atm。将反应瓶转移出手套箱,向反应瓶中通入1atm干燥的o2置换氮气,在无溶剂、无催化剂的条件下,直接加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为83%。测试其核磁产率,之后用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为11.2×104g/mol,分子量分布系数为2.85。样品的起始分解温度为365℃,最大分解温度为440℃。

实施例8

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离提纯得到δ-内酯。反应结束后,通过过柱分离固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,氮气氛下将1mmol的δ-内酯(l)和辛酸亚锡([m]:[catalyst]=100:1,摩尔比)加入5ml的schlenk反应管中,加入磁力搅拌子,盖上盖子,其中反应瓶中氮气压力为1atm。将反应瓶转移出手套箱,打开瓶盖,将其完全暴露于空气中,在无溶剂、无添加剂、催化剂为二月桂酸二丁基锡存在的条件下,直接加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为88%。

将测过核磁的样品,直接用体积比为30-60:1的正己烷/二氯甲烷溶液重沉淀三遍,得到米黄色粉末固体样品。其中,1hnmr测试谱图如图8所示。

对所得样品进行gpc测试,20mmol/llibr/dmf做流动相,0.7ml/min,45℃。得到分子量mn为9.6×104g/mol,分子量分布系数为3.15。样品的起始分解温度为380℃,最大分解温度为450℃。

实施例9

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,在氮气保护下,将1mmol的δ-内酯(l)和辛酸亚锡([m]:[catalyst]=100:1,摩尔比)加入5ml的反应瓶中,加入磁力搅拌子,盖上盖子,其中反应瓶中氮气压力为1atm。在n2氛围、无溶剂、无添加剂、辛酸亚锡催化的条件下,直接加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。反应结束后,测核磁转化率,得到转化率小于5%。

实施例10

一种基于co2/二烯烃的可功能化的高分子材料,其结构式为式(i)。

如图1所示,所述的基于co2/二烯烃的可功能化的高分子材料的制备方法为:

(1)通过钯金属催化的二氧化碳与丁二烯偶联反应得到式(l)所示的δ-内酯:将0.1mmolpd(acac)2,0.3mmolp(cy)3加入反应釜里,在n2氛围、-30℃条件下搅拌,缓慢滴加20ml1,3-丁二烯,约30分钟至1小时滴加完成,随后向反应釜中充二氧化碳约50bar,加热至90℃反应40小时。反应结束后,通过过柱分离(固定相为硅胶,流动相为体积比为30:1的石油醚和乙酸乙酯)提纯得到δ-内酯。内酯的核磁:1hnmr(500mhz,cdcl3,25℃):δ(ppm)=7.11-7.04(m,1h,=chch3),5.83(m,1h,-ch=ch2),5.30-5.18(dd,2h,=ch2),4.77-4.65(m,1h,-ch-),2.59-2.32(m,2h,ch3ch=c(c=o)-ch2-),2.06-1.96(m,1h,ch2=chch(-o-c=o)ch2-),1.78-1.63(m,4h,ch2=chch(-o-c=o)ch2-andch3-).13cnmr(126mhz,cdcl3,25℃):δ(ppm)=166.28(c=o),141.19(ch3ch=),135.78(ch2=ch-),125.88(ch3-ch=c),116.85(ch2=),78.91(-ch-),27.55(ch3ch=c(c=o)-ch2-),21.91(ch2=chch(-o-)ch2-),14.10(ch3-).

(2)将所得的δ-内酯作为聚合单体,在手套箱中,在氮气保护下,将1mmol的δ-内酯(l)和三氟甲磺酸锡([m]:[catalyst]=50:1,摩尔比)加入5ml的反应瓶中,加入磁力搅拌子,盖上盖子,其中反应瓶中氮气压力为1atm。在n2氛围、无添加剂、无溶剂、催化的条件下,加热至180℃,磁力搅拌反应24小时,实现该单体的本体聚合得到可功能化的高分子材料。

反应结束后,加入氘代试剂测核磁产率,得到产率为3%。

应用例

将实施例1所得的基于co2/二烯烃的可功能化的高分子材料进行功能化:

在手套箱中,将50mg高分子poly-l溶于3mlchcl3中,再向反应瓶中加入0.5equivaibn(0.1mmol)、5equiv(1mmol)苯甲硫醇或苯乙硫醇,加热反应瓶至60℃,磁力搅拌24小时。反应结束后,将得到产物用30-60:1的正己烷/二氯甲烷重沉淀三遍,核磁表征产物结构。所述改性后的高分子结构如图9a-9b所述。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1