聚四氟乙烯层合体的制作方法

文档序号:3689036阅读:181来源:国知局
专利名称:聚四氟乙烯层合体的制作方法
技术领域
本发明涉及一种药液透过性小、即低药液透过性优良的聚四氟乙烯(PTFE)层合体。这种层合体作为药液贮藏用容器或是罐、管子的衬里等使用的填密片(packing sheet)很有用。
背景技术
以半导体制造业为主的各种化学装置中,各种药液被广泛用作原料和洗涤剂。这些药液中包括反应性高的药液和有腐蚀性的药液,这些药液的贮藏和输送用的容器、配管中,通常在其内壁上贴上称之为填密片的层合体。填密片与药液接触的那一面必须是富于耐药品性的材料,通常使用耐药品性优良的氟树脂,特别是PTFE的片材。
以往所使用的典型的填密片,是将玻璃纤维织布、碳纤维织布等耐热性织布粘合到PTFE片材上形成的,但由于PTFE难以与其它材料粘合,因此,使耐热性织布与PTFE片材之间存在一层热熔融性的四氟乙烯-全氟(烷基乙烯基醚)共聚物(PFA)的薄膜,并在PTFE熔点以上的温度下加热使其熔合。该加热熔合时,不可避免地使PTFE也熔融,结果造成结晶性降低,即,比重降低。另一方面,结晶性越高(比重越大),PTFE的药液透过性越好,因此,最好是避免加热到使PTFE的结晶性降低的程度。但是,一旦在某种程度地残留着PTFE结晶性的状态下停止加热,即使存在例如PFA,也得不到必要的粘合强度。
因此,过去出乎意料的是,即使使用结晶性低、比重小的PTFE片材作为原料,或是使用高结晶性、高比重的PTFE作为原料,也不得不容忍加热造成的PTFE片材的结晶性降低。
总之,迄今没有PTFE的平均比重在2.175以上、且具有实用水平的粘合强度的填密片或PTFE层合体。
发明的公开本发明的第一个目的在于,提供一种低药液透过性优良的PTFE层合体。
本发明的另一个目的在于,提供一种具有充分的粘合强度而且低药液透过性优良的填密片。
本发明的再一个目的在于,提供一种能够缩短加热时间而且可以简化作业工序的、低药液透过性优良的PTFE层合体的制造方法。
这些目的可以通过这样一种层合体来达成,使其含有由平均比重在2.175以上的PTFE片材与热熔融性树脂层层合而成的结构,或者含有由平均比重在2.175以上的PTFE片材与耐热性织布通过热熔融性树脂层层合而成的结构。
获得的层合体中,PTFE片材与热熔融性树脂层的粘合强度,按剥离强度计在2kgf/cm以上,其强度与PTFE片材的平均比重不足2.175的以往的层合体同等或在其之上。
此处,平均比重是指在加热后的PTFE片材中产生比重降低的部分(层)时,也包含该低比重层的整体的比重。
将本发明的层合体用作例如填密片的场合下,为了使最外层的PTFE片材的自由表面平滑,优选在PTFE熔点以上的温度下对PTFE片材的自由表面进行加热处理。该表面平滑化处理的PTFE片材优选为用全氟(烷基乙烯基醚)(PAVE)改性的PTFE片材。
本发明的这种层合体可以这样来制造在PTFE片材优选比重超过2.175的PTFE片材与热熔融性树脂的薄膜或片材之间,夹入熔融能在65J/g以下的未烧结PTFE(例如PTFE的均聚物或用六氟丙烯(HFP)和/或全氟(烷基乙烯基醚)(PAVE)改性的PTFE)的微粒层后,加热使其熔合。
PTFE的微粒层的适用形态,可以是乳液聚合获得的分散液形态,或者是将该分散液干燥成粉末后经薄膜化制得的薄膜形态。
另外,在不存在PTFE微粒层的情况下,也可以加热PTFE片材和热熔融性树脂薄膜使其熔合来制造本发明的层合体,但该场合下,为了提高PTFE片材的比重,必须在加热熔合后防止温度急剧降低。通过采取这种防止温度急剧降低的策略,被熔融的PTFE可以充分地结晶,形成高比重的PTFE。
作为防止温度急剧降低的手段,适宜的方法是例如将温度保持在PTFE熔点以下、300℃以上范围内。保持时间只要能使被熔融的PTFE充分结晶即可,可以是5~20分钟。
应予说明,在存在PTFE微粒层的场合下也可以采取防止温度急剧降低的策略。
优选从耐热性织布侧、即热熔融性树脂薄膜或片材那一侧进行加热,并且优选PTFE片材中还残留有未熔融的层的时候停止加热。
另外,特别是作为填密片使用的场合下,优选在PTFE熔点以上的温度下,对PTFE片材层合面的相反面、即与药液接触的那一面进行加热处理,从而使表面平滑。该加热处理可以在层合体的加热熔合之前、同时或之后进行。
对附图的简单说明

图1为用于说明本发明PTFE层合体制造方法的一个实施方案的概略截面图。
图2为用于说明本发明PTFE层合体制造方法的另一实施方案的概略截面图。
实施发明的最佳方案如上所述,本发明的PTFE层合体可以这样来制造在PTFE片材与热熔融性树脂的薄膜或片材之间,夹入熔融能在65J/g以下的未烧结PTFE(以下,只要没有特别说明,称为“未烧结PTFE”)的微粒层,然后加热使其熔合(第1制造法)。以下更详细地说明该第1制造法的制造工序,但本发明不受这些具体的制造方法的限定。
首先,在厚度约1~4mm的PTFE片材上涂布未烧结PTFE的分散液,干燥,在PTFE片材上形成未烧结PTFE的微粒层。未烧结PTFE的微粒粒径,从减小熔融能、提高热传导性的观点考虑,约为0.1~5μm,优选约为0.1~0.5μm。未烧结PTFE分散液的浓度,从使分散液稳定、提高涂布性的观点考虑,约为30~70重量%(以下称为“%”),优选约为30~65%。涂布量按干燥重量计,约为10~160g/m2,优选约为15~100g/m2。如果涂布量过少,则容易发生涂布不匀,而涂布量过多,则容易发生微粒脱落,哪一种情况都不好。
涂布方法没有特别的限定,可以采用例如喷涂法、刷涂法等。干燥可以是自然干燥,也可以加热强制其干燥。
可以使用未熔融的四氟乙烯-全氟(烷基乙烯基醚)共聚物(PFA)的分散液代替未烧结PTFE的分散液,也可以配合未烧结PTFE的薄膜。未烧结PTFE的薄膜可以通过例如使PTFE的分散液凝析、制成细粉末,并将其用压延辊压延来制造。
接着,在该PTFE片材的形成未烧结PTFE微粒层(薄膜)那一面重叠上热熔融性树脂的薄膜或片材,如果需要,再重叠上耐热性织布等,然后,从热熔融性树脂那一侧加热。本发明中,这一加热是重要的。
加热温度为PTFE的熔点(约327~345℃)以上,优选为约360~390℃,重要的是,在该温度下,在PTFE片材中残留有未熔融部分(层)的状态时停止加热。也就是说,增加的热量应使PTFE片材中残留有结晶。一旦使结晶完全熔融,则比重大大地降低,到2.175以下,从而使药液透过性增大。
加热时间随着加热温度、PTFE片材的厚度、热熔融性树脂的种类和厚度、耐热性织布的厚度等而不同,可以根据实验来选定,也可以由结晶化度等计算出来。例如,PTFE片材的比重为2.189、厚度为3mm、加热温度为380℃的场合下,加热3~5分钟即可。
是否部分地残存着未熔融的部分,只要观察一下PTFE片材的截面就可知晓。也就是说,结晶化度高的PTFE片材在加热前是白色不透明的,结晶一旦熔融,就变为透明。因此,截面就处于这样一种状态在热熔融性树脂那一侧存在透明的部分(层),在非加热面那一侧残存着白色的不透明层。
加热熔合的方法可以是例如,如图1所示,按照PTFE片材1、未烧结PTFE微粒层2、热熔融性树脂薄膜或片材3、如果需要,耐热性织布4的顺序配置,在耐热性织布4一侧配置加热板5,在PTFE片材1一侧配置压板6,在用加热板5和压板6加压的同时,将加热板5加热到PTFE的熔点以上。
或者,也可以如图2所示那样连续地制造按PTFE片材1、未烧结PTFE微粒层2、热熔融性树脂薄膜或片材3、如果需要,耐热性织布4的顺序配置层合物,使耐热性织布4接触加热辊7的表面,将层合物盘绕到加热至PTFE熔点以上的加热辊7上,一边用压辊8按压,一边加热使其熔合。图2中,10为结晶化区,11为加热器。
使用未烧结PTFE分散液的场合下,如上所述,未烧结PTFE微粒层2可以将未烧结PTFE分散液涂布到PTFE片材1上并使其干燥来形成,也可以将未烧结PTFE分散液涂布到热熔融性树脂薄膜或片材3那一侧上并使其干燥来形成。
加压时的压力,在例如约0.1~0.15Mpa左右的范围内选择即可。另外,加热后,解除压力并缓慢冷却至室温,这在提高结晶化度方面是优选的。压板6和压辊8基本上不需要加热,但从解决层合体的形变方面考虑,可以加热至PTFE的熔点以下,优选加热至比PTFE熔点低15~35℃的温度。
以下对各材料进行说明。
本发明中使用的PTFE片材,必须是比重超过2.175的高结晶化度PTFE,特别地,比重在2.178以上、优选在2.178~2.210的PTFE是合适的。如果比重小,则药液透过性增大,就不能达成本发明的目的。这种高结晶化度的PTFE片材,可以通过采用例如PCT/JP98/01116号说明书中记载的方法,将PTFE粉末压缩成型,一边使PTFE成型品旋转,一边进行烧结,将这种旋转烧结法获得的烧结物切削成片而获得。但是,由于从采用现有方法制得的PTFE烧结品上切削下来的片材出现很大的凹凸起伏,为了制成层合体,必须事先加热PTFE片材使其平坦化,因此,在层合前,PTFE的结晶化度就已经降低了。但是,采用该旋转烧结法,可以获得高结晶化度的均质PTFE片材,而且,切削下来的片材平坦,因此容易与其他材料层合,采用加热法的平坦化处理不是特别必要,不用担心层合之前结晶化度降低。
作为原料的PTFE粉末,为四氟乙烯(TFE)的均聚物、或者用其他含氟单体改性的PTFE。改性PTFE中,TFE与其他含氟单体的摩尔比可以为95∶5~99.999∶0.001。作为改性PTFE,可以举出例如用全氟(烷基乙烯基醚)(PAVE)改性的PAVE改性PTFE、或者用六氟丙烯(HFP)改性的HFP改性PTFE等。作为全氟(烷基乙烯基醚)(PAVE),可以是式(Ⅰ)所示的化合物CF2=CF-ORf(Ⅰ)[Rf为有机基团,其中必须具有碳原子和氟原子,不含氢原子,也可以具有氧原子。]全氟(烷基乙烯基醚)(Ⅰ)中,Rf基团可以是碳原子数1~10的全氟烷基、碳原子数4~9的全氟(烷氧烷基)、以及式(Ⅱ)或式(Ⅲ)所示的基团 [式中,m为0~4的数。] [式中,n为0~4的数。]其中,PAVE改性PTFE的结晶化度大,比重也超过2.175,药液透过性小,是优选的。
PTFE片材的厚度,根据目的用途而不同,通常为1~4mm,用于填密片时,约为2~4mm左右。
用于形成未烧结PTFE微粒层的未烧结PTFE的分散液,可以通过使TFE单独地或者在少量PAVE和/或HFP的共存下进行乳液聚合来获得。其中,从提高热传导性的观点考虑,熔融能优选在65J/g以下、特别优选为30~50J/g。从热熔融性优良的观点考虑,特别优选PAVE改性PTFE。
作为热熔融性树脂薄膜或片材,只要是能够热熔合到PTFE片材上的薄膜或片材即可,可以举出熔点接近PTFE熔点的烯烃系树脂;PPS、PES、PEEK等芳香族系树脂;TFE-PAVE共聚物(PFA)、TFE-六氟丙烯共聚物(FEP)等热熔融性氟树脂等。其中,从具有与PTFE同样的性质而且与PTFE的粘合性好的观点考虑,优选热熔融性氟树脂、特别是用作填密片时,优选PFA、FEP等。
该热熔融性树脂通常起着作为粘合层的作用,用于将PTFE片材与其它材料(例如耐热性织布等)粘合起来。但是,它也可以是将PTFE片材粘合到热熔融性树脂片材上形成的层合体,或可以是将热熔融性树脂薄膜层压到PTFE片材上形成的功能性层合体。因此,厚度只要根据目的适宜地选定即可,例如用作填密片中的粘合层的场合下,为约10~300μm即可。
以下叙述将PTFE片材与热熔融性树脂薄膜直接地或者夹持PTFE微粒层后加热使其熔合形成的预层合体置于不发生温度急剧降低的状态,促进熔融的PTFE结晶而获得层合体的方法(第2制造法)。
PTFE片材与热熔融性树脂薄膜的加热熔合处理可与第1制造法相同,也可以将加热时间延长一些。该第2制造法的特征在于,使因加热熔合处理而熔融的PTFE片材中的熔融PTFE充分地再结晶。通过使PTFE充分再结晶,可以使PTFE片材回到高比重。也就是说,一旦将熔融的PTFE急冷,或是原封不动地放置,则结晶不能进行,而且生成的结晶也是不完全的,结果不能使比重提高。
因此,第2制造法中,在加热熔合后,应不使温度急剧降低,以防止比重下降。作为该防止方法,可以举出在低于PTFE熔点(约327~345℃)、而高于300℃范围的温度下,停留一段时间以使其充分进行结晶的方法。作为停留时间,随着加热熔合时的温度、PTFE片材的厚度、原料PTFE片材的比重等而不同,只要在5~20分钟、优选在5~10分钟的范围内选定即可。例如,将比重为2.189、厚度3mm的PTFE片材在380℃下加热使其熔合的场合下,如果在300~310℃的温度下保持7~9分钟,就可以防止PTFE的比重低于2.175。
作为这种防止温度急剧降低的具体手段,例如,如图2所示,将符号10所示的结晶化区设置在加热辊7下游的PTFE片材1侧和耐热性织布4侧两侧方向,被加热熔合的PTFE片材1由结晶化区10中的加热器11进行温度控制,以便不使温度发生急剧降低。另外,图中未示出,也可以是覆盖层合体整体的结晶化小室的形态。
结晶化区的温度控制,可以维持在一定的温度,也可以使其连续降温,而且也可以使其梯度地(例如就象350℃区域、330℃区域、接着310℃区域那样)降温。
另外,从热熔融性树脂薄膜侧(耐热性织布侧)加热使其熔合的场合下,也可以在热熔融性树脂薄膜一侧配置防止温度急剧降低的设施。
本发明的层合体,只要基本上含有PTFE片材和热熔融性树脂薄膜或片材这2层结构即可,但如上所述,进一步将热熔融性树脂作为粘合层制成与其它材料复合的层合体的场合,可发挥出特别好的效果。
作为其它的材料,在利用PTFE耐热性的用途、例如填密片的场合下,可以举出耐热性的织布,例如玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布等。
本发明的层合体具有优良的低药液透过性,作为各种贮存用或输送用容器、罐、管线等的衬里用填密片很有用。此外,利用PTFE的非粘着性、低摩擦性等性质的脱模用途、滑动用途等用途中也很适宜。
特别是在用于要求极高清洁度的半导体制造领域的场合下,仅仅不使药液透过渗出是不够的,还必须保护药液本身不受污染。例如,用本发明的PTFE层合体形成药液容器内表面(接触溶液的面为PTFE片材的表面)的场合下,如果切削获得的PTFE片材的表面粗糙,则单纯洗净容器内部的话,污垢、特别是微小粒子(称之为微粒)会残留,结果会将药液污染了。因此,本发明中,优选在层合之前、层合时、或者层合之后,在PTFE熔点以上的温度、例如340~390℃下,对PTFE片材的接触药液面的一侧进行加热处理。
该平滑化处理的方法,可以通过在PTFE熔点以上的温度下、在无荷重下或者轻荷重下短时间地加热来实施。但是,应注意不使最终层合体中的PTFE片材的平均比重降低到2.175以下。加热方法可以采用用燃烧器等烧烤表面的方法来进行。另外,也可以通过将层合化时使用的热压机(例如图1)的压板在短时间内提高到PTFE的熔点以上来进行。进一步地,也可以采用使其在短时间内通过加热辊表面的方法。加热时间,在加热温度为380℃的场合下,通常为6~60秒。通过该平滑化处理,可以获得表面粗糙度(Ra)在350nm以下,通常为100~250nm的PTFE片材。
以下记载本发明层合体的优选的具体实施方案,但本发明不受这些实施方案的限定。(1)PTFE片材PAVE改性PTFE平均比重大于2.175未烧结PTFE微粒层PAVE改性PTFE分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理表面平滑化处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造相关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(2)PTFE片材PAVE改性PTFE平均比重2.178~2.210
未烧结PTFE微粒层PAVE改性PTFE微粒的薄膜平均粒径0.1~0.5μm膜厚10~100μm熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理表面平滑化处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(3)PTFE片材PAVE改性PTFE平均比重2.178~2.210未烧结PTFE微粒层PAVE改性PTFE分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理表面平滑化处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(4)PTFE片材未改性PTFE平均比重2.178~2.210未烧结PTFE微粒层PAVE改性PTFE分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
效果药液透过性小。(5)PTFE片材未改性PTFE平均比重2.178~2.210未烧结PTFE微粒层PAVE改性PTFE微粒的薄膜平均粒径0.1~0.5μm膜厚10~100μm熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
效果药液透过性小。(6)PTFE片材PAVE改性PTFE平均比重2.178~2.210未烧结PTFE微粒层未改性PTFE分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm
其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理表面平滑化处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(7)PTFE片材PAVE改性PTFE平均比重2.178~2.210未烧结PTFE微粒层未改性PTFE微粒的薄膜平均粒径0.1~0.5μm膜厚10~100μm熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理表面平滑化处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(8)PTFE片材未改性PTFE平均比重2.178~2.210未烧结PTFE微粒层未改性PTFE分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
效果药液透过性小。(9)PTFE片材未改性PTFE平均比重2.178~2.210未烧结PTFE微粒层未改性PTFE微粒的薄膜平均粒径0.1~0.5μm膜厚10~100μm熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
效果药液透过性小。(10)PTFE片材PAVE改性PTFE平均比重2.178~2.210未熔融PFA微粒层PFA分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理表面平滑化处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(11)PTFE片材未改性PTFE平均比重2.178~2.210未熔融PTFE微粒层PFA分散液的涂布平均粒径0.1~0.5μm涂布量(干燥)15~100g/m2熔融能50J/g以下热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
效果药液透过性小。(12)PTFE片材PAVE改性PTFE平均比重大于2.175热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理加热熔合后进行防止温度急剧降低的处理用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。(13)PTFE片材PAVE改性PTFE平均比重2.178~2.210热熔融性树脂薄膜PFA薄膜(熔点310℃)厚度10~300μm其他材料耐热性玻璃织布、碳织布、聚酰胺酰亚胺织布、氮化硼织布其他处理加热熔合后在300℃~低于PTFE熔点的温度下维持5~
20分钟用途药液贮藏·输送用容器、罐、管子等的衬里用的填密片。
特别是与半导体制造有关的药液输送、贮藏容器等。
效果药液透过性小,而且由于表面平滑,微粒等的附着少。
以下,基于实施例说明本发明,但本发明不受这些实施例的限定。
从该层合体上切下宽30mm、长150mm的样品,按照JIS K6772-9-5的方法测定PTFE片材与PFA薄膜的粘合强度(剥离强度),为3.0kgf/cm。另外,PTFE片材整体的平均比重为2.184。观察PTFE片材的截面,由于PFA薄膜那一侧约30%熔融,因此变为透明。
进一步地,将获得的层合体用热压机在360℃下加热处理1分钟,使PTFE片材的表面平滑化,但PTFE片材的平均比重仍维持2.183的较高的数值。
产业上的利用可能性根据本发明,可以获得一种能将PTFE片材的比重维持在高数值且具有充分的粘合强度的PTFE层合体,可以提供低药液透过性优良的PTFE系的填密片。
权利要求
1.一种层合体,它含有由平均比重在2.175以上的聚四氟乙烯片材和热熔融性树脂层层合而成的结构。
2.一种层合体,它含有由平均比重在2.175以上的聚四氟乙烯片材和耐热性织布通过热熔融性树脂层层合而成的结构。
3.权利要求1或2中记载的层合体,其中,上述聚四氟乙烯片材与热熔融性树脂层的粘合强度,按剥离强度计在2kgf/cm以上。
4.权利要求1~3任一项中记载的层合体,其中,上述聚四氟乙烯片材是由比重超过2.175的高比重层和比重低于该高比重层的低比重层这2层构成。
5.权利要求1~4任一项中记载的层合体,其中,上述热熔融性树脂为热熔融性氟树脂。
6.权利要求5中记载的层合体,其中,上述热熔融性氟树脂为四氟乙烯-全氟(烷基乙烯基醚)共聚物。
7.权利要求1~6任一项中记载的层合体,其中,上述聚四氟乙烯为用全氟(烷基乙烯基醚)改性的聚四氟乙烯。
8.权利要求1~7任一项中记载的层合体,其中,上述聚四氟乙烯片材具有自由表面,在聚四氟乙烯熔点以上的温度下对该自由表面进行加热处理。
9.权利要求2~8任一项中记载的层合体,其中,层合体为填密片。
10.一种聚四氟乙烯层合体的制造方法,其特征在于,在聚四氟乙烯片材与热熔融性树脂薄膜或片材之间夹入熔融能在65J/g以下的未烧结聚四氟乙烯的微粒层或未熔融的四氟乙烯-全氟(烷基乙烯基醚)共聚物的微粒层,然后加热使其熔合。
11.权利要求10中记载的制造方法,其中,上述未烧结聚四氟乙烯的微粒的适用形态为乳液聚合获得的分散液形态,或者为将该分散液干燥成粉末后经薄膜化制得的薄膜形态。
12.权利要求10或11中记载的制造方法,其中,上述未烧结聚四氟乙烯的微粒,为用全氟(烷基乙烯基醚)和/或六氟丙烯改性的聚四氟乙烯。
13.权利要求10~12任一项中记载的制造方法,其特征在于,在将聚四氟乙烯片材与热熔融性树脂薄膜或片材加热熔合后,防止温度急剧降低,并使熔融的聚四氟乙烯充分结晶。
14.一种聚四氟乙烯的制造方法,其特征在于,在将聚四氟乙烯片材与热熔融性树脂薄膜或片材直接加热熔合后,防止温度急剧降低,使熔融的聚四氟乙烯充分结晶。
15.权利要求13或14中记载的制造方法,其中,为了防止温度急剧降低,将温度保持在低于聚四氟乙烯的熔点、300℃以上的范围内。
16.权利要求10~15任一项中记载的制造方法,其中,使用比重超过2.175的聚四氟乙烯片材作为上述聚四氟乙烯片材。
17.权利要求10~16任一项中记载的制造方法,其中,在上述热熔融性树脂薄膜或片材的与聚四氟乙烯片材相对的那一面上再重叠上耐热性织布,使该热熔融性树脂薄膜或片材与耐热性织布熔合在一起。
18.权利要求17中记载的制造方法,其中,从耐热性织布那一侧进行加热。
19.权利要求10~17任一项中记载的制造方法,其中,作为上述聚四氟乙烯片材使用比重超过2.175的聚四氟乙烯片材,制造权利要求1~9任一项中记载的层合体。
20.权利要求10~19任一项中记载的制造方法,其中,在上述聚四氟乙烯片材中还残留有未熔融的层的时候停止加热。
21.权利要求10~20任一项中记载的制造方法,其中,在上述加热熔合之前、同时或之后,在聚四氟乙烯熔点以上的温度下,对与上述聚四氟乙烯片材的层合面相对的表面进行加热处理。
22.权利要求10~21任一项中记载的填密片的制造方法,其中,层合体为填密片。
23.一种聚四氟乙烯层合体,它是采用权利要求10~21任一项中记载的制造方法获得的。
24.权利要求10~22任一项中记载的制造方法,其中,获得的层合体为权利要求1~9任一项中记载的层合体。
全文摘要
提供一种可以将PTFE片材的比重维持较高数值、且具有充分的粘合强度的PTFE层合体以及低药液透过性优良的PTFE系填密片。在PTFE片材与PFA等的热熔融性树脂薄膜或片材之间夹入PTFE微粒层后加热使其熔合,或者不介入PTFE微粒层加热使其熔合后,进行防止温度急剧降低的处理,由此将PTFE片材的平均比重维持在2.175以上。
文档编号C08J5/12GK1312758SQ99809689
公开日2001年9月12日 申请日期1999年7月22日 优先权日1998年8月18日
发明者石割和夫, 内田达郎, 山田雅彦 申请人:大金工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1