带有切割片的胶粘薄膜及其制造方法

文档序号:3768855阅读:196来源:国知局
专利名称:带有切割片的胶粘薄膜及其制造方法
技术领域
本发明涉及在将用于固着半导体芯片和电极构件固着的胶粘剂在切割前附着在 半导体晶片上的状态下供给半导体晶片的切割的带有切割片的胶粘薄膜及其制造方法。另 外,本发明涉及使用所述带有切割片的胶粘薄膜制造的半导体装置。
背景技术
形成有电路图案的半导体晶片在根据需要通过背面研磨调节厚度后,切割为半导 体芯片(切割工序)。在切割工序中,为了除去切割层,一般通过适度的液压(通常约2kg/ cm2)清洗半导体晶片。然后,利用胶粘剂将所述半导体芯片固着到引线框等被粘物上(安装 工序)后,移送到接合工序。所述安装工序中,将胶粘剂涂布到引线框或半导体芯片上。但 是,该方法难以实现胶粘剂层的均勻化,另外胶粘剂的涂布需要特殊装置和长时间。因此, 提出了在切割工序中胶粘保持半导体芯片、并且也提供安装工序所需的芯片固着用胶粘剂 层的切割/芯片接合薄膜(例如,参考专利文献1)。专利文献1中所述的切割/芯片接合薄膜,在基材1上设置有可以剥离的胶粘剂 层。即,在胶粘剂层的保持下将半导体晶片切割后,对基材1进行拉伸而将半导体芯片与胶 粘剂层一起剥离,将其逐个回收后通过该胶粘剂层固着到引线框等被粘物上。这种切割/芯片接合薄膜的胶粘剂层,为了不产生无法切割或尺寸误差等问题, 希望具有对半导体晶片的良好保持力以及能够将切割后的半导体芯片与胶粘剂层一体地 从基材1上剥离的良好剥离性。但是,这两种特性不容易达到平衡。因此,为了克服这样的问题,提出了各种改良方法。例如,在下述专利文献2中,提 出了使基材1与胶粘剂层之间夹设可以紫外线固化的粘合剂层,在切割后将其进行紫外线 固化,从而使粘合剂层与胶粘剂层之间的胶粘力下降,通过两者间的剥离容易地拾取半导 体芯片的方法。但是,随着半导体晶片的大型化(IOmmXlOmm以上)、薄型化(约15μπι 约 100 μ m),现有的切割/芯片接合薄膜难以同时满足切割时所需的高胶粘性和拾取时所需 的剥离性,难以将带有胶粘剂的半导体芯片从切割片上剥离。结果,有时产生拾取不良或芯 片变形导致破损的问题。专利文献1 日本特开昭60-57642号公报专利文献2 日本特开平2-248064号公报

发明内容
本发明的目的在于提供一种带有切割片的胶粘薄膜,在基材上具有粘合剂层,在 该粘合剂层上具有以可剥离的方式设置的胶粘薄膜,该带有切割片的胶粘薄膜即使在半导 体晶片为薄型的情况下也无损将其进行切割时的保持力,并且将通过切割得到的半导体芯 片与该胶粘薄膜一体地剥离时的剥离性优良;还提供该胶粘薄膜的制造方法。本发明人为了解决上述现有问题对带有切割片的胶粘薄膜及其制造方法进行了研究,结果发现,通过采用下述构成可以实现前述目的,从而完成了本发明。即,本发明的带有切割片的胶粘薄膜,为了解决上述问题,在基材上依次层压有粘 合剂层和胶粘剂层,其中,所述粘合剂层中,与所述胶粘剂层的粘贴面的至少一部分区域的 Si-Ka射线强度为0. 01 IOOkcps0所述构成中的Si-Ka射线强度,可以作为所述粘合剂层的粘贴面中硅原子以何 种程度存在的指标。通过对所述粘贴面进行表面改性使Si-K α射线强度为0. Olkcps以上, 可以保持对所述胶粘剂层的剥离性。由此,例如在拾取半导体芯片时,可以防止产生胶糊残 留或拾取不良。另一方面,通过进行表面改性使所述粘贴面的Si-Ka射线强度为IOOkcps 以下,可以防止对胶粘剂层的胶粘性的过度下降。由此,例如在对粘贴在胶粘剂层上的半导 体晶片进行切割时,可以将由该工序得到的半导体芯片可靠地胶粘固定。结果,可以防止芯 片飞散或碎片的产生。所述构成中,优选在温度25°C、相对湿度55%、拉伸速度300mm/分钟、剥离角度 180°的条件下进行剥离时,所述区域对所述胶粘剂层的剥离粘合力为0. 01 0. 2N/20mm。 通过对所述粘合剂层的粘贴面的至少一部分进行表面改性使Si-Ka射线强度为0. 01 lOOkcps,可以将粘合剂层对胶粘剂层的剥离粘合力控制在0. 01 0. 2N/20mm的范围内。在 此,通过使所述粘合力为0. 01N/20mm以上,可以防止与胶粘剂层的胶粘性过度下降。另一 方面,通过使所述粘合力为0. 2N/20mm以下,可以防止与胶粘剂层的过度胶粘。由此,可以 在粘合剂层与胶粘剂层间保持良好的剥离性。结果,例如在拾取半导体芯片时,可以防止产 生胶糊残留或拾取不良。另外,所述构成中,所述区域优选为与所述胶粘剂层的工件粘贴区域对应的区域。 所述胶粘剂层的半导体晶片粘贴区域是指用来粘贴半导体晶片等半导体晶片的区域。通过 具有这样的构成,可以防止半导体晶片切割时半导体芯片的芯片飞散或产生碎片,并且可 以保持良好的拾取性。另外,本发明的带有切割片的胶粘薄膜的制造方法,为了解决上述问题,用于制 造在基材上依次层压有粘合剂层和胶粘剂层的带有切割片的胶粘薄膜,其特征在于,包括 如下工序在所述基材上形成粘合剂层的工序,对所述粘合剂层的表面的至少一部分区域 进行表面改性使Si-Ka射线强度为0. 01 IOOkcps的工序,和在所述粘合剂层中的经表 面改性后的表面上形成所述胶粘剂层的工序。所述方法中,通过对在基材上形成的粘合剂层的表面的至少一部分进行表面改性 使Si-Ka射线强度为0.01 lOOkcps,可以容易地使其对之后形成的胶粘剂层的胶粘性与 剥离性形成良好的平衡状态。结果,例如可以防止切割半导体晶片时半导体芯片的芯片飞 散或产生碎片,并且可以同时防止拾取该半导体芯片时的胶糊残留或拾取不良。所述粘合剂层的所述粘贴面的表面改性,优选通过将至少含有聚硅氧烷树脂的溶 液以雾状散布的方法、将在另一薄膜上涂布聚硅氧烷树脂而得到的涂层转印的方法、或者 在粘合剂层表面涂布聚硅氧烷分散体并使其干燥的方法来进行。特别是将至少含有聚硅氧 烷树脂的溶液以雾状散布的方法,可以简便地进行表面改性的工序,可以提高作业性。另外,本发明的半导体装置,为了解决上述问题,其特征在于,由上述的带有切割 片的胶粘薄膜制造。发明效果
本发明通过前面说明过的手段,实现以下效果。即,根据本发明的带有切割片的胶粘薄膜,具有在基材上依次层压有粘合剂层和 胶粘剂层的结构,在该粘合剂层与胶粘剂层的粘贴面的至少一部分区域中实施了表面改 性。表面改性是进行处理使Si-Ka射线强度为0. 01 lOOkcps,因此,由此可以使粘合剂 层与胶粘剂层间的胶粘性和剥离性的平衡良好。结果,例如可以防止切割半导体晶片时半 导体芯片的芯片飞散或产生碎片,并且可以同时防止拾取该半导体芯片时的胶糊残留或拾 取不良的产生,提高制造上的生产量。


图1是本发明一个实施方式的带有切割片的胶粘薄膜的示意剖面图。图2是本发明另一实施方式的带有切割片的胶粘薄膜的示意剖面图。图3是表示通过本发明一个实施方式的胶粘薄膜安装半导体芯片的例子的示意 剖面图。图4是表示通过所述胶粘薄膜三维安装半导体芯片的例子的示意剖面图。图5是表示使用所述胶粘薄膜,通过垫片三维安装两个半导体芯片的例子的示意 剖面图。标号说明1基材2粘合剂层3、13、21 胶粘剂层4半导体晶片5、15 半导体芯片6被粘物7焊线8密封树脂9垫片IOUl 带有切割片的胶粘薄膜
具体实施例方式(带有切割片的胶粘薄膜)以下对本实施方式的带有切割片的胶粘薄膜进行说明。如图1所示,带有切割片的胶粘薄膜10为在基材1上依次层压粘合剂层2和胶粘 剂层3的构成。另外,如图2所示,也可以是仅在半导体晶片的粘贴部分形成胶粘剂层3’ 的构成。另外,本说明书中,胶粘剂层3以及胶粘剂层3’相当于胶粘薄膜。本发明的胶粘薄膜,可以作为芯片接合薄膜或倒装晶片型半导体背面用薄膜使 用。倒装芯片型半导体背面用薄膜用于形成在被粘物(例如,引线框或电路板等各种衬底) 上连接有倒装芯片而得到的半导体元件(例如,半导体芯片)的背面。所述粘合剂层2的与胶粘剂层3的粘贴面进行了表面改性,使Si-K α射线强度为 0. 01 lOOkcps,更优选为0. 05 50kcps,特别优选为0. 1 lOkcps。通过使Si-K α射线强度为IOOkcps以下,可以防止粘合剂层2对胶粘剂层3的胶粘性过度下降。结果,例如 在将胶粘剂层3上粘贴的半导体晶片切割而形成半导体芯片时,可以防止该半导体芯片产 生芯片飞散或者产生碎片。另一方面,通过使Si-Ka射线强度为0. Olkcps以上,可以抑制 粘合剂层2对胶粘剂层3的剥离性过度下降。结果,例如在拾取所述半导体芯片时,可以防 止构成粘合剂层2的粘合剂产生胶糊残留。另外,也可以减少拾取不良,提高成品率。另外,所述Si-Ka射线强度是通过荧光X射线分析测定的值。作为分析装置,可 以使用株式会社理学制造的ZSXlOOe等。另外,作为测定条件,例如可以使用立式Rh管,设 定分析面积为300πιπιΦ,分光晶体为RX4,输出为50kV、70mA。另外,通过进行表面改性使Si-Ka射线强度为0. 01 lOOkcps,可以使粘合剂层 2的粘贴面中的经表面改性的区域对胶粘剂层的剥离粘合力在0. 01 0. 2N/20mm的范围 内。通过使剥离粘合力为0.01N/20mm以上,可以防止与胶粘剂层3的胶粘性过度下降。另 一方面,通过使剥离粘合力为0.2/20mm以下,可以防止与胶粘剂层3的过度胶粘。所述粘 合力更优选在0. 015 0. 18N/20mm的范围内。另外,所述粘合力是在温度25°C、相对湿度 55% Rh、拉伸速度300mm/分钟、剥离角度180°的条件下进行剥离并测定时的值。粘合剂层2的经表面改性的区域中,例如通过雾状散布包含聚硅氧烷树脂作为脱 模处理剂的溶液,而存在来自所述聚硅氧烷树脂的硅原子。粘合剂层2中表面改性的区域, 只要是与胶粘剂层3的粘贴面则没有特别限制。但是,优选对与胶粘剂层3的半导体晶片 粘贴部分3a对应的部分2a进行表面改性。当仅将与对半导体晶片的粘贴没有贡献的部分 3b对应的部分2b进行表面改性时,不能使粘合剂层2对胶粘剂层3的胶粘性和剥离性达到 良好的平衡状态。结果,切割时产生芯片飞散等或拾取不良。作为所述聚硅氧烷树脂,可以列举例如硅油、硅橡胶、二甲基聚硅氧烷等。其中, 从作业性的观点考虑,优选硅油。另外,在粘合剂层2的所述部分2a和部分2b中,可以设置表面改性的程度差。具 体而言,进行表面改性使所述部分2b的Si-K α射线强度为0. 01 lOOkcps、更优选0. 05 50kcps。通过设定在该数值范围内,可以控制所述部分2a对胶粘剂层3的粘合力使其小 于所述部分2b对胶粘剂层3的粘合力。具体而言,可以控制在0. 01 0. 2N/20mm,更优选 0.012 0. 19N/20mm、特别优选0. 015 0. 18N/20mm的范围内。另外,粘合力的测定条件 与前述同样。通过具有这样的构成,例如,在图2所示的带有切割片的胶粘薄膜11中,可以 将粘贴在粘合剂层2的所述部分2b上的切割环(¥ λ ν > 'J y )可靠地固定。另外,在与胶粘剂层3粘贴的面中,表面改性的区域可以在Si-Ka射线强度为 0. 01 IOOkcps的范围内均勻地形成,也可以不均勻地形成。另外,表面改性的区域与非表 面改性的区域可以以带状、同心圆状等混合存在。将与胶粘剂层3的粘贴面全部进行表面 改性时,优选不形成膜厚度大的聚硅氧烷树脂层。形成这样的聚硅氧烷树脂层时,有时粘合 剂层2会丧失胶粘性。以下,对构成本实施方式的带有切割片的胶粘薄膜10的各构成构件进行详细说明。所述基材1作为带有切割片的胶粘薄膜10、12的强度母体。例如可以列举低密 度聚乙烯、线性聚乙烯、中密度聚乙烯、高密度聚乙烯、超低密度聚乙烯、丙烯无规共聚物、 丙烯嵌段共聚物、丙烯均聚物、聚丁烯、聚甲基戊烯等聚烯烃、乙烯-醋酸乙烯酯共聚物、离聚物树脂、乙烯_(甲基)丙烯酸共聚物、乙烯_(甲基)丙烯酸酯(无规、交替)共聚物、乙 烯-丁烯共聚物、乙烯_己烯共聚物、聚氨酯、聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯 等聚酯、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚酰亚胺、聚醚酰亚胺、聚酰胺、全芳香族聚酰胺、 聚苯硫醚、芳族聚酰胺(纸)、玻璃、玻璃布、含氟树脂、聚氯乙烯、聚偏二氯乙烯、纤维素树 脂、聚硅氧烷树脂、金属(箔)、纸等。另外,粘合剂层2为紫外线固化型时,基材1优选采用 具有紫外线透射性的基材。另外,作为基材1的材料,可以列举所述树脂的交联物等聚合物。所述塑料薄膜可 以不拉伸而使用,也可以根据需要进行单轴或双轴拉伸处理后使用。利用经拉伸处理等而 具有热收缩性的树脂片,通过在切割后使其基材1热收缩而降低粘合剂层2与胶粘剂层3、 3’的胶粘面积,可以容易地回收半导体芯片。为了提高与邻接层的密合性和保持性等,基材1的表面可以进行惯用的表面处 理,例如铬酸处理、臭氧暴露、火焰暴露、高压电击暴露、电离射线处理等化学或物理处理、 底涂剂(例如,后述的粘合物质)涂布处理。所述基材1可以适当选择使用同种或异种材料,根据需要也可以将多种材料混合 使用。另外,为了赋予基材1防静电性能,可以在所述基材1上设置包含金属、合金、它们的 氧化物等的厚度约30A 约500A的导电物质的蒸镀层。基材1可以是单层或者两种以 上的多层。基材1的厚度没有特别限制,可以适当设定,一般为约5μπι 约200μπι。作为粘合剂层2的形成中使用的粘合剂,没有特别限制,可以使用例如丙烯酸类 粘合剂、橡胶类粘合剂等一般的压敏粘合剂。作为所述压敏粘合剂,从半导体芯片或玻璃等 避忌污染的电子部件的超纯水或醇等有机溶剂的清洁洗涤性等方面考虑,优选以丙烯酸类 聚合物为基础聚合物的丙烯酸类粘合剂。作为所述丙烯酸类聚合物,可以列举使用丙烯酸酯作为主单体成分的丙烯酸类聚 合物。作为所述丙烯酸酯,可以列举例如使用(甲基)丙烯酸烷基酯(例如,甲酯、乙酯、丙 酯、异丙酯、丁酯、异丁酯、仲丁酯、叔丁酯、戊酯、异戊酯、己酯、庚酯、辛酯、2-乙基己酯、异 辛酯、壬酯、癸酯、异癸酯、十一烷酯、十二烷酯、十三烷酯、十四烷酯、十六烷酯、十八烷酯、 二十烷酯等烷基的碳原子数1 30、特别是碳原子数4 18的直链或支链烷基酯等)及 (甲基)丙烯酸环烷酯(例如,环戊酯、环己酯等)的一种或两种以上作为单体成分的丙烯 酸类聚合物等。另外,(甲基)丙烯酸酯是指丙烯酸酯和/或甲基丙烯酸酯,本发明的“(甲 基)”全部具有同样的含义。所述丙烯酸类聚合物,为了改善凝聚力和耐热性等,根据需要可以含有与能够与 所述(甲基)丙烯酸烷基酯或环烷酯共聚的其它单体成分对应的单元。作为这样的单体成 分,可以列举例如丙烯酸、甲基丙烯酸、(甲基)丙烯酸羧乙酯、(甲基)丙烯酸羧戊酯、衣 康酸、马来酸、富马酸、巴豆酸等含羧基单体;马来酸酐、衣康酸酐等酸酐单体;(甲基)丙 烯酸-2-羟基乙酯、(甲基)丙烯酸-2-羟基丙酯、(甲基)丙烯酸-4-羟基丁酯、(甲基) 丙烯酸-6-羟基己酯、(甲基)丙烯酸-8-羟基辛酯、(甲基)丙烯酸-10-羟基癸酯、(甲 基)丙烯酸-12-羟基十二烷酯、(甲基)丙烯酸(4-羟基甲基环己基)甲酯等含羟基单体; 苯乙烯磺酸、烯丙磺酸、2-(甲基)丙烯酰胺基-2-甲基丙磺酸、(甲基)丙烯酰胺基丙磺酸、 (甲基)丙烯酸磺丙酯、(甲基)丙烯酰氧基萘磺酸等含磺酸基单体;丙烯酰磷酸-2-羟基乙酯等含磷酸基单体;丙烯酰胺;丙烯腈等。这些可共聚单体成分可以使用一种或两种以 上。这些可共聚单体的使用量优选为全部单体成分的40重量%以下。另外,所述丙烯酸类聚合物为了进行交联根据需要也可以含有多官能单体等作为 共聚用单体成分。作为这样的多官能单体,可以列举例如己二醇二(甲基)丙烯酸酯、 (聚)乙二醇二(甲基)丙烯酸酯、(聚)丙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基) 丙烯酸酯、季戊四醇二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、季戊四醇三 (甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、环氧(甲基)丙烯酸酯、聚酯(甲基) 丙烯酸酯、氨基甲酸酯(甲基)丙烯酸酯等。这些多官能单体也可以使用一种或者两种以 上。多官能单体的使用量从粘合特性等观点考虑优选为全部单体成分的30重量%以下。所述丙烯酸类聚合物可以通过将单一单体或两种以上单体的混合物聚合而得到。 聚合可以通过溶液聚合、乳液聚合、本体聚合、悬浮聚合等的任意方式进行。从防止污染洁 净的被粘物等观点考虑,优选低分子量物质的含量小。从该观点考虑,丙烯酸类聚合物的重 均分子量优选为约30万以上、更优选约40万至约300万。另外,为了提高作为基础聚合物的丙烯酸类聚合物等的重均分子量,所述粘合剂 中也可以适当使用外部交联剂。作为外部交联方法的具体手段,可以列举添加多异氰 酸酯化合物、环氧化合物、氮丙啶化合物、三聚氰胺型交联剂等所谓的交联剂进行反应的方 法。使用外部交联剂的情况下,其使用量通过与欲交联的基础聚合物的平衡以及作为粘合 剂的使用用途进行适当确定。一般相对于所述基础聚合物100重量份优选配合约5重量份 以下,更优选配合0. 1 5重量份。另外,粘合剂中根据需要除所述成分之外还可以使用现 有公知的各种增粘剂、抗老化剂等添加剂。粘合剂层2可以通过辐射线固化型粘合剂来形成。辐射线固化型粘合剂可以通过 紫外线等辐射线的照射而增大交联度从而使其粘合力容易地下降,通过仅对图2所示的粘 合剂层2的与半导体晶片粘贴部分对应的部分2a照射辐射线,可以设置与其它部分2b的 粘合力差。另外,通过与图2所示的胶粘剂层3’相符地使辐射线固化型粘合剂层2固化,可 以容易地形成粘合力显著下降的所述部分2a。由于固化而粘合力下降的所述部分2a上粘 贴有胶粘剂层3’,因此粘合剂层2的所述部分2a与胶粘剂层3’的界面具有在拾取时容易 剥离的性质。另一方面,未照射辐射线的部分具有充分的粘合力,形成所述部分2b。如前所述,图1所示的带有切割片的胶粘薄膜10的粘合剂层2中,由未固化的辐 射线固化型粘合剂形成的所述部分2b与胶粘剂层3粘合,能够确保切割时的保持力。这样, 辐射线固化型粘合剂可以在胶粘和剥离的平衡良好的情况下支撑用于将半导体芯片(半 导体芯件等)固着到衬底等被粘物上的胶粘剂层3。图2所示的带有切割片的胶粘薄膜11 的粘合剂层2中,所述部分2b可以固定切割环。辐射线固化型粘合剂可以没有特别限制地使用具有碳碳双键等辐射线固化性官 能团、并且显示粘合性的粘合剂。作为辐射线固化型粘合剂,例如,可以例示在所述丙烯酸 类粘合剂、橡胶类粘合剂等一般的压敏粘合剂中配合有辐射线固化性单体成分或低聚物成 分的添加型辐射线固化型粘合剂。作为配合的辐射线固化性单体成分,可以列举例如氨基甲酸酯低聚物、氨基甲酸 酯(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇单羟基五 (甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、1,4_ 丁二醇二(甲基)丙烯酸酯等。 另外,辐射线固化性的低聚物成分可以列举聚氨酯类、聚醚类、聚酯类、聚碳酸酯类、聚丁二 烯类等各种低聚物,其分子量在约100至约30000的范围内是适当的。辐射线固化性单体 成分或低聚物成分的配合量可以根据所述粘合剂层的种类适当确定能够使粘合剂层的粘 合力下降的量。一般而言,相对于构成粘合剂的丙烯酸类聚合物等基础聚合物100重量份, 例如为约5重量份至约500重量份、优选约40重量份至约150重量份。另外,作为辐射线固化型粘合剂,除前面说明过的添加型的辐射线固化型粘合剂 以外,还可以列举使用在聚合物侧链或主链中或者主链末端具有碳碳双键的聚合物作为 基础聚合物的内在型的辐射线固化型粘合剂。内在型的辐射线固化型粘合剂不需要含有或 者多数不含有作为低分子成分的低聚物成分等,因此低聚物成分等不会随时间推移在粘合 剂中迁移,可以形成层结构稳定的粘合剂层,因而优选。所述具有碳碳双键的基础聚合物,可以没有特别限制地使用具有碳碳双键并且具 有粘合性的基础聚合物。作为这样的基础聚合物,优选以丙烯酸类聚合物为基本骨架的基 础聚合物。作为丙烯酸类聚合物的基本骨架,可以列举前面例示的丙烯酸类聚合物。在所述丙烯酸类聚合物中引入碳碳双键的方法没有特别限制,可以采用各种方 法,从分子设计方面而言在聚合物侧链中引入碳碳双键是比较容易的。例如可以列举预先 将具有官能团的单体与丙烯酸类聚合物共聚后,使具有能够与该官能团反应的官能团及 碳碳双键的化合物在保持碳碳双键的辐射线固化性的情况下与所得共聚物进行缩合或加 成反应的方法。作为这些官能团的组合例,可以列举羧基与环氧基、羧基与氮丙啶基、羟基与异 氰酸酯基等。这些官能团的组合中,从容易跟踪反应的观点考虑,优选羟基与异氰酸酯基的 组合。另外,根据这些官能团的组合,如果是生成所述具有碳碳双键的丙烯酸类聚合物的组 合,则官能团可以在丙烯酸类聚合物和所述化合物的任意一个上,在所述优选组合的情况 下,优选丙烯酸类聚合物具有羟基、所述化合物具有异氰酸酯基。此时,作为具有碳碳双键 的异氰酸酯化合物,可以列举例如甲基丙烯酰异氰酸酯、2-甲基丙烯酰氧乙基异氰酸酯、 间异丙烯基-α,α-二甲基苄基异氰酸酯等。另外,作为丙烯酸类聚合物,可以使用将前面 例示的含羟基单体或2-羟基乙基乙烯基醚、4-羟基丁基乙烯基醚、二乙二醇单乙烯基醚等 醚类化合物等共聚而得到的丙烯酸类聚合物。所述内在型的辐射线固化型粘合剂,可以单独使用所述具有碳碳双键的基础聚合 物(特别是丙烯酸类聚合物),也可以在不损害特性的范围内配合所述辐射线固化性的单 体成分或低聚物成分。辐射线固化性的低聚物成分等通常相对于基础聚合物100重量份在 约30重量份的范围内,优选0 10重量份的范围。在通过紫外线等固化时,所述辐射线固化型粘合剂中优选含有光聚合引发剂。作 为光聚合引发剂,可以列举例如4-(2_羟基乙氧基)苯基-(2-羟基-2-丙基)酮、α-羟 基-α,α,-二甲基苯乙酮、2-甲基-2-羟基苯丙酮、1-羟基环己基苯基酮等α -酮醇类 化合物;甲氧基苯乙酮、2,2’ - 二甲氧基-2-苯基苯乙酮、2,2’ - 二乙氧基苯乙酮、2-甲 基-1-[4-(甲硫基)苯基]-2-吗啉代丙烷-1-酮等苯乙酮类化合物;苯偶姻乙醚、苯偶姻 异丙醚、茴香偶姻甲醚等苯偶姻醚类化合物;联苯酰二甲基缩酮等缩酮类化合物;2-萘磺酰氯等芳香族磺酰氯类化合物;1-苯基-1,2-丙二酮-2-(0-乙氧基羰基)肟等光活性肟 类化合物;二苯甲酮、苯甲酰基苯甲酸、3,3’ - 二甲基-4-甲氧基二苯甲酮等二苯甲酮类化 合物;噻吨酮、2-氯噻吨酮、2-甲基噻吨酮、2,4_二甲基噻吨酮、异丙基噻吨酮、2,4_二氯噻 吨酮、2,4-二乙基噻吨酮、2,4-二异丙基噻吨酮等噻吨酮类化合物;樟脑醌;卤代酮;酰基 氧化膦;酰基膦酸酯等。光聚合引发剂的配合量相对于构成粘合剂的丙烯酸类聚合物等基 础聚合物100重量份例如为约0. 05重量份至约20重量份。另外,作为辐射线固化型粘合剂,可以列举例如日本特开昭60-196956号公报中 公开的、包含具有两个以上不饱合键的加聚性化合物、具有环氧基的烷氧基硅烷等光聚合 性化合物和羰基化合物、有机硫化合物、过氧化物、胺、锚.盐类化合物等光聚合引发剂的橡 胶类粘合剂或丙烯酸类粘合剂等。所述辐射线固化型的粘合剂层2中,根据需要可以含有经辐射线照射会着色的化 合物。通过在粘合剂层2中含有经辐射线照射会着色的化合物,可以仅使辐射线照射后的 部分着色。即,可以使图1所示的与半导体晶片粘贴部分3a对应的部分2a着色。因此,通 过目视立即可以判断粘合剂层2是否照射过辐射线,可以容易地识别半导体晶片粘贴部分 3a,从而容易进行半导体晶片的粘贴。另外,通过光传感器等检测半导体元件时,其检测精 度提高,在半导体元件的拾取时不会产生误操作。经辐射线照射会着色的化合物,是在辐射线照射前为无色或浅色,经辐射线照射 后变为有色的化合物。作为所述化合物的优选具体例,可以列举无色(leuco)染料。作为 无色染料,可以优选使用惯用的三苯基甲烷类、荧烷类、吩噻嗪类、金胺类、螺吡喃类等。具 体而言,可以列举3-[N-(对甲苯氨基)]-7_苯胺基荧烷、3-[N-(对甲苯基)-N-甲基氨 基]-7-苯胺基荧烷、3- [N-(对甲苯基)-N-乙基氨基]-7-苯胺基荧烷、3- 二乙氨基-6-甲 基-7-苯胺基荧烷、结晶紫内酯、4,4,,4”_三(二甲氨基)三苯基甲醇、4,4,,4”_三(二 甲氨基)三苯基甲烷等。作为优选与这些无色染料一起使用的显色剂,可以列举一直以来使用的酚醛树脂 的预聚物、芳香族羧酸衍生物、活性白土等电子受体,另外,在使色调变化的情况下也可以 组合使用各种发色剂(発色剤)。这样的经辐射线照射会着色的化合物,可以先溶解于有机溶剂等中后再添加到辐 射线固化型胶粘剂中,或者也可以制成微粉末状后添加到该胶粘剂中。该化合物的使用比 例在粘合剂层2中优选为10重量%以下,更优选0. 01 10重量%,进一步优选0. 5 5 重量%。该化合物的比例超过10重量%时,照射到粘合剂层2上的辐射线被该化合物过度 地吸收,因此粘合剂层2的所述部分2a的固化不充分,有时粘合力不能充分下降。另一方 面,为了充分地着色,优选将该化合物的比例设定为0.01重量%以上。通过辐射线固化型粘合剂形成粘合剂层2时,可以对粘合剂层2的一部分照射辐 射线,使粘合剂层2中的所述部分2a的粘合力<其它部分2b的粘合力。作为在所述粘合剂层2中形成所述部分2a的方法,可以列举在基材11上形成辐 射线固化型粘合剂层2后,部分地对所述部分2a照射辐射线而使其固化的方法。部分的辐 射线照射可以通过形成有与半导体晶片粘贴部分3a以外的部分3b等对应的图案的光掩模 来进行。另外,可以列举点状照射辐射线使其固化的方法。辐射线固化型粘合剂层2的形 成可以通过将设置在隔片上的粘合剂层转印到基材11上来进行。部分的辐射线照射也可以对设置在隔片上的辐射线固化型粘合剂层2进行。另外,通过辐射线固化型粘合剂形成粘合剂层2时,使用将基材11的至少单面 的、与半导体晶片粘贴部分3a对应的部分以外的部分的全部或者一部分进行遮光的基材, 在其上形成辐射线固化型粘合剂层2后进行辐射线照射,使与半导体晶片粘贴部分3a对应 的部分固化,从而可以形成粘合力下降的所述部分2a。作为遮光材料,可以通过印刷或蒸镀 等在支撑薄膜上制作能够形成光掩模的遮光材料。通过该制造方法,可以高效地制造本发 明的带有切割片的胶粘薄膜10。另外,照射辐射线时因氧而产生固化障碍时,优选通过任意方法从辐射线固化型 粘合剂层2的表面隔绝氧(空气)。可以列举例如用隔片将所述粘合剂层2的表面覆盖 的方法或者在氮气氛围中进行紫外线等辐射线的照射的方法等。粘合剂层2的厚度没有特别限制,从兼具防止芯片切割面的缺损和胶粘层的固定 保持的功能等方面考虑,优选为约Iym至约50 μ m。优选2 μ m 30 μ m、更优选5 μ m 25 μ m0所述胶粘剂层3、3’是具有胶粘功能的层,作为其构成材料,可以列举热塑性树脂 与热固性树脂组合使用的材料。另外,也可以单独使用热塑性树脂或热固性树脂。胶粘剂层3、3’的层压结构没有特别限制,例如,可以列举仅由单层构成的胶粘剂 层,或者在芯材的单面或双面形成有胶粘剂层的多层结构的胶粘剂层等。作为所述芯材,可 以列举薄膜(例如聚酰亚胺薄膜、聚酯薄膜、聚对苯二甲酸乙二醇酯薄膜、聚萘二甲酸乙二 醇酯薄膜、聚碳酸酯薄膜等)、用玻璃纤维或塑料制无纺纤维增强的树脂衬底、硅衬底或玻 璃衬底等。作为所述热塑性树脂,可以列举天然橡胶、丁基橡胶、异戊二烯橡胶、氯丁橡胶、 乙烯_醋酸乙烯酯共聚物、乙烯_丙烯酸共聚物、乙烯_丙烯酸酯共聚物、聚丁二烯树脂、聚 碳酸酯树脂、热塑性聚酰亚胺树脂、尼龙6或尼龙6,6等聚酰胺树脂、苯氧基树脂、丙烯酸 类树脂、PET或PBT等饱和聚酯树脂、聚酰胺酰亚胺树脂、或者含氟树脂等。这些热塑性树 脂可以单独使用或者两种以上组合使用。这些热塑性树脂中,特别优选离子性杂质少、耐热 性高、能够确保半导体元件的可靠性的丙烯酸类树脂。作为所述丙烯酸类树脂,没有特别限制,可以列举以一种或两种以上具有碳原子 数30以下、特别是碳原子数4 18的直链或支链烷基的丙烯酸酯或甲基丙烯酸酯为成分 的聚合物等。作为所述烷基,可以列举例如甲基、乙基、丙基、异丙基、正丁基、叔丁基、异丁 基、戊基、异戊基、己基、庚基、环己基、2-乙基己基、辛基、异辛基、壬基、异壬基、癸基、异癸 基、十一烷基、月桂基、十三烷基、十四烷基、硬脂基、十八烷基或者十二烷基等。另外,作为形成所述聚合物的其它单体,没有特别限制,可以列举例如丙烯酸、甲 基丙烯酸、丙烯酸羧乙酯、丙烯酸羧戊酯、衣康酸、马来酸、富马酸或巴豆酸等含羧基单体; 马来酸酐或衣康酸酐等酸酐单体;(甲基)丙烯酸-2-羟基乙酯、(甲基)丙烯酸-2-羟基 丙酯、(甲基)丙烯酸-4-羟基丁酯、(甲基)丙烯酸-6-羟基己酯、(甲基)丙烯酸-8-羟 基辛酯、(甲基)丙烯酸-10-羟基癸酯、(甲基)丙烯酸-12-羟基月桂酯或丙烯酸(4-羟 甲基环己基)甲酯等含羟基单体;苯乙烯磺酸、烯丙磺酸、2-(甲基)丙烯酰胺基-2-甲基 丙磺酸、(甲基)丙烯酰胺基丙磺酸、(甲基)丙烯酸磺丙酯或(甲基)丙烯酰氧基萘磺酸 等含磺酸基单体;或者丙烯酰磷酸-2-羟基乙酯等含磷酸基单体等。
作为所述热固性树脂,可以列举酚醛树脂、氨基树脂、不饱和聚酯树脂、环氧树脂、 聚氨酯树脂、聚硅氧烷树脂或热固性聚酰亚胺树脂等。这些树脂可以单独使用或者两种以 上组合使用。特别优选会使半导体元件腐蚀的离子性杂质等的含量少的环氧树脂。另外, 作为环氧树脂的固化剂,优选酚醛树脂。所述环氧树脂,只要是作为胶粘剂组合物通常使用的则没有特别限制,可以使用 例如双酚A型、双酚F型、双酚S型、溴化双酚A型、氢化双酚A型、双酚AF型、联苯型、萘 型、芴型、苯酚酚醛清漆型、邻甲酚酚醛清漆型、三羟苯基甲烷型、四苯酚基乙烷型等双官能 环氧树脂或多官能环氧树脂、或者乙内酰脲型、异氰脲酸三缩水甘油酯型或缩水甘油胺型 等环氧树脂。这些环氧树脂可以单独使用或者两种以上组合使用。这些环氧树脂中,特别 优选酚醛清漆型环氧树脂、联苯型环氧树脂、三羟苯基甲烷型环氧树脂或四苯酚基乙烷型 环氧树脂。这是因为这些环氧树脂与作为固化剂的酚醛树脂的反应性好,并且耐热性等优 良ο另外,所述酚醛树脂作为所述环氧树脂的固化剂起作用,可以列举例如苯酚酚醛 清漆树脂、苯酚芳烷基树脂、甲酚酚醛清漆树脂、叔丁基苯酚酚醛清漆树脂、壬基苯酚酚醛 清漆树脂等酚醛清漆型酚树脂、甲阶酚醛树脂型酚树脂、聚对羟基苯乙烯等聚羟基苯乙烯 等。这些酚醛树脂可以单独使用或者两种以上组合使用。这些酚醛树脂中特别优选苯酚酚 醛清漆树脂、苯酚芳烷基树脂。这是因为可以提高半导体装置的连接可靠性。所述环氧树脂与酚醛树脂的配合比例,例如以相对于所述环氧树脂成分中的环氧 基1当量、酚醛树脂中的羟基为0. 5 2. 0当量的比例进行配合是适当的。更优选0. 8 1.2当量。S卩,这是因为两者的配合比例如果在所述范围以外,则固化反应不能充分进行, 环氧树脂固化物的特性容易变差。另外,本发明中,特别优选使用环氧树脂、酚醛树脂及丙烯酸类树脂的胶粘剂层。 这些树脂的离子性杂质少、耐热性高,因此可以确保半导体元件的可靠性。此时的配比是, 相对于丙烯酸类树脂100重量份,环氧树脂与酚醛树脂的混合量为10 200重量份。作为环氧树脂与酚醛树脂的热固化促进催化剂,没有特别限制,可以从公知的热 固化促进催化剂中适当选择使用。热固化促进催化剂可以单独使用或者两种以上组合使 用。作为热固化促进催化剂,可以使用例如胺类固化促进剂、含磷固化促进剂、咪唑类固化 促进剂、含硼固化促进剂、含磷硼固化促进剂等。本发明中,胶粘剂层3、3’根据需要可以进行着色。胶粘剂层3、3’中通过着色所 呈的颜色没有特别限制,例如优选黑色、蓝色、红色、绿色等。胶粘薄膜作为芯片接合薄膜使 用时,通常不着色(也可以着色),当作为倒装晶片型半导体背面用薄膜使用时,通常着色。 着色时,可以从颜料、染料等公知的着色剂中适当选择使用。预先使本发明的胶粘剂层3、3’进行某种程度的交联的情况下,在制作时可以添加 与聚合物的分子链末端的官能团等反应的多官能化合物作为交联剂。由此,可以提高高温 下的胶粘特性,改善耐热性。作为所述交联剂,可以使用现有公知的交联剂。特别是更优选甲苯二异氰酸酯、二 苯基甲烷二异氰酸酯、对苯二异氰酸酯、1,5_萘二异氰酸酯、多元醇与二异氰酸酯的加成产 物等多异氰酸酯化合物。交联剂的添加量相对于所述聚合物100重量份通常优选设定为 0.05 7重量份。交联剂的量超过7重量份时,胶粘力下降,因此不优选。另一方面,低于
120. 05重量份时,凝聚力不足,因此不优选。另外,根据需要可以与这样的多异氰酸酯化合物 一起含有环氧树脂等其它多官能化合物。另外,胶粘剂层3、3’中可以适当配合无机填充剂。无机填充剂的配合可以在胶粘 剂层3、3’的表面赋予凹凸。另外,还可以赋予导电性、提高导热性、调节储能模量等。作为所述无机填充剂,可以列举例如由二氧化硅、粘土、石膏、碳酸钙、硫酸钡、氧 化铝、氧化铍、碳化硅、氮化硅等陶瓷类、铝、铜、银、金、镍、铬、铅、锡、锌、钯、焊料等金属、或 者合金类、以及碳等构成的各种无机粉末。这些无机填充剂可以单独使用或者两种以上组 合使用。其中,优选使用二氧化硅,特别是熔融二氧化硅。所述无机填充剂的平均粒径优选在0. 1 5 μ m的范围内,更优选在0. 2 3 μ m的 范围内。无机填充剂的平均粒径小于0. 1 μ m时,难以使所述胶粘剂层的Ra为0. 15 μ m以 上。另一方面,所述平均粒径超过5μπι时,难以使Ra低于1 μ m。另外,在本发明中,可以将 平均粒径相互不同的无机填充剂组合使用。另外,平均粒径是利用例如分光光度式粒度分 布计(H0RIBA制,装置名LA-910)求得的值。所述无机填充剂的配合量相对于有机树脂成分100重量份优选设定为20 80重 量份。特别优选为20 70重量份。无机填充剂的配合量低于20重量份时,耐热性下降, 因此在经受长时间高温的热历史时,胶粘剂层3、3’固化,有时流动性或填埋性下降。另外, 超过80重量份时,胶粘剂层3、3’的储能模量增大。因此,固化的胶粘剂的应力难以缓和, 有时在密封工序中对凹凸的填埋性下降。另外,胶粘剂层3、3’中除所述无机填充剂以外,根据需要也可以配合其它添加剂。 作为其它添加剂,可以列举例如阻燃剂、硅烷偶联剂或离子捕获剂等。作为所述阻燃剂,可 以列举例如三氧化锑、五氧化锑、溴化环氧树脂等。这些物质可以单独使用或者两种以上 组合使用。作为所述硅烷偶联剂,可以列举例如β_(3,4-环氧环己基)乙基三甲氧基硅 烷、Y-环氧丙氧基丙基三甲氧基硅烷、Y-环氧丙氧基丙基甲基二乙氧基硅烷等。这些化 合物可以单独使用或者两种以上组合使用。作为所述离子捕获剂,可以列举例如水滑石 类、氢氧化铋等。这些物质可以单独使用或者两种以上组合使用。胶粘剂层3、3’的厚度(层压体的情况下为总厚度)没有特别限制,例如可以为约 5 μ m至约100 μ m,优选约5 μ m至约50 μ m。所述带有切割片的胶粘薄膜10、12的胶粘剂层3、3’优选由隔片保护(未图示)。 隔片具有在供给实际应用之前作为保护胶粘剂层3、3’的保护材料的功能。另外,隔片还可 以作为向粘合剂层2上转印胶粘剂层3、3’时的基材1使用。隔片在向带有切割片的胶粘 薄膜的胶粘剂层3、3’上粘贴半导体晶片时剥离。作为隔片,可以使用聚对苯二甲酸乙二醇 酯(PET)、聚乙烯、聚丙烯,也可以使用由含氟剥离剂、长链烷基丙烯酸酯类剥离剂等剥离剂 进行了表面涂布的塑料薄膜或纸等。(带有切割片的胶粘薄膜的制造方法)本实施方式的带有切割片的胶粘薄膜的制造方法,包括在基材1上形成粘合剂 层2的工序,对粘合剂层2的表面进行表面改性的工序,和在经表面改性后的粘合剂层2上 形成胶粘剂层3的工序。作为所述基材1的制膜方法,可以例示例如压延制膜法、有机溶剂中的流延法、 密闭体系中的吹塑挤出法、T形模头挤出法、共挤出法、干式层压法等。
然后,通过在基材1上涂布粘合剂组合物溶液后,在预定条件下进行干燥(根据需 要进行加热交联),可以形成粘合剂层2。作为涂布方法,没有特别限制,可以列举例如棍 涂、丝网涂布、凹版涂布等。涂布时的涂布厚度可以适当设定,使涂层干燥后最终得到的粘 合剂层2的厚度在1 50 μ m的范围内。另外,粘合剂组合物溶液的粘度没有特别限制,优 选 100 5000mPa · s,更优选 200 3000mPa·s。所述涂层的干燥方法没有特别限制,例如,在形成表面光滑的粘合剂层时,优选不 使用干燥风而使其干燥。干燥时间可以根据粘合剂组合物溶液的涂布量适当设定,通常在 0.5 5分钟、优选2 4分钟的范围内。干燥温度没有特别限制,通常为80 150°C,优 选 80 130 。另外,关于粘合剂层2的形成,也可以在隔片上涂布粘合剂组合物形成其涂膜后, 在所述干燥条件下使涂膜干燥而形成粘合剂层2。之后,将粘合剂层2转印到基材上。然后,对粘合剂层2的表面进行表面改性。该工序中,对预定与胶粘剂层3粘贴的 面至少进行表面改性。表面改性的方法没有特别限制,例如,优选通过将至少含有聚硅氧烷 树脂的溶液以雾状散布的方法、将在另一薄膜上涂布聚硅氧烷树脂而得到的涂层转印的方 法、或者在粘合剂层表面涂布聚硅氧烷分散体并使其干燥的方法来进行。将含有聚硅氧烷 树脂的溶液以雾状散布时的散布量可以根据进行表面改性的区域的面积适当设定。但是, 优选通过调节喷雾的速度、其高度、喷出量等进行表面改性,使被喷雾区域的Si-Ka射线 强度在0. 01 IOOkcps的范围内。作为形成所述胶粘剂层3的工序,可以列举例如进行在脱模薄膜上涂布胶粘剂 组合物溶液而形成涂层的工序,之后,进行使所述涂层干燥的工序的方法。作为所述胶粘剂组合物溶液的涂布方法没有特别限制,可以列举例如使用逗号 型刮刀涂布法(二 二一卜法)、模缝法(7 7·々>法)、凹版法等进行涂布的方法。 涂布厚度可以适当设定,使涂层干燥后最终得到的胶粘剂层的厚度在5 100 μ m的范围 内。另外,胶粘剂组合物溶液的粘度没有特别限制,优选400 2500mPa · s,更优选800 2000mPa · s。作为所述脱模薄膜没有特别限制,可以列举例如在脱模薄膜的基材的与胶粘剂层 粘贴的面上形成有聚硅氧烷层等脱模涂层的脱模薄膜。另外,作为脱模薄膜的基材,可以列 举例如玻璃纸等纸材、聚乙烯、聚丙烯、聚酯等形成的树脂薄膜。所述涂层的干燥通过对涂层喷吹干燥风来进行。该干燥风的喷吹可以列举例如 使其喷吹方向与脱模薄膜的运送方向平行地进行喷吹的方法、使其喷吹方向与涂层的表面 垂直地进行喷吹的方法。干燥风的风量没有特别限制,通常为5 20m/分钟,优选5 15m/ 分钟。通过将干燥风的风量设定为5m/分钟以上,可以防止涂层的干燥不充分。另一方面, 通过将干燥风的风量设定为20m/分钟以下,可以使涂层表面附近的有机溶剂浓度均勻,因 此可以使其蒸发均勻。结果,可以形成面内表面状态均勻的胶粘剂层。干燥时间可以根据胶粘剂组合物溶液的涂布厚度适当设定,通常在1 5分钟、优 选2 4分钟的范围内。干燥时间低于1分钟时,固化反应进行不充分,未反应的固化成分 或残留的溶剂量多,因此有时在后续工序中产生排气或空隙的问题。另一方面,超过5分钟 时,固化反应过度进行,结果有时流动性或对被粘物的填埋性下降。干燥温度没有特别限制,通常设定在70 160°C的范围内。但是,本发明中,优选随干燥时间的推移使干燥温度阶段性地上升来进行干燥。具体而言,例如在干燥初期(干 燥开始1分钟以内)设定为70 100°C的范围,在干燥后期(超过1分钟、并且5分钟以 内)设定在100 160°C的范围内。由此,可以防止涂层表面在涂布后立即使干燥温度急剧 升高时产生针孔。结果,可以形成表面为凹凸状、并且算术平均粗糙度Ra为0. 015 1 μ m 的胶粘剂层3。接着,在粘合剂层2上进行胶粘剂层3的转印。该转印通过压接来进行。粘贴温 度为30 50°C、优选35 450C ο另外,粘贴压力为0. 1 0. 6MPa、优选0. 2 0. 5MPa。所述脱模薄膜在将胶粘剂层3粘贴到粘合剂层2上后可以剥离,或者可以原样作 为带有切割片的胶粘薄膜的保护薄膜使用,在与半导体晶片等粘贴时再剥离。由此,可以制 造本实施方式的带有切割片的胶粘薄膜。(半导体装置的制造方法)本发明的带有切割片的胶粘薄膜10、12,在将胶粘剂层3、3’上任意设置的隔片适 当剥离后如下进行使用。以下,参考图3以使用带有切割片的胶粘薄膜10的情况为例进行 说明。首先,将半导体晶片4压接在带有切割片的胶粘薄膜10中的胶粘剂层3的半导体 晶片粘贴部分3a上,使其胶粘保持而固定(粘贴工序)。本工序在用压接辊等挤压手段挤 压的同时进行。安装时的粘贴温度没有特别限制,例如优选在20 80°C的范围内。然后,进行半导体晶片4的切割。由此,将半导体晶片4切割为预定的尺寸而单片 化,制造半导体芯片5。切割例如从半导体晶片4的电路面一侧按照常规方法来进行。另 外,本工序中,例如可以采用切入至带有切割片的胶粘薄膜10处的、称为全切的切割方式 等。本工序中使用的切割装置没有特别限制,可以使用现有公知的切割装置。另外,由于半 导体晶片4通过带有切割片的胶粘薄膜10胶粘固定,因此可以抑制芯片缺损或芯片飞散, 同时也可以抑制半导体晶片4的破损。为了将胶粘固定在带有切割片的胶粘薄膜10上的半导体芯片剥离,进行半导体 芯片5的拾取。拾取方法没有特别限制,例如,可以列举用针从带有切割片的胶粘薄膜10 一侧将各个半导体芯片5上推,通过拾取装置拾取被上推的半导体芯片5的方法等。在此,由于粘合剂层2为紫外线固化型,因此拾取在对该粘合剂层2照射紫外线后 进行。由此,粘合剂层2对胶粘剂层3的粘合力下降,半导体芯片5的剥离变得容易。结果, 可以在不损伤半导体芯片5的情况下进行拾取。紫外线照射时的照射强度、照射时间等条 件没有特别限制,可以根据需要适当设定。另外,作为用于紫外线照射的光源,可以使用前 述的光源。然后,如图3所示,将切割所形成的半导体芯片5通过胶粘剂层12芯片接合到被 粘物6上。芯片接合通过压接进行。芯片接合的条件没有特别限制,可以根据需要适当设 定。具体而言,例如,可以在芯片接合温度80 160°C、芯片接合压力5N 15N、芯片接合 时间1 10秒的范围内进行。作为所述衬底,可以使用现有公知的衬底。另外,作为所述引线框,可以使用Cu引 线框、42合金引线框等金属引线框或者由玻璃环氧、BT(双马来酰亚胺-三嗪)、聚酰亚胺 等制成的有机衬底。但是,本发明不限于这些,也包括在安装半导体元件并与半导体元件电 连接后可以使用的电路板。
接着,通过将胶粘剂层12进行加热处理使其热固化,从而将半导体芯片5与被粘 物6胶粘。作为加热处理条件,优选温度在80 180°C的范围内,并且加热时间在0. 1 24小时、优选0. 1 4小时、更优选0. 1 1小时的范围内。然后,进行用焊线7将被粘物6的端子部(内部引线)的前端与半导体芯片5上 的电极焊盘(未图示)电连接的丝焊(丝焊工序)。作为所述焊线7,可以使用例如金线、 铝线或铜线等。丝焊在温度为80 250°C、优选80 220°C的范围内进行。另外,其加热 时间为数秒 数分钟。接线在加热至所述温度范围内的状态下,通过组合使用超声波的振 动能与加压的压接能来进行。在此,热固化后的胶粘剂层12优选在175°C下具有0. OlMPa以上的剪切胶粘力,更 优选0. 01 5MPa。通过使热固化后的175°c下的剪切胶粘力为0. OlMPa以上,可以防止 由于丝焊工序时的超声波振动或加热而在胶粘剂层12与半导体芯片5或被粘物6的胶粘 面处产生偏移变形。即,半导体元件不会因丝焊时的超声波振动而活动,由此可以防止丝焊 成功率下降。另外,丝焊工序也可以在不利用加热处理使胶粘剂层3热固化的情况下进行。此 时,胶粘剂层12在25 °C下对被粘物6的剪切胶粘力优选为0. 2MPa以上,更优选0. 2 IOMPa0通过使所述剪切胶粘力为0. 2MPa以上,即使在不使胶粘剂层12热固化的情况下进 行丝焊工序,也不会由于该工序中的超声波振动或加热而在胶粘剂层12与半导体芯片5或 被粘物6的胶粘面处产生偏移变形。即,半导体元件不会因丝焊时的超声波振动而活动,由 此可以防止丝焊成功率下降。另外,未固化的胶粘剂层12即使进行丝焊工序也不会完全热固化。另外,胶粘剂 层12的剪切胶粘力在80 250°C的温度范围内也需要为0. 2MPa以上。这是因为,在该温 度范围内的剪切胶粘力低于0. 2MPa时,半导体元件受到丝焊时的超声波振动而活动,从而 不能进行丝焊,成品率下降。接着,进行利用密封树脂8将半导体芯片5密封的密封工序。本工序是为了保护 搭载在被粘物6上的半导体芯片5和焊线7而进行的。本工序通过用模具将密封用树脂成 形来进行。作为密封树脂8,例如可以使用环氧树脂。树脂密封时通常在175°C的加热温度 下进行60 90秒,但是,本发明不限于此,例如也可以在165 185°C下进行数分钟固化。 由此,使密封树脂固化,并且在胶粘剂层12未热固化的情况下使该胶粘剂层12也热固化。 即,本发明中,即使在不进行后述的后固化工序的情况下,在本工序中也可以使胶粘剂层12 热固化而进行胶粘,从而可以有助于减少制造工序数以及缩短半导体装置的制造时间。所述后固化工序中,使在所述密封工序中固化不充分的密封树脂8完全固化。即 使在密封工序中胶粘剂层12未热固化的情况下,在本工序中也可以在密封树脂8固化的同 时使胶粘剂层12热固化从而进行胶粘固定。本工序中的加热温度根据密封树脂的种类而 不同,例如在165 185°C的范围内,加热时间为约0.5小时 约8小时。另外,本发明的带有切割片的胶粘薄膜如图4所示也可以适用于将多个半导体芯 片层压而进行三维安装的情况。图4是表示通过胶粘剂层三维安装半导体芯片的例子的示 意剖面图。图4所示的三维安装的情况下,首先将切割为与半导体芯片同样尺寸的至少一 个胶粘剂层12粘贴到被粘物6上,然后通过胶粘剂层12以半导体芯片5的丝焊面为上侧 的方式将半导体芯片5芯片接合。然后,避开半导体芯片5的电极焊盘部分粘贴胶粘剂层13。进而,在胶粘剂层13上以半导体芯片15的丝焊面为上侧的方式将另一半导体芯片15 芯片接合。之后,通过对胶粘剂层12、13进行加热使其热固化而胶粘固定,提高耐热强度。 加热条件与前述同样,优选温度在80 200°C的范围内、并且加热时间在0. 1 24小时的 范围内。另外,本发明中,也可以不使胶粘剂层12、13热固化而仅进行芯片接合。之后,不 经加热工序而进行丝焊工序,再用密封树脂将半导体芯片密封,该密封树脂也可以进行后 固化。然后,进行丝焊工序。由此,将半导体芯片5和另一个半导体芯片15各自的电极 焊盘与被粘物6用焊线7电连接。另外,本工序不经胶粘剂层12、13的加热工序而实施。接着,进行利用密封树脂8将半导体芯片5等密封的密封工序,使密封树脂固化。 并且,在未进行热固化的情况下,通过胶粘剂层12的热固化将被粘物6与半导体芯片5之 间胶粘固定。另外,通过胶粘剂层13的热固化将半导体芯片5与另一半导体芯片15之间 也胶粘固定。另外,密封工序后,可以进行后固化工序。即使在半导体芯片的三维安装的情况下,由于不进行胶粘剂层12、13的加热处 理,因此可以简化制造工序和提高成品率。另外,被粘物6不产生翘曲,并且半导体芯片5 及另一半导体芯片15不产生裂纹,因此可以实现半导体元件的进一步薄型化。另外,如图5所示,可以在半导体芯片间通过胶粘薄膜层压垫片来进行三维安装。 图5是表示通过垫片利用胶粘剂层将两个半导体芯片三维安装的例子的示意剖面图。图5所示的三维安装的情况下,首先在被粘物6上依次层压胶粘剂层3、半导体芯 片5及胶粘剂层21并进行芯片接合。进而,在胶粘剂层21上依次层压垫片9、胶粘剂层21、 胶粘剂层12及半导体芯片5并进行芯片接合。之后,通过将胶粘剂层12、21加热使其热固 化而进行胶粘固定,提高耐热强度。作为加热条件,与前述同样,优选温度在80 200°C的 范围内、并且加热时间在0. 1 24小时的范围内。另外,本发明中,可以不使胶粘剂层12、21热固化,而仅进行芯片接合。之后,不经 加热工序而进行丝焊,再利用密封树脂将半导体芯片密封,该密封树脂也可以进行后固化。然后,如图5所示,进行丝焊工序。由此,将半导体芯片5上的电极焊盘与被粘物 6用焊线7电连接。另外,本工序不经胶粘剂层12、21的加热工序而实施。接着,进行利用密封树脂8将半导体芯片5密封的密封工序,使密封树脂8固化, 并且在胶粘剂层12、21未固化的情况下使其热固化,由此可以将被粘物6与半导体芯片5 之间、以及半导体芯片5与垫片9之间胶粘固定。由此,得到半导体封装体。密封工序优选 仅从半导体芯片5 —侧单面密封的一次性密封法(一括封止法)。密封是为了保护粘合片 上粘贴的半导体芯片5而进行的,其代表性方法为使用密封树脂8在模具中成形。此时,一 般使用具有多个腔室的上模和下模构成的模具,同时进行密封工序。树脂密封时的加热温 度优选例如在170 180°C的范围内。密封工序后,也可以进行后固化工序。另外,作为所述垫片9,没有特别限制,可以使用例如硅芯片、聚酰亚胺薄膜等。 另外,作为所述垫片也可以使用芯材。作为芯材没有特别限制,可以使用现有公知的芯材。 具体而言,可以使用薄膜(例如聚酰亚胺薄膜、聚酯薄膜、聚对苯二甲酸乙二醇酯薄膜、聚 萘二甲酸乙二醇酯薄膜、聚碳酸酯薄膜等)、用玻璃纤维或塑料制无纺纤维增强的树脂衬 底、镜面硅晶片、硅衬底或玻璃被粘物。
(另一半导体装置的制造方法)以下,对本发明的另一方式的半导体装置的制造方法进行说明。所述另一半导体装置的制造方法,可以使用所述带有切割片的胶粘薄膜制造安装 有倒装芯片的半导体装置。具体而言,至少包括以下工序在所述带有切割片的胶粘薄膜上 粘贴半导体晶片的工序;将所述半导体晶片进行切割的工序;将切割得到的半导体元件进 行拾取的工序;和将所述半导体元件以倒装芯片方式贴装在被粘物上的工序。[安装工序]首先,将在带有切割片的胶粘薄膜上任意设置的隔片适当地剥离,在该胶粘薄膜 上粘贴半导体晶片,使其胶粘保持而固定(安装工序)。此时,所述胶粘薄膜为未固化状态 (包含半固化状态)。另外,带有切割片的胶粘薄膜粘贴在半导体晶片的背面。半导体晶片 的背面是指与电路面相反侧的面(也称为非电路面、非电极形成面等)。粘贴方法没有特别 限制,优选压接方法。压接通常在用压接辊等挤压手段挤压的同时进行。[切割工序]然后,进行半导体晶片的切割。由此,将半导体晶片切割为预定的尺寸而单片化 (小片化),制造半导体芯片。切割例如从半导体晶片的电路面一侧根据常规方法来进行。 另外,本工序中,例如可以采用切入至带有切割片的胶粘薄膜处的、称为全切的切割方式 等。本工序中使用的切割装置没有特别限制,可以使用现有公知的切割装置。另外,由于半 导体晶片通过具有胶粘薄膜的带有切割片的胶粘薄膜以优良的密合性胶粘固定,因此可以 抑制芯片缺损或芯片飞散,同时也可以抑制半导体晶片的破损。另外,胶粘薄膜由含有环氧 树脂的树脂组合物形成时,即使通过切割而切断,也可以抑制或防止在该切断面上产生胶 粘薄膜的胶粘剂层的胶糊冒出。结果,可以抑制或防止切断面相互再附着(粘连),从而可 以更好地进行后述的拾取。另外,进行带有切割片的胶粘薄膜的扩张时,该扩张可以使用现有公知的扩张装 置来进行。扩张装置具有可以通过切割环将带有切割片的胶粘薄膜向下推的环形(donuts) 的外环和直径比外环小的用于支撑带有切割片的胶粘薄膜的内环。通过该扩张工序,在后 述的拾取工序中,可以防止相邻的半导体芯片相互接触而破损。[拾取工序]为了回收胶粘固定在带有切割片的胶粘薄膜上的半导体芯片,进行半导体芯片的 拾取,将半导体芯片与胶粘薄膜一起从切割带上剥离。拾取的方法没有特别限制,可以采用 现有公知的各种方法。例如,可以列举用针从带有切割片的胶粘薄膜的基材一侧将各个半 导体芯片上推,通过拾取装置拾取被上推的半导体芯片的方法等。另外,拾取的半导体芯片 的背面由胶粘薄膜保护。[倒装芯片粘贴工序]拾取的半导体芯片通过倒装芯片接合方式(倒装芯片安装方式)固定到衬底等被 粘物上。具体而言,将半导体芯片在半导体芯片的电路面(也称为表面、电路图案形成面、 电极形成面等)与被粘物相对的状态下通过常规方法固定到被粘物上。例如,在使半导体 芯片的电路面侧形成的凸点(bump)与被粘物的连接焊盘上粘附的接合用导电材料(焊料 等)接触而进行挤压的同时使导电材料熔融,由此可以确保半导体芯片与被粘物的电导通 而将半导体芯片固定到被粘物上(倒装芯片接合工序)。此时,半导体芯片与被粘物之间形成空隙,该空隙间距一般为约30 μ m 约300 μ m。另外,将半导体芯片倒装芯片接合(倒装 芯片贴装)到被粘物上以后,清洗半导体芯片与被粘物的相对面和间隙,并在该间隙中填 充密封材料(密封树脂等)进行密封是非常重要的。作为所述被粘物,可以使用引线框或电路板(布线电路板等)等各种衬底。作为 这样的衬底的材质,没有特别限制,可以列举陶瓷衬底、塑料衬底等。作为塑料衬底,可以列 举例如环氧衬底、双马来酰亚胺三嗪衬底、聚酰亚胺衬底等。在倒装芯片接合工序中,作为凸点或导电材料的材质,没有特别限制,可以列举例 如锡_铅系金属材料、锡_银系金属材料、锡-银-铜系金属材料、锡_锌系金属材料、 锡-锌_铋系金属材料等焊料(合金)、金系金属材料、铜系金属材料等。另外,在倒装芯片接合工序中,使导电材料熔融,将半导体芯片5的电路面侧的 凸点与被粘物6表面的导电材料连接,该导电材料熔融时的温度通常为约260°C (例如 250°C 300°C )。本发明的带有切割片的胶粘薄膜,利用环氧树脂等形成胶粘薄膜,由此可 以具有能够耐受该倒装芯片接合工序中的高温的耐热性。本工序中,优选进行半导体芯片与被粘物的相对面(电极形成面)和间隙的清洗。 作为该清洗中使用的清洗液,没有特别限制,可以列举例如有机清洗液或水性清洗液。本 发明的带有切割片的胶粘薄膜中的胶粘薄膜,对清洗液具有耐溶剂性,在这些清洗液中实 质上不溶解。因此,如前所述,作为清洗液,可以使用各种清洗液,无需特别的清洗液,可以 通过现有的方法进行清洗。然后,进行用于将倒装芯片接合后的半导体芯片与被粘物之间的间隙密封的密封 工序。密封工序使用密封树脂进行。此时的密封条件没有特别限制,通常通过在175°C下 进行60秒 90秒的加热来进行密封树脂的热固化,但是,本发明不限于此,例如,也可以在 165°C 185°C下进行数分钟后固化。该工序中的热处理中,不仅进行密封树脂的热固化,而 且同时进行胶粘薄膜的热固化。由此,密封树脂和胶粘薄膜两者随着热固化的进行发生固 化收缩。结果,因密封树脂的固化收缩而施加在半导体芯片上的应力由于胶粘薄膜的固化 收缩可以抵消或缓和。另外,通过该工序,可以使胶粘薄膜完全或基本完全热固化,从而可 以以优良的密合性粘贴到半导体元件的背面。另外,本发明的胶粘薄膜即使在未固化的状 态下也可以在该密封工序时与密封材料一起热固化,因此不必新增加用于使胶粘薄膜热固 化的工序。作为所述密封树脂,只要是具有绝缘性的树脂(绝缘树脂)则没有特别限制,可 以从公知的密封树脂等密封材料中适当选择使用,更优选具有弹性的绝缘树脂。作为密封 树脂,可以列举例如包含环氧树脂的树脂组合物等。作为环氧树脂,可以列举前面所例示 的环氧树脂等。另外,作为包含环氧树脂的树脂组合物所形成的密封树脂,除了环氧树脂以 外,还可以含有环氧树脂以外的热固性树脂(酚醛树脂等)或热塑性树脂等作为树脂成分。 另外,酚醛树脂也可以作为环氧树脂的固化剂使用,作为这样的酚醛树脂,可以列举前面例 示的酚醛树脂等。使用所述带有切割片的胶粘薄膜制造的半导体装置(倒装芯片安装的半导体装 置),由于在半导体芯片的背面粘贴有胶粘薄膜,因此能够以优良的可视性实施各种标记。 特别是即使标记方法为激光标记方法,也能够以优良的对比率实施标记,从而可以良好地 辨识通过激光标记所施加的各种信息(文字信息、图像信息等)。另外,进行激光标记时,可
19以使用公知的激光标记装置。另外,作为激光器,可以利用气体激光器、固体激光器、液体激 光器等各种激光器。具体而言,作为气体激光器,没有特别限制,可以使用公知的气体激光 器,优选二氧化碳激光器(CO2激光器)、准分子激光器(ArF激光器、KrF激光器、XeCl激光 器、XeF激光器等)。另外,作为固体激光器,没有特别限制,可以使用公知的固体激光器,优 选YAG激光器(Nd: YAG激光器等)、YVO4激光器。
实施例以下,对本发明的优选实施例进行详细的例示说明。但是,该实施例中记载的材 料或配合量等只要没有特别限定的记载,则本发明的范围不限于此。另外,“份”表示“重量 份”。(实施例1)〈粘合剂层的形成〉在具有冷凝管、氮气导入管、温度计和搅拌装置的反应容器中,加入95份丙烯 酸-2-乙基己酯(以下称为“2EHA”)、5份丙烯酸-2-羟基乙酯(以下称为“HEA”)和65 份甲苯,在氮气流中在61°C下进行6小时聚合处理,得到丙烯酸类聚合物A。然后,在100份丙烯酸类聚合物A中加入3份多异氰酸酯化合物(商品名二 口才、 一卜L,日本聚氨酯株式会社制造),制作粘合剂组合物溶液。将前述制备的粘合剂组合物溶液涂布于厚度50 μ m的聚对苯二甲酸乙二醇酯薄 膜上,并在80°C加热交联3分钟,形成厚度IOym的粘合剂层。然后,将所得粘合剂层转印 到厚度100 μ m的聚乙烯薄膜上。接着,在所述粘合剂层的表面,使用聚硅氧烷喷剂(商品名KF96SP,信越化学工 业株式会社制)散布聚硅氧烷树脂进行表面改性。采用使Si-κ α射线强度为0. Olkcps的 散布量。由此,制作本实施例的切割片。<带有切割片的胶粘薄膜的制作>将环氧树脂(日本化药株式会社制造,商品名ΕΡΡΝ501ΗΥ)50份、酚醛树脂(明和 化成株式会社制造,商品名ΜΕΗ7851)50份、丙烯酸类共聚物U們”力&株式会社制 造,商品名> κ夕> AR31) 100份和作为填料的球形二氧化硅(Admatechs株式会社制造, 商品名S0-25R,平均粒径0. 5μπι)70份溶解于甲乙酮中,得到浓度23. 6重量%的胶粘剂组 合物溶液。将该胶粘剂组合物溶液涂布到经聚硅氧烷脱模处理后的厚度38 μ m的聚对苯二 甲酸乙二醇酯薄膜构成的脱模处理薄膜(剥离衬垫)上,然后在130°C干燥2分钟。由此, 形成厚度IOym的胶粘剂层。进而,将胶粘剂层转印到前述的粘合剂层上,得到本实施例的 带有切割片的胶粘薄膜。(实施例2)在本实施例中,除了调节对粘合剂层表面进行表面改性时的聚硅氧烷喷剂的散布 量使Si-K α射线强度为IOOkcps以外,与所述实施例1同样操作,制作本实施例的带有切 割片的胶粘薄膜。(实施例3)在本实施例中,除了在对粘合剂层表面进行表面改性时使用涂布有聚硅氧烷树脂的薄膜(三菱树脂株式会社制造,商品名 夕* ^ &MRA38)、并将聚硅氧烷树脂转印到 粘合剂层表面(粘合剂层表面的Si-K α射线强度为0. 9kcps)以外,与所述实施例1同样 操作,制作本实施例的带有切割片的胶粘薄膜。(实施例4)在本实施例中,除了在对粘合剂层表面进行表面改性时使用涂布有聚硅氧烷树脂 的薄膜(三菱树脂株式会社制造,商品名夕* ^ ^ MRF38)、并将聚硅氧烷树脂转印到 粘合剂层表面(粘合剂层表面的Si-K α射线强度为1.2kcps)以外,与所述实施例1同样 操作,制作本实施例的带有切割片的胶粘薄膜。(实施例5)在本实施例中,除了在对粘合剂层表面进行表面改性时在粘合剂层表面涂布聚硅 氧烷分散体(东丽道康宁(東 > 夕'々二一二 > V )株式会社制造,商品名SD7226)并在 70°C干燥5分钟从而对粘合剂层表面进行表面改性(粘合剂层表面的Si-K α射线强度为 85kcps)以外,与所述实施例1同样操作,制作本实施例的带有切割片的胶粘薄膜。(比较例1)在本比较例中,除了调节对粘合剂层表面进行表面改性时的聚硅氧烷喷剂的散布 量使Si-K α射线强度为0. OOlkcps以外,与所述实施例1同样操作,制作本比较例的带有 切割片的胶粘薄膜。(比较例2)在本比较例中,除了调节对粘合剂层表面进行表面改性时的聚硅氧烷喷剂的散布 量使Si-K α射线强度为0. 005kcps以外,与所述实施例1同样操作,制作本比较例的带有 切割片的胶粘薄膜。(比较例3)在本比较例中,除了调节对粘合剂层表面进行表面改性时的聚硅氧烷喷剂的散布 量使Si-K α射线强度为200kcps以外,与所述实施例1同样操作,制作本比较例的带有切 割片的胶粘薄膜。(比较例4)在本比较例中,除了调节对粘合剂层表面进行表面改性时的聚硅氧烷喷剂的散布 量使Si-K α射线强度为500kcps以外,与所述实施例1同样操作,制作本比较例的带有切 割片的胶粘薄膜。(剥离粘合力评价)将实施例及比较例得到的带有切割片的胶粘薄膜切割为20mm带宽的长方形,并 在胶粘剂层上粘贴胶带(商品名BT-315(日东电工株式会社制造,20mm宽))。之后,在温 度25°C、相对湿度55% Rh的环境下静置3分钟。接着,以粘合剂层表面与镜面硅晶片表面所成角度为180°的方式将切割片剥离。 此时的剥离速度为300mm/分钟。结果如下表1所示。(切割)使用各实施例及比较例的各个带有切割片的胶粘薄膜,按照以下的要点实际进行 半导体晶片的切割,评价各带有切割片的胶粘薄膜的性能。对半导体晶片(直径8英寸、厚度0. 6mm)进行背面研磨处理,将厚度0. 025mm的
21镜面晶片作为工件使用。从带有切割片的胶粘薄膜上剥离隔片后,在40°C下通过用辊压接 将镜面晶片粘贴到该胶粘薄膜上,并进行切割。另外,切割是进行全切而得到IOmm见方的 芯片尺寸。通过该切割形成100个半导体芯片,计数其中发生芯片飞散的半导体芯片个数。 结果如下表1所示。〈晶片磨削条件〉磨削装置:rM ”公司制,DFG-8560半导体晶片8英寸直径(从厚度0. 6mm背面磨削至0. 025mm)〈粘贴条件〉粘贴装置日东精机制MA-3000II粘贴速度10mm/分钟粘贴压力0·I5MPa粘贴时的平台(7歹一夕)温度40°C<切割条件>切割装置fM D公司制,DFD-6361切割环2-8-1 {r ^zx公司制)切割速度30mm/秒切割刀片、二公司制 NBC-ZH226J27HAAA切割刀片转速40000rpm刀片高度0. 085mm切割方式单步切割晶片芯片尺寸10.0mm见方(拾取)使用各实施例及比较例的各个带有切割片的胶粘薄膜,按照以下的要点实际进行 半导体晶片的切割后进行拾取,评价各带有切割片的胶粘薄膜的性能。对半导体晶片(直径8英寸、厚度0. 6mm)进行背面研磨处理,将厚度0. 025mm的 镜面晶片作为工件使用。从带有切割片的胶粘薄膜上剥离隔片后,在40°C下通过用辊压接 将镜面晶片粘贴到该胶粘薄膜上,并进行切割。另外,切割是进行全切而得到IOmm见方的 芯片尺寸。然后,将各带有切割片的胶粘薄膜拉伸,进行使各芯片间达到预定间隔的扩张工 序。进而,通过用针从各带有切割片的胶粘薄膜的基材侧上推的方式拾取半导体芯片,进行 拾取性评价。具体而言,在后述的条件下连续地拾取100个半导体芯片,计数不能进行拾 取的半导体芯片的个数。结果如下表1所示。〈晶片磨削条件〉磨削装置:rM ”公司制,DFG-8560半导体晶片8英寸直径(从厚度0. 6mm背面磨削至0. 025mm)〈粘贴条件〉粘贴装置日东精机制MA-3000II粘贴速度10mm/分钟粘贴压力0·I5MPa
22
粘贴时的平台温度40°C<切割条件>切割装置:rM ”公司制,DFD-6361切割环2-8-1 {r ^zx公司制)切割速度30mm/秒切割刀片、二公司制 NBC-ZH226J27HAAA切割刀片转速30000rpm刀片高度0. 085mm切割方式单步切割晶片芯片尺寸10. Omm见方<扩张条件>芯片接合机新川株式会社制造,装置名SPA_300外环相对于内环的下拉量3mm<拾取条件>芯片接合装置新川株式会社制造,装置名SPA_300针根数9根针上推量300 μ m针上推速度5mm/秒夹头保持时间1秒(结果)由下表1可以看出,比较例1和2中粘合剂层对胶粘剂层的胶粘性良好,因此可以 防止半导体晶片切割时的芯片飞散。但是,粘合剂层的粘合力过强,结果在半导体芯片的拾 取时产生拾取不良。另外,比较例3和4中粘合剂层对胶粘剂层的剥离性良好,因此半导体 芯片的拾取时全部半导体芯片均可以良好地拾取。但是,粘合剂层的粘合力过弱,结果在半 导体晶片的切割时产生芯片飞散。与此相对,在实施例1和2中,粘合剂层的与胶粘剂层粘 贴的面的胶粘性和剥离性的平衡处于良好的状态,因此可以防止切割时的芯片飞散,并且 拾取性也良好。表 1
实施例1实施例2实施例3实施例4实施例5比较例1比较例2比较例3比较例4Si-Kcx射线强度 (kcps)0.011000.91.2850.0010.005200500剥离粘合力 (N/20mm)0.20.010.090.05'0.0140.40.250.0080.005芯片飞散0/1000/1000/1000/1000/1000/1000/10065/100100/100拾取性0/1000/1000/1000/1000/10081/10040/1000/1000/100
权利要求
1.一种带有切割片的胶粘薄膜,在基材上依次层压有粘合剂层和胶粘剂层,其中,所述粘合剂层中,与所述胶粘剂层的粘贴面的至少一部分区域的Si-Ka射线强度为 0.01 lOOkcps。
2.如权利要求1所述的带有切割片的胶粘薄膜,其中,在温度25°C、相对湿度55%、拉伸速度300mm/分钟、剥离角度180°的条件下进行剥离 时,所述区域对所述胶粘剂层的剥离粘合力为0. 01 0. 2N/20mm。
3.如权利要求1或2所述的带有切割片的胶粘薄膜,其中,所述区域与所述胶粘剂层的工件粘贴区域对应。
4.一种带有切割片的胶粘薄膜的制造方法,用于制造在基材上依次层压有粘合剂层和 胶粘剂层的带有切割片的胶粘薄膜,该方法包括如下工序在所述基材上形成粘合剂层的工序,对所述粘合剂层的表面的至少一部分区域进行表面改性使Si-K a射线强度为0. 01 lOOkcps的工序,和在所述粘合剂层中的经表面改性后的表面上形成所述胶粘剂层的工序。
5.如权利要求4所述的带有切割片的胶粘薄膜的制造方法,其中,所述粘合剂层的所述粘贴面的表面改性通过将至少含有聚硅氧烷树脂的溶液以雾状 散布来进行。
6.如权利要求4所述的带有切割片的胶粘薄膜的制造方法,其中,所述粘合剂层的所述粘贴面的表面改性通过将在另一薄膜上涂布聚硅氧烷树脂而得 到的涂层转印来进行。
7.如权利要求4所述的带有切割片的胶粘薄膜的制造方法,其中,所述粘合剂层的所述粘贴面的表面改性通过在粘合剂层表面涂布聚硅氧烷分散体并 使其干燥来进行。
8.一种半导体装置,其由权利要求1所述的带有切割片的胶粘薄膜制造。
全文摘要
本发明提供一种带有切割片的胶粘薄膜及其制造方法,所述带有切割片的胶粘薄膜在基材上具有粘合剂层,并且在该粘合剂层上具有以可剥离的方式设置的胶粘薄膜,即使在半导体晶片为薄型的情况下也无损将其进行切割时的保持力,并且将通过切割得到的半导体芯片与该胶粘薄膜一体剥离时的剥离性优良。本发明的带有切割片的胶粘薄膜,在基材上依次层压有粘合剂层和胶粘剂层,其中,所述粘合剂层中,与所述胶粘剂层的粘贴面的至少一部分区域的Si-Kα射线强度为0.01~100kcps。
文档编号C09J133/00GK102002323SQ20101027078
公开日2011年4月6日 申请日期2010年8月31日 优先权日2009年8月31日
发明者天野康弘, 村田修平, 松村健, 菅生悠树 申请人:日东电工株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1