一种发光辅助材料及其制备方法和应用与流程

文档序号:23305332发布日期:2020-12-15 11:35阅读:147来源:国知局

本发明涉及有机发光器件技术领域,更具体的说是涉及一种发光辅助材料及其制备方法和在制备有机电致发光器件中的应用。



背景技术:

近年来,有机发光二极管(oled:organiclightemittingdiode)作为一种新型和有前途的显示技术逐渐进入人们的视野。oled是一种由多层有机薄膜结构形成的电致发光器件,其中的有机薄膜是利用蒸镀、沉积或旋涂工艺在基板上形成的有机发光材料的膜。

有机电致发光装置(有机el装置)是一种自发光装置,利用有机物质将电能转换为光能的现象。其具有的优势在于提供了更宽的视角、更高的对比率以及更快的响应时间。目前,便携式显示屏市场为了满足大面积显示屏的需求而呈现出其大小不断增加的趋势,因此,所消耗的电力也高于现有便携式显示屏的消耗电力。在这种情况下,对于仅配备了电池这一有限电力供应源的便携式显示屏,电力消耗是一种非常重要的性能因素,也必须解决其效率和寿命问题。

为了提高有机电致发光器件的亮度、效率和寿命,通常在器件中使用多层结构。这些多层结构包括发光层及各种辅助有机层,如:空穴注入层,空穴传输层,电子传输层等。而且,就最近的有机电致发光元件而言,为了解决在空穴输送层的发光问题,一直在研究着在空穴输送层与发光层之间使用发光辅助层的方法,由于根据各发光层(r、g、b)而所希望的物质的特性不同,使得现在需要开发根据各发光层的发光辅助层。这些辅助有机层有助于提高载流子(空穴和电子)在各层界面间的注入效率,平衡载流子在各层之间的传输,从而提高器件的亮度和效率。

有机电致发光材料的研究已经在学术界和工业界广泛开展,但目前为止还未充分开发出稳定又高效的有机电气元件用的有机物层材料,而且该技术的产业化进程仍面临许多关键问题,因此,开发新的材料,一直是本领域技术人员亟待解决的问题。



技术实现要素:

有鉴于此,本发明提供了一种一种发光辅助材料及其制备方法和在制备有机电致发光器件中的应用,制得的发光器件具有低驱动电压、高发光效率、和/或长使用寿命等特点。

为了实现上述目的,本发明采用如下技术方案:

一种发光辅助材料,所述发光辅助材料的结构通式如式i所示:

其中,x为连接键、o、s、sir2,r3、cr4,r5、nr6中的任意一种;

y为连接键、cr7,r8,且x和y不可同时为连接键;

r1为氢、氘、卤素、氰基、羧基、硝基、羟基、磺酸基、磷酸基、硼烷基、取代或非取代的c1~c30烷基、取代或非取代的c2~c30烯基、取代或非取代的c2~c30炔基、取代或非取代的c6~c30芳基、取代或非取代的3元~30元杂芳基,其中,杂芳基中的杂原子为n、o、s、si、p或se;

ar1为经取代或未经取代的c3~c30环烷基、经取代或未经取代的3元~30元杂环烷基、经取代或未经取代的c6~c30芳基、经取代或未经取代的c6~c30杂芳基、经取代或未经取代的c10~c30稠环基中的一种或多种;

ar2和ar3各自独立地独立地表示为经取代或未经取代的c1~c30烷基、经取代或未经取代的c3~c30环烷基、经取代或未经取代的3元~30元杂环烷基、经取代或未经取代的c6~c30芳基、经取代或未经取代的3元~20元杂芳基、经取代或未经取代的c10~c30稠环基、经取代或未经取代的c5~c30螺环基、或与相邻经取代基连接以形成单环或多环,所述单环或多环为3元~25元脂环族环或芳香族环,其碳原子可被至少一个选自氮、氧和硫的杂原子置换;

l为单键、经取代或未经取代的c6~c30亚芳基或经取代或未经取代的5元~30元亚杂芳基、经取代或未经取代的3元~20元环烷基、经取代或未经取代的3元~10元杂环烷基中的任意一种。

r2~r8各自独立地独立地表示为经取代或未经取代的c1~c30烷基、经取代或未经取代的c6~c30芳基、经取代或未经取代的3元~30元杂芳基、经取代或未经取代的3元~20元环烷基、经取代或未经取代的3元~15元杂环烷基或与相邻经取代基连接以形成单环或多环,所述单环或多环为3元~30元脂环族环或芳香族环,其碳原子被至少一个选自氮、氧和硫的杂原子置换;

进一步的,r2~r8各自独立的表示氢、未经取代的c1~c20烷基、未经取代的c6~c20芳基、未经取代的3元~25元杂芳基、未经取代的3元~15元环烷基、未经取代的3元~10元杂环烷基。

优选的,r1为氢、取代或非取代的c1~c10烷基、取代或非取代的c6~c20芳基、取代或非取代的3元~20元杂芳基中的任意一种。

优选的,ar1为经取代或未经取代的c3~c20环烷基、经取代或未经取代的3元~15元杂环烷基、经取代或未经取代的c6~c20芳基中的任意一种;

优选的,ar2和ar3各自独立地表示为经取代或未经取代的c6~c20芳基、经取代或未经取代的3元~15元杂芳基、经取代或未经取代的c10-c20稠环基、经取代或未经取代的c5-c25螺环基。

进一步的,当ar1、ar2、ar3和r1上存在取代基时,即所述的“取代”,可选的取代基为氘、氰基、卤素、硝基、羟基、磷酸基、硼烷基、硅基、c1~c10烷基、c2~c20烯基、c2~c20炔基、c6~c20芳基、3元~10元杂芳基、c1~c10烷氧基、c6~c20芳基氨基中的一种或多种。

进一步的,上述的有机发光辅助材料的结构式为以下结构式中的任一种:

本发明还提供了上述的有机发光辅助材料的制备方法,包括:

步骤1、中间体1的制备

将原料a和原料b溶于甲苯、乙醇和水的混合溶液中,接着换气3次,氮气保护下加入四三苯基膦钯和碳酸钾,搅拌均匀,升温至回流,制备得到中间体1;

或,

将原料a和原料b溶于dmf溶液中,之后加入磷酸钾,随后加入n,n’-双(2-苯基苯基)草酸和碘化亚铜,加入反应容器后,升温回流搅拌混合物24h后,制备得到中间体1;

步骤2、中间体2的制备

将原料c和thf加入反应容器中之后,用氮气充分置换空气三次降温至0℃,加入中间体1,并搅拌反应5h后,获得中间体2。

步骤3、中间体3的制备

将中间体2溶于thf和甲苯混合溶剂,加入反应容器中之后,将msa缓慢逐滴添加到前述混合物中;在室温下搅拌混合物8h后得到中间体3;

步骤4、中间体4的制备

将中间体3和原料d溶于甲苯、乙醇和水的混合溶液中,接着换气3次,氮气保护下加入四三苯基膦钯和碳酸钾,搅拌均匀,升温至回流,制备得到中间体4;

步骤5、化学式i的制备

将中间体4和原料e溶于甲苯溶液中,接着换气3次,氮气保护下加入钯催化剂、膦配体及叔丁醇钠,搅拌均匀,升温至回流,制备得到化学式i;

进一步的,上述化学式i的合成路线为:

或,

其中,r1、r7、r8、ar1、ar2、ar3以及l如上述化学式i中所定义。

更进一步的,在本发明中,方法1的具体包括以下步骤:

步骤1、中间体1的制备

将原料a(1.0eq)和原料b(1.0eq)溶于甲苯乙醇和水(vtol:v:v=3:1:1)的混合溶液中,接着用氮气置换空气3次,氮气保护下加入四三苯基膦钯(0.01eq)和(2.0eq),搅拌均匀,升温至回流5小时,待溶液冷却至室温后,保留有机相,然后用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,得到中间体1;

或,

将原料a(1.0eq)和原料b(1.5eq)溶于无水的dmf(0.4eq)溶液中,用氮气充分置换空气三次,再向体系中加入干燥的磷酸钾(2.0eq),随后加入n,n’-双(2-苯基苯基)草酸(bppo)(0.02eq)和碘化亚铜(cui)(0.02eq),搅拌混合物,升温至90℃,回流反应24小时,待溶液冷却至室温后,将溶液缓慢滴加到水中,并搅拌1小时,静置溶液,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,得到中间体1;

步骤2、中间体2的制备

将原料c(1.1eq)和thf加入反应容器中之后,用氮气充分置换空气三次降温至0℃,加入中间体1(1.0eq),并搅拌混合物5小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,从而获得中间体2;

步骤3、中间体3的制备

将中间体2(1.0eq)溶于thf和甲苯混合溶剂(v:v=1:1),加入反应容器中之后,将msa(10.0eq)缓慢逐滴添加到前述混合物中;在室温下搅拌混合物8小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,从而获得中间体3;

步骤4、中间体4的制备

将中间体3(1.0eq)和原料d(1.0eq)溶于甲苯、乙醇和水(vtol:v:v=3:1:1)的混合溶液中,接着换气3次,氮气保护下加入四三苯基膦钯(0.01eq)和碳酸钾(2.0eq),搅拌均匀,升温至回流5小时,待溶液冷却至室温后,保留有机相,然后用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,制备得到中间体4;

步骤5、化学式i的制备

将中间体4(1.0eq)和原料e(1.0eq)溶于甲苯溶液中,接着换气3次,氮气保护下加入三(二亚苄基丙酮)二钯(0.01eq),三叔丁基膦(0.05eq)及叔丁醇钠(2.0eq),搅拌均匀,升温至回流,反应5h;反应结束后,稍降温度,使用硅藻土进行过滤,除去盐以及催化剂,滤液冷却至室温后,水洗三遍,保留有机相,接着用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂;利用二氯甲烷和石油醚(v:v=10:4)的混合溶液,通过柱色谱法纯化剩余物质获得化学式i。

本发明的另一个目的在于提供上述有机发光辅助材料在制备有机电致发光器件中的应用。

优选的,上述有机电致发光器件包括第一电极、第二电极以及至少一层设置在所述第一电极和所述第二电极之间的有机物层,其中有机物层包含发光辅助层,发光辅助层中包括上述的发光辅助材料;

优选的,有机物层是指有机电致发光器件第一电极和第二电极之间的全部层,有机物层中必有一层为发光辅助层。

进一步的,有机物层包括空穴注入层、空穴传输层、电子阻挡层、发光辅助层、发光层、空穴阻挡层、电子传输层中的一种或几种,然而,结构不限于此。

在本发明中,所述有机电致发光器件的制备方法并无限定,本领域常规方法即可,优选利用薄膜蒸镀、电子束蒸发或物理气相沉积等方法在基板上蒸镀金属及具有导电性的氧化物及它们的合金形成阳极,然后在其上形成有机物层及蒸镀阴极,得到有机电致发光器件。

进一步的,上述有机物层可以同时包括上述的空穴注入层、空穴传输层、发光辅助层、发光层、电子传输层、电子注入层的多层结构,并且这些多层结构可按照上述薄膜蒸镀、电子束蒸发或物理气相沉积等方法蒸镀,也可使用多样的高分子材料溶剂工程替代蒸镀方法,如旋转涂膜(spin-coating)、薄带成型(tape-casting)、刮片法(doctor-blading)、丝网印刷(screen-printing)、喷墨印刷或热成像(thermal-imaging)等方法减少层数制造。

更进一步的,本发明提供的有机电致发光器件可应用在有机发光器件(oled)、有机太阳电池(osc)、电子纸(e-paper)、有机感光体(opc)或有机薄膜晶体管(otft)上。

本发明的有益效果在于:本发明提出一种含有三芳胺类官能基的发光辅助材料,很大程度的提高空穴传输效率,该胺单元具有空间阻碍性,阻碍电子溢出。并且,引入苯并五元杂环、六元杂环等结构,降低分子的对称性,增加分子的构象异构体,并且具有刚性平面结构,则分子间不易结晶、不易聚集,制造有机el元件的成品率提高。因此使用本发明的发光辅助材料在有机发光器件中能够改善发光效率、驱动电压和使用寿命等特点。

具体实施方式

下面将结合本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

发光辅助材料,制备方法为:

(1)中间体1的合成:将原料a-001(12.54g,50.00mmol)和原料b-001(11.36g,50.00mmol)溶于40.00ml甲苯、乙醇和水(vtol:v:v=3:1:1)的混合溶液中,接着用氮气置换空气3次,氮气保护下加入四三苯基膦钯(0.58g,0.50mmol)和碳酸钾(13.82g,100.00mmol),搅拌均匀,升温至回流5小时,待溶液冷却至室温后,保留有机相,然后用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂,得到固体有机物,使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,得到中间体1(11.20g,产率:63.42%);

(2)中间体2的合成:将原料c-001(37.13g,31.14mmol)和120.00mlthf加入反应容器中之后降温至0℃,加入中间体1(10.00g,28.31mmol)并搅拌反应5h,加水并且用二氯甲烷萃取混合物,接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物,使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,从而获得中间体2;(9.25g,产率:88.47%)

(3)中间体3的合成:将中间体2(9.00g,24.37mmol)溶于30.00mlthf和甲苯混合溶剂(v:v=1:1)中,加入反应容器中之后,将msa(23.42g,243.70mmol)缓慢逐滴添加到前述混合物中;在室温下搅拌混合物8小时后,加水并且用二氯甲烷萃取混合物,接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物,使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,从而获得中间体3(7.42g,产率:86.74%);

(4)化合物h-001的合成:将中间体3(7.00g,19.93mmol)和原料e(8.32g,19.93mmol)溶于25.00ml甲苯溶液中,接着用氮气置换空气3次,氮气保护下加入三(二亚苄基丙酮)二钯(0.18g,0.20mmol),三叔丁基膦(0.2g,1.00mmol)及叔丁醇钠(3.83g,39.90mmol),搅拌均匀,升温至回流,反应5h;反应结束后,稍降温度,使用硅藻土进行过滤,除去盐以及催化剂,滤液冷却至室温后,水洗三遍,保留有机相,接着用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂;利用二氯甲烷和石油醚(v:v=10:4)的混合溶液,通过柱色谱法纯化剩余物质获得化合物h-001(7.76g,产率:56.42%,mw:689.56)。

对所得化合物h-001进行检测分析,结果如下:

hplc纯度:>99%。

质谱测试:理论值为689.99;测试值为689.56。

元素分析:

计算值为:c,90.52;h,7.45;n,2.03。

测试值为:c,90.51;h,7.44;n,2.05。

实施例2

发光辅助材料,制备方法为:

(1)化合物h-020的合成:将原料a-020(14.86g,50.00mmol,因呋喃类原料易购得,所以原料a-020通过外购的方式获得)和原料e-020(16.77g,50.00mmol)溶于35ml甲苯溶液中,接着用氮气置换空气3次,在氮气保护下加入三(二亚苄基丙酮)二钯(0.46g,0.50mmol),三叔丁基膦(0.51g,2.50mmol)及叔丁醇钠(9.61g,100.00mmol),搅拌均匀,升温至回流,反应5h;反应结束后,稍降温度,使用硅藻土进行过滤,除去盐以及催化剂,滤液冷却至室温后,水洗三遍,保留有机相,接着用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂;利用二氯甲烷和石油醚(v:v=10:4)的混合溶液,通过柱色谱法纯化剩余物质获得化合物h-020(14.43g,产率:52.31%,mw:551.55)。

对所得化合物h-020进行检测分析,结果如下:

hplc纯度:>99%。

质谱测试:理论值为551.65;测试值为551.55。

元素分析:

计算值为:c,87.09;h,4.57;n,2.54;o,5.80

测试值为:c,87.07;h,4.58;n,2.56;o,5.79

实施例3

发光辅助材料,制备方法为:

(1)中间体1的合成:将原料a-046(14.30g,50.00mmol)和原料b-046(15.00g,75.00mmol)溶于45.00ml无水dmf溶液中,用氮气充分置换空气三次,再向体系中加入干燥的磷酸钾(21.2g,100.00mmol),随后加入n,n’-双(2-苯基苯基)草酸(bppo)(0.39g,1.00mmol)和碘化亚铜(cui)(0.19g,1.00mmol),搅拌混合物,升温至90℃,回流反应24小时,待溶液冷却至室温后,将溶液缓慢滴加到水中,并搅拌1小时,静置溶液,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,得到中间体1(16.38g,产率:81.21%);

(2)中间体2的合成:将原料c-046(6.85g,43.64mmol)和20.00mlthf加入反应容器中之后,用氮气充分置换空气三次降温至0℃,加入中间体1(16.00g,39.67mmol),并搅拌混合物5小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,从而获得中间体2(14.79g,产率:77.43%)。

(3)中间体3的合成:将中间体2(14.00g,29.08mmol)溶于45.00mlthf和甲苯混合溶剂(v:v=1:1)中,加入反应容器中之后,将msa(27.97g,291.00mmol)缓慢逐滴添加到前述混合物中;在室温下搅拌混合物8小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,从而获得中间体3(11.27g,产率:83.66%)。

(4)化合物h-046的合成:将中间体3(11.00g,23.74mmol)和原料e-046(8.58g,23.74mmol)溶于35ml甲苯溶液中,接着换气3次,氮气保护下加入三(二亚苄基丙酮)二钯(0.22g,0.24mmol),三叔丁基膦(0.24g,1.20mmol)及叔丁醇钠(4.56g,47.48mmol),搅拌均匀,升温至回流,反应5h;反应结束后,稍降温度,使用硅藻土进行过滤,除去盐以及催化剂,滤液冷却至室温后,水洗三遍,保留有机相,接着用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂;利用二氯甲烷和石油醚(v:v=10:4)的混合溶液,通过柱色谱法纯化剩余物质获得化合物h-046(10.30g,产率:58.31%,mw:743.88)。

对所得化合物h-046进行检测分析,结果如下:

hplc纯度:>99%。

质谱测试:理论值为743.95;测试值为743.88。

元素分析:

计算值为:c,90.41;h,5.56;n,1.88;o,2.15

测试值为:c,90.40;h,5.55;n,1.89;o,2.16

实施例4

发光辅助材料,制备方法为:

(1)中间体1的合成:将原料a-049(14.30g,50.00mmol)和原料b-049(24.15g,75.00mmol)溶于45.00ml无水dmf溶液中,用氮气充分置换空气三次,再向体系中加入干燥的磷酸钾(21.20g,100.00mmol),随后加入n,n’-双(2-苯基苯基)草酸(bppo)(0.39g,1.00mmol)和碘化亚铜(cui)(0.19g,1.00mmol),搅拌混合物,升温至90℃,回流反应24小时,待溶液冷却至室温后,将溶液缓慢滴加到水中,并搅拌1小时,静置溶液,有沉淀析出,抽滤得固体。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,得到中间体1(17.95g,产率:85.62%);

(2)中间体2的合成:将原料c-049(7.00g,44.59mmol)和25.00mlthf加入反应容器中之后,用氮气充分置换空气三次降温至0℃,加入中间体1(17.00g,40.54mmol),搅拌混合物5小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,从而获得中间体2(15.37g,产率:76.19%)。

(3)中间体3的合成:将中间体2(15.00g,30.15mmol)溶于45.00mlthf和甲苯混合溶剂(v:v=1:1)中,加入反应容器中之后,将msa(28.98g,301.50mmol)缓慢逐滴添加到前述混合物中;在室温下搅拌混合物8小时后,加水并且用二氯甲烷萃取混合物。接着使用无水硫酸镁干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,从而获得中间体3(11.91g,产率:85.22%)。

(4)化合物h-001的合成:将中间体3(11.00g,23.74mmol)和原料e(7.63g,23.74mmol)溶于35.00ml甲苯溶液中,接着换气3次,氮气保护下加入三(二亚苄基丙酮)二钯(0.22g,0.24mmol),三叔丁基膦(0.24g,1.20mmol)及叔丁醇钠(4.56g,47.48mmol),搅拌均匀,升温至回流,反应5h;反应结束后,稍降温度,使用硅藻土进行过滤,除去盐以及催化剂,滤液冷却至室温后,水洗三遍,保留有机相,接着用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂;利用二氯甲烷和石油醚(v:v=10:4)的混合溶液,通过柱色谱法纯化剩余物质获得化合物h-049(9.93g,产率:58.12%,mw:719.85)。

对所得化合物h-049进行检测分析,结果如下:

hplc纯度:>99%。

质谱测试:理论值为719.95;测试值为719.85。

元素分析:

计算值为:c,88.42;h,5.18;n,1.95;s,4.45

测试值为:c,88.40;h,5.19;n,1.95;s,4.46

实施例5

发光辅助材料,制备方法为:

(1)中间体1的合成:将原料a-081(14.30g,50.00mmol)和原料b-081(21.78g,75.00mmol)溶于350.00ml无水dmf溶液中,用氮气充分置换空气三次,再向体系中加入干燥的磷酸钾(21.2g,100.00mmol),随后加入n,n’-双(2-苯基苯基)草酸(bppo)(0.39g,1.00mmol)和碘化亚铜(cui)(0.19g,1.00mmol),搅拌混合物,升温至90℃,回流反应24小时,待溶液冷却至室温后,将溶液缓慢滴加到水中,并搅拌1小时,静置溶液,有沉淀析出,抽滤得固体。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,得到中间体1(20.23g,产率:81.67%);

(2)中间体2的合成:将原料c-081(6.34g,40.37mmol)和60.00mlthf加入反应容器中之后,用氮气充分置换空气三次降温至0℃,加入中间体1(20.00g,40.37mmol),并搅拌混合物5小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,从而获得中间体2(17.68g,产率:76.39%);

(3)中间体3的合成:将中间体2(17.00g,29.64mmol)溶于170.00mlthf和甲苯混合溶剂(v:v=1:1),加入反应容器中之后,将msa(28.49g,296.40mmol)缓慢逐滴添加到前述混合物中;在室温下搅拌混合物8小时后,加水并且用二氯甲烷萃取混合物。接着使用硫酸钠干燥萃取的有机层,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300.00ml无水乙醇、200.00ml石油醚淋洗,烘干,从而获得中间体3(14.25g,产率:86.51%);

(4)将中间体3(14.00g,25.20mmol)和原料d-081(5.06g,25.20mmol)溶于甲苯、乙醇和水(vtol:v:v=3:1:1)的混合溶液中,接着换气3次,氮气保护下加入四三苯基膦钯(0.29g,0.25mmol)和碳酸钾(6.97g,50.40mmol),搅拌均匀,升温至回流5小时,待溶液冷却至室温后,保留有机相,然后用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂,得到固体有机物。使用少量的二氯甲烷将固体有机物完全溶解,然后缓慢滴加到石油醚溶液中,搅拌均匀,有沉淀析出,抽滤得固体,依次用300ml无水乙醇、200ml石油醚淋洗,烘干,制备得到中间体4(13.71g,产率:86.11%);

(5)化合物h-081的合成:将中间体4(13.00g,20.58mmol)和原料e-081(7.44g,20.58mmol)溶于200.00ml甲苯溶液中,接着换气3次,氮气保护下加入三(二亚苄基丙酮)二钯(0.19g,0.21mmol),三叔丁基膦(0.21g,1.03mmol)及叔丁醇钠(3.96g,41.16mmol),搅拌均匀,升温至回流,反应5h;反应结束后,稍降温度,使用硅藻土进行过滤,除去盐以及催化剂,滤液冷却至室温后,水洗三遍,保留有机相,接着用乙酸乙酯萃取水相;合并有机相后,使用无水硫酸镁进行干燥,并且使用旋转式蒸发器去除溶剂;利用二氯甲烷和石油醚(v:v=10:4)的混合溶液,通过柱色谱法纯化剩余物质获得化合物h-081(10.46g,产率:55.71%,mw:912.20)。

对所得化合物h-081进行检测分析,结果如下:

hplc纯度:>99%。

质谱测试:理论值为912.21;测试值为912.20。

元素分析:

计算值为:c,89.54;h,5.41;n,1.54;s,3.51

测试值为:c,89.55;h,5.40;n,1.53;s,3.52

因结构通式为发明内容中的式i,其他化合物的合成路线和原理均与上述所列举的实施例相同,所以在此不再穷举。其中,本发明实施例6~20按照上述制备方法可得到如下表1所示的发光辅助材料:

表1:

采用上述实施例提供的发光辅助材料制备得到的有机电致发光器件,其中,该有机电致发光器件包括阳极、空穴注入层、空穴传输层、发光辅助层、发光层、电子传输层、电子注入层、阴极。

当有机物层包括发光辅助层时,发光辅助层包括上述实施例提供的发光辅助材料。

实施例21

该实施例提供了一种有机电致发光器件的制备方法,其包括以下步骤:

将涂层厚度为150nm的ito玻璃基板放在蒸馏水中清洗2次,超声波洗涤30分钟,用蒸馏水反复清洗2次,超声波洗涤10分钟,蒸馏水清洗结束后,异丙醇、丙酮、甲醇等溶剂按顺序超声波洗涤以后干燥,转移到等离子体清洗机里,将上述基板洗涤5分钟,送到蒸镀机里。

首先在ito阳极层上,通过真空蒸镀方式蒸镀空穴注入层材料hat-cn,厚度为10nm;在空穴注入层上面真空蒸镀15nm的n,n'-二苯基-n,n'-(1-萘基)-1,1′-联苯-4,4'-二胺(npb)作为空穴传输层;在空穴传输层上面真空蒸镀95nm的上述实施例1提供的化合物1作为发光辅助层;然后在上述发光辅助层上真空蒸镀厚度为40nm的主体材料emh-1和掺杂材料emd-1作为发光层,其中主体材料和掺杂材料的重量比为97:3,其中主体材料emh-1和掺杂材料emd-1的结构式如下;接着在上述发光层上真空蒸镀厚度为35nm的et-1和liq作为电子传输层,其中et-1和liq的重量比为60:40,其中eth的结构式如下;在上述电子传输层上真空蒸镀厚度为1nm的yb作为电子注入层;最后在电子注入层上真空蒸镀镁和银作为阴极,镁和银的重量比为1:9,蒸镀厚度为18nm;在阴极上真空蒸镀厚度为70nm的idx001作为光取出层,即可得到有机电致发光器件。

参照上述器件实施例21提供的方法,分别选用化合物9、13、20、23、25、28、36、40、46、48、49、52、55、62、66、69、78、81、88替代化合物1,进行发光辅助层的蒸镀,并制备得到相应的有机电致发光器件,分别记为器件实施例21~40。

对比例1:

该对比例提供了一种有机电致发光器件,该有机电致发光器件的制备方法与器件实施例1的唯一区别在于,该有机电致发光器件是采用现有的对比化合物a替代上述实施例21中的发光辅助材料(化合物1)进行蒸镀。其中,对比化合物a的化学结构式为:

在6000(nits)亮度下对上述实施例21~40以及器件对比例1得到的有机电致发光器件的驱动电压、发光效率以及寿命进行表征,测试结果如下表2:

表2:

表2可以看出,使用本发明提供的发光辅助材料制备的有机电致发光器件与对比例1提供的现有的有机电致发光器件相比较而言,其驱动电压明显降低,发光效率和寿命得到显著提高。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1