一种3’,5’-二氯-2,2,2-三氟苯乙酮的制备方法与流程

文档序号:23396221发布日期:2020-12-22 14:04阅读:541来源:国知局

本申请涉及化工制药的技术领域,尤其是涉及一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法。



背景技术:

3′,5′-二氯-2,2,2-三氟苯乙酮是一种用于合成农药以及兽药的重要中间体。

现有技术中,3′,5′-二氯-2,2,2-三氟苯乙酮的合成方法主要有以下几种:

1.申请号wo2018009751的pct专利公开了一种以3,5-二氯溴苯和三氟乙酸甲酯为起始物料的制备方法,以四氢呋喃为溶剂,通过将3,5-二氯溴苯与异丙基氯化镁-氯化锂反应制备成格氏试剂再与三氟乙酸甲酯进行反应,上述现有技术中,异丙基氯化镁和四氢呋喃较为昂贵,且易爆,在工业生产中生产成本较高,经济效应较差。

2.公开号为cn107353189a的中国发明专利公开了一种以3,5-二氯溴苯为原料,在丁基锂的作用下与三氟乙酰基化合物反应得到3,5-二氯溴苯和三氟乙酸甲酯的制备方法,同样的,该方法中叔丁基锂的价格昂贵,危险性大,且反应全程需要在-78℃条件下进行,工业生产成本较高,经济效应较差。

上述两种现有技术中,原料成本较高,且反应条件较为苛刻,在反应过程中使用了部分易燃易爆且价格昂贵的原料,增加了工业生产的成本,在大规模生产中经济效应较差。



技术实现要素:

针对现有技术存在的不足,本申请的目的是提供一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,选用价格低廉的原料和较为温和的反应条件,实现对3′,5′-二氯-2,2,2-三氟苯乙酮的制备,具有较好的经济效应。

在一个实施方案中,本申请提供了一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,包括如下步骤:

s1、将化合物ⅰ在酸ⅰ的催化下与硝化试剂进行硝化反应,得到化合物ⅱ和化合物ⅲ的组合物;

s2、将步骤s1中得到的化合物ⅱ和化合物ⅲ的组合物进行硝基还原反应,得到化合物ⅳ和化合物ⅴ的组合物;

s3、通过氯化试剂对步骤s2中得到的化合物ⅳ和化合物ⅴ的组合物进行氯化反应,得到化合物ⅵ和化合物ⅶ的组合物;

s4、对步骤s3中得到的化合物ⅵ和化合物ⅶ的组合物进行重氮化消除反应,得到3′,5′-二氯-2,2,2-三氟苯乙酮;

在步骤s1中,酸ⅰ为磷酸,多聚磷酸、甲烷磺酸,氯磺酸、三氟甲磺酸、三氟甲磺酸酐、醋酸、醋酸酐、三氟化硼乙醚、高氯酸、磷钼酸、强酸树脂、发烟硫酸和80%-98%的硫酸中的一种,或上述酸中任意两种及以上物料形成的稳定混合体系;硝化试剂为硝酸、发烟硝酸、硝酸钠、硝酸钾、硝酸铵、硝酸铅、硝酸铝、硝酸钡、五氧化二氮和二氧化氮中的任意一种或多种;硝化时的反应温度为0~80℃;

在步骤s3中,选用氯气,磺酰氯,三氯异氰尿酸,ncs中的任意一种或多种进行氯化。

化合物ⅰ是一种常用的化工原料,其简单易得,可以直接购买得到,价格低廉。将化合物ⅰ硝化后,在氯离子取代效应的作用下,会产生化合物ⅱ和化合物ⅲ两种化合物,化合物ⅱ和化合物ⅲ无需分离直接投入下一步反应中。在步骤s2中,将硝基还原为氨基后,得到化合物ⅳ和化合物ⅴ的混合物,同样无需进行分离,即可投入下一步。步骤s3中,氨基为强给电子基团,且具有较好的邻对位定位效应,因此化合物ⅳ和化合物ⅴ在氯化过程中均只会在苯环的5′位上发生卤代反应,且反应较为容易发生,无需苛刻的反应条件。反应完成后,通过重氮化反应将氨基脱去即可得到3′,5′-二氯-2,2,2-三氟苯乙酮。

在上述过程中,整个反应无复杂的工艺,原料也均为简单易得的普通化工原料,因此整个生产过程中生产成本较低,具有较好的经济效应。

本申请在一较佳示例中可以进一步配置为:步骤s1具体如下:

s1-1、将化合物ⅰ与酸ⅰ混合,随后滴加硝化试剂,并充分反应,得到中间反应液ⅰ;

s1-2、向反应完毕的中间反应液ⅰ中加入水和萃取剂ⅰ,保留有机相ⅰ;

s1-3、对步骤s1-2中得到的有机相ⅰ进行洗涤并脱除溶剂,得到化合物ⅱ和化合物ⅲ的组合物;

其中,酸ⅰ为80%-98%硫酸或发烟硫酸中的一种,硝化试剂为发烟硝酸。

选用硫酸作为硝基化的催化剂,并选用发烟硝酸首先,硫酸作为工业原料供应量大,价格低廉,且硫酸在体系中解离程度具有梯度化的特性,可以在反应过程中提供更加稳定的氢离子浓度,使反应过程更加可控,且有助于节约成本。另外,硫酸不易在苯环上引入其他基团,有助于提高目标产物的纯度。

发烟硝酸以液体的状态存在,且具有较好的反应活性,在反应时不需要引入其他溶剂,降低了后处理和分离的难度。

本申请在一较佳示例中可以进一步配置为:在步骤s1-1中,化合物ⅰ和酸ⅰ混合后,升温至40~60℃,再滴加硝化试剂进行反应;在步骤s1-2中,先将中间反应液ⅰ降温至0~10℃,将中间反应液ⅰ滴加到冰水中,再加入萃取剂ⅰ。

在上述技术方案中,将化合物ⅰ与酸ⅰ混合后,先进行升温,升温后可以使反应快速进行,且通过预先升温的方式使浓硫酸先对苯环上的位点进行活化,并将硝化试剂以滴加的方式加入到上述体系中,使体系中有充足的物料发生硝化。

本申请在一较佳示例中可以进一步配置为:在步骤s2中,在催化剂ⅰ作用下通过加氢还原的方式对硝基进行还原,催化剂ⅰ为铂炭、钯炭或raney镍中的任意一种。

本申请在一较佳示例中可以进一步配置为:步骤s2具体如下:

s2-1、将步骤s1中得到的化合物ⅱ和化合物ⅲ的组合物溶解于溶剂ⅰ中,加入催化剂,并除去空气,随后升温至40℃~60℃并通入氢气,充分反应后得到中间反应液ⅱ;

s2-2、将步骤s2-1中得到的中间反应液ⅱ降温、过滤、浓缩,通过重结晶的方法进一步提纯并干燥,得到化合物ⅳ和化合物ⅴ的组合物;

其中,溶剂ⅰ为以下物质中的任意一种,或以下物质中任意多种形成的均相混合体系:甲醇、乙醇、乙酸乙酯、乙酸正丁酯、乙酸异丙酯、异丙醇和甲苯。

通过重结晶的方法对反应完成的物料进行提纯和干燥,操作比较简单,设备维护成分较低。重结晶后得到的溶液经处理后可以回用,减少了物料的浪费,从而有助于进一步降低生产成本,提高经济效应。

本申请在一较佳示例中可以进一步配置为:在步骤s2-2具体如下:将步骤s2-1中得到的中间反应液ⅱ降温并过滤,随后加入甲苯并升温至40~50℃,充分溶解后,降温至-30~-20℃,静置析出固体,随后过滤、干燥,即得到化合物ⅳ和化合物ⅴ的组合物。

选用甲苯作为溶剂对步骤s2-1中得到的中间反应液ⅱ进行重结晶处理,通过先升温的方式使中间反应液ⅱ中的固体物料充分溶解于甲苯中,进而使杂质不易吸附在残留的固体中,有助于更加充分地除去中间反应液ⅱ中的杂质,提高最终得到的目标产物的纯度。

本申请在一较佳示例中可以进一步配置为:步骤s3具体如下:

s3-1、将化合物ⅳ和化合物ⅴ溶解于溶剂ⅱ中,升温至50~60℃,充分溶解后在90min内均匀加入氯化试剂,随后保温并充分反应,得到中间反应液ⅲ;

s3-2、将步骤s3-1中得到的中间反应液降温并加水萃取,保留有机相得到有机相ⅱ;

步骤s4中,直接在有机相ⅱ中进行重氮化脱氨基反应;

所述氯化试剂为氯气,磺酰氯,三氯异氰尿酸,ncs中的任意一种,或氯气,磺酰氯,三氯异氰尿酸,ncs中任意数种形成的组合物。

所述溶剂ⅱ为甲苯、二氯甲烷、氯仿、乙腈、异丙醇、乙醇中的任意一种,或上述溶剂中任意数种混合形成的均相体系。

在上述技术方案中,直接将有机相ⅱ投入下一步进行反应,减少了反应间的后处理工序,从而减少了反应的工艺步骤,提高了反应效率,从而有助于进一步提高经济效应。

本申请在一较佳示例中可以进一步配置为:步骤s4具体如下:

s4-1、将步骤s3-2中得到的有机相ⅱ降温至-10~0℃,并滴加酸ⅱ使之酸化,充分反应后得到中间反应液ⅳ;

s4-2、向中间反应液ⅳ中加入亚硝酸试剂溶液,并保持温度低于0℃,充分反应后得到中间反应液ⅴ;

s4-3、将中间反应液ⅴ升温至20℃以上,并加入次磷酸和催化剂ⅱ,得到中间反应液ⅵ;

s4-4、对中间反应液ⅴ进行进一步提纯和分离,得到3′,5′-二氯-2,2,2-三氟苯乙酮;

其中,酸ⅱ为盐酸、氢溴酸、氢氟酸、磷酸、醋酸或硫酸中的任意一种;亚硝酸试剂为亚硝酸钠、亚硝酸钾、亚硝酸钙、亚硝酸钡、亚硝酸银、亚硝酸c1~c6烷基酯中的任意一种。

在上述技术方案中,直接将步骤s3-2中的导的有机相ⅱ引入到步骤s4中进行反应,减少了分离的工序,从而进一步减少了工艺的步骤流程,降低了生产成本。

具体实施方式

通过以下实施例对本申请作进一步详细说明。

实施例1

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,包括如下步骤:

s1、将化合物ⅰ在酸ⅰ的催化下与硝化试剂进行硝化反应,得到化合物ⅱ和化合物ⅲ的组合物;

s2、将步骤s1中得到的化合物ⅱ和化合物ⅲ的组合物进行硝基还原反应,得到化合物ⅳ和化合物ⅴ的组合物;

s3、通过氯化试剂对步骤s2中得到的化合物ⅳ和化合物ⅴ的组合物进行氯化反应,得到化合物ⅵ和化合物ⅶ的组合物;

s4、对步骤s3中得到的化合物ⅵ和化合物ⅶ的组合物进行重氮化消除反应,得到3′,5′-二氯-2,2,2-三氟苯乙酮;

步骤s1具体包括如下分步骤:

s1-1、取化合物ⅰ104.5g(0.5mol),与200g质量分数为98%的浓硫酸(酸ⅰ)搅拌混合均匀,升温至60℃,升温完毕后,在10min内均匀滴加35.3g发烟硝酸作为硝化试剂(0.55mol),保温反应1.5h,得到中间反应液ⅰ;

s1-2、将反应完毕的中间反应液ⅰ降温至0℃,并将反应液滴加于0℃的冰水混合液中,再加入1000ml二氯甲烷作为萃取剂ⅰ,充分搅拌30min后,静止并分液得到有机相ⅰ;s1-3、向有机相ⅰ中加入500ml10%碳酸氢钠溶液进行洗涤,再次分液后减压蒸馏脱除萃取剂ⅰ,得到化合物ⅱ和化合物ⅲ的组合物。

步骤s2具体包括如下分步骤:

s2-1、取步骤s1-3中得到的化合物ⅱ和化合物ⅲ的组合物122.8g,(0.484mol),并加入无水乙醇300ml作为溶剂ⅰ,加入5%铂碳催化剂5.0g作为催化剂ⅰ,用氮气置换三次除去空气,再用氢气置换三次除去氮气,通入氢气开启搅拌并反应,反应过程中氢气压力为0.1mpa之间,温度控制于50±10℃,反应1.5h后得到中间反应液ⅱ;

s2-2、将中间反应液ⅱ降温至室温,并过滤除去铂碳催化剂,并将乙醇蒸出,蒸出后加入150ml甲苯,升温至40℃并搅拌溶解澄清后,在降温至-20℃,静置过夜,过滤,干燥,得到化合物ⅳ和化合物ⅴ的组合物。

步骤s3具体包括如下分步骤:

s3-1、取步骤s2-2中得到的化合物ⅳ和化合物ⅴ的组合物44.7g,加入200ml甲苯(溶剂ⅱ)并升温至50℃,充分溶解后,在90min内均匀滴加33.7g(0.25mol)磺酰氯作为氯化试剂,随后保温反应8h,得到中间反应液ⅲ;

s3-2、将中间反应液ⅲ降至室温,加水200ml漂洗,漂洗完毕后静置分层,得到有机相ⅱ。

步骤s4具体包括如下分步骤:

s4-1、将s3-2中得到的有机相ⅱ(含有化合物ⅵ和化合物ⅶ共49.3g,总摩尔数0.191mol)降温至-10℃,并在30min内滴加80g质量分数为92.5%的硫酸(酸ⅱ),滴加完毕后保温搅拌1h,得到中间反应液ⅳ;

s4-2、在1h内向中间反应液ⅳ中均匀滴加质量分数为33%的亚硝酸钠溶液(含有亚硝酸钠0.41mol)作为亚硝酸试剂溶液,并保持温度低于0℃,滴加完毕后继续保温反应2h,得到中间反应液ⅴ;

s4-3、将中间反应液ⅴ升温至20℃,并加入50%次磷酸溶液83g,加入氧化亚铜0.5g作为催化剂ⅱ,保温搅拌反应2h,得到中间反应液ⅵ;

s4-4、将中间反应液ⅵ静止分层,用5%碳酸氢钠溶液清洗有机层,用污水硫酸镁干燥后,减压蒸馏溶剂,得到的澄清透明液体即为3′,5′-二氯-2,2,2-三氟苯乙酮41.2g,纯度99.3%,收率89.1%。

实施例2

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于:在步骤s1-1中,酸ⅰ选用发烟硫酸(200g,04mol)。

实施例3~4

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于:在步骤s1-1中,酸ⅰ选用80%硫酸,保温反应时间分别为2h和1h。

实施例5

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于:在步骤s1-1中,酸ⅰ选用等物质的量的三氟甲磺酸。

实施例6

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于:在步骤s1-1中,酸ⅰ选用醋酸酐,并加入100ml二氯甲烷作为溶剂。

实施例7

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例6的区别在于:在步骤s1-1中,溶剂选用四氯化碳。

实施例8~9

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于:在步骤s1-1中,硝化试剂分别选用饱和硝酸钠水溶液和二氧化氮,硝化试剂的物质的量保持不变。

实施例10

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例2的区别在于:在步骤s1-2中,选用甲苯作为萃取剂ⅰ。

实施例11

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例2的区别在于:步骤s1-2和步骤s1-3替换为步骤s1-2′:将反应完毕的中间反应液ⅰ自然降温至-5±5℃,并加入500ml甲苯搅拌30min,静置分层后保留有机层并加入500ml10%碳酸钠水溶液洗涤,再用500ml水洗,分液后减压蒸馏除去甲苯,得到化合物ⅱ和化合物ⅲ的组合物。

实施例12

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s1-1中,向将化合物ⅰ与98%硫酸混合均匀后,在10min内均匀滴加35.3g发烟硝酸作为硝化试剂(0.55mol),再升温至60℃,保温反应1.5h,得到中间反应液ⅰ。

实施例13

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s1-2中,将反应完毕的中间反应液ⅰ加入1000ml二氯甲烷作为萃取剂ⅰ,充分搅拌30min后,静止并分液得到有机相ⅰ。

实施例14

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s2-1中,选用5%钯碳作为催化剂ⅰ,溶剂ⅰ选用甲苯。

实施例15

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s2-1中,选用raney镍作为催化剂ⅰ,溶剂ⅰ选用乙醇和异丙醇以1:1的体积混合得到的均相混合体系。

实施例16

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s2-1中,氢气的压力为1.0mpa。

实施例17

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s2-2中,甲苯的加入量为200ml,加入甲苯后升温至50℃,充分溶解后降温至-30℃,静置过夜,过滤,干燥,得到化合物ⅳ和化合物ⅴ的组合物。

实施例18

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s3-1中,溶剂ⅱ选用乙腈,氯化试剂选用等物质的量的ncs,ncs直接以固体的形式加入体系中。

实施例19

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例18的区别在于,在步骤s3中,选用氯气作为氯化试剂,具体步骤如下:

s3-1′、取步骤s2-2中得到的化合物ⅳ和化合物ⅴ的组合物44.7g,加入500ml冰醋酸(溶剂ⅱ)并升温至40℃,充分溶解后,在3h内缓慢通入氯气17.04g(0.24mol),同时点板跟踪检测原料,反应完成后通入氮气将产生的氯化氢和多余氯气吹入尾气吸收装置中,得到中间反应液ⅲ′;

s3-2′、将中间反应液ⅲ′降至室温,并抽滤,滤饼用200ml冰醋酸洗涤两次,并在60℃下真空干燥,得到化合物ⅳ和化合物ⅴ的组合物。

在步骤s4中,重新将上述得到的化合物ⅳ和化合物ⅴ的组合物加入甲苯中配制成有机相ⅱ进行反应。

实施例20

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,步骤s4中,酸ⅱ选用质量分数为30%的盐酸,盐酸的加入量为240g,亚硝酸试剂选用等物质的量亚硝酸钾饱和溶液。

实施例21

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,步骤s4中,酸ⅱ选用150g冰醋酸,亚硝酸试剂选用等物质的量亚硝酸钙饱和溶液。

实施例22

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s4中,亚硝酸试剂选用等物质的量的亚硝酸甲酯。

实施例23

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,在步骤s1中,还包括如下步骤:

s1-4、将步骤s1-3中得到的化合物ⅱ和化合物ⅲ的组合物加入330ml甲苯中,升温至40℃并使其完全溶解,再降温至-20℃,静置过夜后过滤,得到固体,即为化合物化合物ⅲ,剩余液体通过减压蒸馏的方式除去甲苯,即得到化合物ⅱ。

在后续反应中,将化合物ⅱ和化合物ⅲ单独进行步骤s2、s3和s4,并将最后得到的产物合并,即为3′,5′-二氯-2,2,2-三氟苯乙酮。

实施例24

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,与实施例1的区别在于,对实施例1中的实验条件进行了放大处理,其中各物料的加入量均为实施例1中的10倍,反应时间和其他反应条件保持不变。

针对上述实施例,设置如下对比例进行比对。

对比例1

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,参照申请号为wo2018009751的pct发明中的方法进行合成,具体如下:

将化合物ⅷ(25g,110.6mmol)室温下溶解于400mlthf中,并将110.6mmol异丙基氯化镁溶解于85mlthf中,在15min内均匀滴加于上述化合物ⅷ的thf溶液体系内,保持温度在20~25℃。滴加完毕后,反应在室温下继续保持1.5h。

将上述反应完毕的溶液降温至0℃以下。将三氟甲基乙酸乙酯(12.23ml,121.6mmol)溶解于20mlthf中,并滴加于上述反应完毕的溶液中,保温继续反应0.5h,之后恢复至室温并继续搅拌1.5h。之后,将上述体系降温至-5~-10℃将73.7ml6m盐酸溶液加水稀释至150ml,并滴加于降温后的上述体系中。滴加完毕后,继续保温并搅拌0.5h,再重新升温至室温。

将水加入上述体系中并分液,保留有机相,并将水相用二氯甲烷反复洗三次。将二氯甲烷相与之前的有机相合并,并以无水硫酸钠干燥后,减压蒸馏除去溶剂,即得到3′,5′-二氯-2,2,2-三氟苯乙酮。

化合物ⅷ为最终得到3′,5′-二氯-2,2,2-三氟苯乙酮19.9g,收率74.2%,纯度95.9%。

对比例2

一种3′,5′-二氯-2,2,2-三氟苯乙酮的制备方法,参照公开号为cn107353189a的中国发明中的方法进行,具体如下:

步骤1,在氮气保护下,在30min内均匀将正丁基锂(23.2mmol溶解于14.5ml正己烷中,配制成1.6m溶液)在-78℃下滴加到化合物ⅷ(5g,22.1mmol)的四氢呋喃溶液(50ml)中,保持搅拌反应1h,再将三氟乙酸酐(2.56g,23.2mmol)滴加于上述混合溶液汇总,保持-78℃反应2h。随后升至室温并在室温下继续反应2.5h。加入饱和氯化铵溶液50ml终止反应,通过减压蒸馏除去四氢呋喃并用乙醚进行萃取,保留有机相,用饱和氯化钠溶液洗涤,在用无水硫酸镁干燥,完成后通过减压蒸馏除去溶剂,得到3′,5′-二氯-2,2,2-三氟苯乙酮。

化合物ⅷ与对比例1相同,得到3′,5′-二氯-2,2,2-三氟苯乙酮2.28g,产率42.5%,纯度98.8%。

对于上述实施例和对比例,其各步骤的产率、总收率及最终目标化合物的纯度对比如表1所示。

化合物ⅴ在氘代氯仿中的核磁共振氢谱数据为:1hnmr(500mhz,cdcl3):d=6.46(brs,2h),6.70(d,1h,j=9.0hz),7.32(dd,1h,j=2.1hz,9.0hz),7.71(d,1h,j=2.1hz)。

化合物ⅵ在氘代氯仿中的核磁共振氢谱数据为:1hnmr(400mhz,cdc13):7.95(s,2h),5.23(bs,2h)。

最终制得的3′,5′-二氯-2,2,2-三氟苯乙酮在氘代氯仿中的核磁共振氢谱数据为:1h-nmr(360mhz,cdcl3):δ=7.7(s,1h),7.9(s,2h)。

通过上述实验数据进行对比可以发现,通过本申请中实施例1~24中的方法对3′,5′-二氯-2,2,2-三氟苯乙酮进行制备,均可以得到可观的收率和纯度。其中最终产物的纯度均高于对比例1和对比例2,且收率相较对比例2有较为明显的优势,与对比例1比较接近。但是在对比例2中,以四氢呋喃为反应体系,且使用了昂贵且易燃易爆的异丙基氯化镁,相较于上述实施例中的制备方法,大大提高了生产的成本和后处理的成本。因此,本申请中提供的技术方案相较于对比例1中的技术方案,具有良好的经济效应。

实施例1~13中,对步骤s1进行了一定的调整,其对于收率的整体影响不大。其中实施例3中用了浓度为80%硫酸进行反应,在延长了反应时间的条件下收率依旧有所降低。实施例4相较于实施例3在缩短了反应时间,进一步导致了步骤s1中收率的降低。实施例5和实施例6分别选用三氟甲磺酸和乙酸酐替代98%硫酸,均导致了收率的降低,证明了98%硫酸和发烟硫酸在诸多酸试剂中具有较好的反应特性。

在实施例8中,硝化试剂选用了饱和硝酸钠水溶液,实施例9中则选用通入二氧化氮的方法进行反应。其中硝酸钠水溶液的购买成本较低,但其反应性能相较于实施例1中使用发烟硝酸的技术方案效果较差。通入二氧化氮需要额外的设备支持,上述方案可以依据实际生产线所具备的条件进行选择,均具有较好的工业运用价值。

实施例11~13中对步骤s1中的具体工艺步骤进行了调节,均导致了收率的下降。在实施例11中,采用自然降温的方式对中间反应液ⅰ进行降温,花费的时间较长,且在降温的过程中体系仍然温度较高,容易产生部分副反应,降低了步骤s1的收率。实施例12中,先滴加发烟硝酸再将体系进行升温处理,同样对步骤s1的收率有一定的不良影响。在实施例13中,反应完毕的物料未经过冰水淬灭反应,导致分离过程中出现困难,分液时无法将杂质充分从有机相中分出,进而导致步骤s1的收率降低,且最终得到的产品纯度有一定的降低。

实施例14~17相较于实施例1,对步骤s2中的工艺参数进行了调整。可以看到,氢气压力的增大有助于提高步骤s2的收率,且选用raney镍和钯碳替代铂炭均有助于提高s2中的收率。实施例18和19对步骤s3中的部分参数进行了调整,对最终产率的影响较小。实施例20~22中,对步骤s4进行了一定程度的调整。通过上述数据可知,选用亚硝酸甲酯相较于其他亚硝酸试剂,生产过程中具有更高的产率。

实施例23中,在步骤s1完成后,将化合物ⅱ和化合物ⅲ进行分离并进行后续的反应。可以看到,不论是否分离化合物ⅱ和化合物ⅲ,对于后续的反应基本无明显的影响,因此在实际生产过程中,完全可以省略分离化合物ⅱ和化合物ⅲ的工序,从而可以起到减少生产成本,提高经济效应的目的。

实施例24则是对实施例1中的方案进行了放大处理的实验,可以看到在放大十倍当量后,实施例1中的技术方案依旧可以实现对3′,5′-二氯-2,2,2-三氟苯乙酮的生产,且收率和纯度均没有明显的变化,证明了本申请中的技术方案具有放大反应并运用于大规模生产的前景。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1