半导体芯片搭载方法

文档序号:3736826阅读:369来源:国知局
专利名称:半导体芯片搭载方法
技术领域
本发明涉及一种半导体芯片搭载方法。
背景技术
目前,在半导体元件和半导体元件装载用支撑构件的接合中,主要使用银糊剂。但是,随着近年半导体元件的小型化、高性能化,对使用的支撑构件也逐渐要求小型化、细密化。针对这样的要求,对于银糊剂而言,由于因溢出或半导体元件的倾斜引起的引线接合时的不良的产生、粘接片的膜厚的控制困难性、及粘接片的空隙的产生等,而逐渐不能适应上述要求。因此,为了适应上述要求,近年逐渐使用片状的粘接剂。
该粘接片在单片粘贴方式或晶片背面粘贴方式中使用。使用前者的单片粘贴方式的粘接片制造半导体装置时,利用切割或冲切将卷盘状的粘接片切取为单片后,将该单片粘接于支撑构件而得到的带粘接片的支撑构件,再将通过切割工序而单片化的半导体元件接合于带粘接片的支撑构件,从而制作带半导体元件的支撑构件,其后,根据需要经过引线接合工序、密封工序等,得到半导体装置。但是,为了使用上述单片粘贴方式的粘接片,需要将粘接片切取为单片并将该单片粘接于支撑构件的专用安装装置,因此,存在如下问题与使用银糊剂的方法相比,制造成本升高。
另一方面,使用后者的晶片背面粘贴方式的粘接片制造半导体装置时,首先,在半导体晶片的背面粘贴粘接片,进而将切割带粘合在粘接片的另一面;其后,切割上述晶片而单片化为半导体元件;拾取单片化的带粘接片的半导体元件并将其接合于支撑构件;经由其后的加热、固化、引线接合等工序得到半导体装置。该晶片背面粘贴方式的粘接片不需要为了将带粘接片的半导体元件接合于支撑构件而将粘接片单片化的装置,可以直接地或通过改良附加热盘等装置的局部的方式使用现有的银糊剂用安装装置。因此,在使用有粘接片的安装方法中,作为制造成本可以控制得比较低的方法而受到关注。
但是,在使用晶片背面粘贴方式的粘接片的方法中,需要在晶片的切割工序时也切割粘接片。作为切割该粘接片的方法,具有使用金刚石刀片进行切割的接触型切割方法;对晶片照射激光并在晶片内部选择性地形成改性部,其后进行扩张(expand),沿改性部切割晶片的同时切割粘接片的方法;或在切割的晶片上粘贴粘接片,其后进行扩张,沿晶片切割线切割粘接片的方法(例如,参照日本特开2006-093213号公报)等。但是,由于在任一种方法中都难以用相同的工序切割作为无机物的坚硬的晶片和作为有机物的柔软的粘接片,因此,在粘接片中添加无机填料而调整为适当的硬度可以有效提高切割性。
另外,作为装载有以半导体为主的各种电子部件的安装基板,作为最重要的特性之一是具有可靠性。其中,相对于热疲劳的连接可靠性由于直接关系到使用安装基板的设备的可靠性,因此是非常重要的项目。作为使该连接可靠性降低的原因,可以列举由于使用热膨胀系数不同的各种材料而产生的热应力。这是由于半导体元件的热膨胀系数小至约 4ppm/°C,与此相对,安装电子部件的线路板的热膨胀系数大至15ppm/°C以上,因此,相对热冲击产生热变形,由于该热变形产生热应力,该热应力使连接可靠性降低。因此,缓和该热应力成为作为粘接片的课题。另外,这种线路板通常具有由配线产生的凹凸,对粘接片来说需要在接合时填充该线路板的凹凸。从热应力缓和性及线路板的凹凸填充性等观点出发, 半导体用粘接片希望固化后的弹性模量降低到一定程度,但是公知的是为了提高粘接片的切割性而添加无机填料时,通常粘接片会高弹性化,兼顾半导体封装的可靠性和粘接片的切割性便成为技术问题。
本发明的课题在于,提供一种通过扩张得到单片时的切割性良好,且在接合时对线路板的凹凸的填充性良好的可靠性优良的半导体用粘接片及切割带一体型半导体用粘接片。发明内容
对于现有的粘接片而言,为了可以通过扩张进行粘接片的单片化,在树脂组合物中添加无机填料而缩小了粘接片的固化前的断裂伸长率,但固化后的高温弹性模量升高, 线路板的凹凸填充性差。
本发明人等进行了潜心研究,结果发现,可以将固化前的粘接片的0°C时的断裂伸长率保持得较小,且降低固化后的高温弹性模量,从而完成了本发明。
本发明涉及(I) 一种半导体用粘接片,其特征在于,由含有高分子量成分及填料的树脂组合物构成,固化前的粘接片的0°c时的断裂伸长率为40%以下,固化后的粘接片的175°C时的弹性模量为0. I lOMPa。
另外,本发明涉及(2)根据上述(I)所述的半导体用粘接片,其特征在于,所述高分子量成分的Tg为-10 60°C,重均分子量为2万 100万。
另外,本发明涉及(3)根据上述(I)或(2)所述的半导体用粘接片,其特征在于, 将所述树脂组合物的总量设定为100重量%时,其含有50 65重量%的高分子量成分及 35 50重量%的填料。
另外,本发明涉及(4)根据上述(3)所述的半导体用粘接片,其特征在于,所述填料含有一次粒子的平均粒径为0. 005 0. I ii m的填料。
另外,本发明涉及(5)根据上述(4)所述的半导体用粘接片,其特征在于,在树脂组合物中含有I 15重量%的所述一次粒子的平均粒径为0. 005 0. I ii m的填料。
另外,本发明涉及(6)根据上述⑴ (5)中任一项所述的半导体用粘接片,其特征在于,在所述树脂组合物中含有低分子量聚合物。
另外,本发明涉及(7)根据上述(6)所述的半导体用粘接片,其特征在于,所述低分子量聚合物的重均分子量为0. I万 I万。
另外,本发明涉及(8)根据上述(6)或(7)所述的半导体用粘接片,其特征在于, 所述低分子量聚合物为末端具有羧基的丁二烯聚合物。
另外,本发明涉及(9) 一种切割带一体型半导体用粘接片,其将上述⑴ ⑶中任一项所述的半导体用粘接片和切割带层叠而成。
根据本发明,在对制造半导体装置时的带粘接片半导体元件进行单片化的工序4中,可以得到基于扩张的粘接片的切割性良好、且在接合时对线路板的凹凸的填充性良好、 可靠性优良的半导体用粘接片及切割带一体型半导体用粘接片。
具体实施方式
本发明的半导体用粘接片的特征在于,由含有高分子量成分及填料的树脂组合物构成,固化前的粘接片的0°c时的断裂伸长率为40%以下,固化后的粘接片的175°C时的弹性模量为0. I IOMPa0
在此,所谓固化前的粘接片,是指位于B阶段状态的粘接片。
本发明的半导体用粘接片,其固化前的粘接片的0°C时的断裂伸长率为40%以下是重要的,超过40%时,基于扩张的粘接片的切割性差。上述断裂伸长率优选为35%以下, 更优选为30%以下。
对于上述断裂伸长率,可以使用TENSILON万能拉力机(T0Y0 BALDWIN制、 UTM-III-500),在卡盘间距离20mm、拉伸速度3mm/分钟、温度(TC的条件下拉伸固化前的厚度为40 y m的粘接片,测定断裂时的粘接片的长度,利用以下的式子求出。
断裂伸长率)=(断裂时的粘接片的长度(mm)-20)/20X 100
在本发明的粘接片中,为了使固化前的粘接片的0°C时的断裂伸长率为40%以下,调整树脂组合物中的高分子量成分及填料的含量即可。具体而言,降低树脂组合物中的高分子量成分的含量且提高填料的含量是有效的,将树脂组合物中的高分子量成分设定为 65重量%以下及将填料的含量设定为35重量%以上更有效,将高分子量成分设定为50 65重量%及将填料的含量设定为35 50重量%特别有效。
对本发明的半导体用粘接片而言,固化后的粘接片的175°C时的弹性模量为0.I IOMPa是重要的,如果小于0. IMPa,则可靠性降低,超过IOMPa时,对线路板的凹凸的填充性降低。上述弹性模量优选为I 9MPa,更优选为3 8MPa。
上述弹性模量可以使用动态粘弹性测定装置(Rheology社制、DVE-V4),对使粘接片(宽度4mm、厚度40 iim)在175°C下固化3小时后的固化物施加拉伸负荷(IOg),采用卡盘间距离20mm、频率10Hz、升温速度3°C /分钟从25°C至300°C进行测定的温度依赖性测定模式进行测定。
在本发明的粘接片中,为了使固化后的粘接片的175 C时的弹性|吴量为0. I lOMPa,只要调整树脂组合物中的高分子量成分及填料的含量即可。具体而言,提高树脂组合物中的高分子量成分的含量且降低填料的含量是有效的,将树脂组合物中的高分子量成分的含量设定为50重量%以上及将填料的含量设定为50重量%以下更有效,将高分子量成分的含量设定为50 65重量%及将填料的含量设定为35 50重量%特别有效。
本发明的粘接片由含有高分子量成分及填料的树脂组合物构成。
高分子量成分的Tg (玻璃化转变温度)优选为-10 60°C,更优选为-5 10°C, 特别优选为0 5°C。通过使上述Tg为-10°C以上,防止扩张时的切割带的断裂,通过使其为60°C以下,抑制粘接片的软化,容易使扩张时的粘接片的切割良好。
上述高分子量成分的重均分子量优选为2万 100万,更优选为10万 90万,特别优选为50万 80万。通过使上述重均分子量为2万以上,可以抑制粘接片的强度及可挠性降低,防止胶粘性增加,通过使其为100万以下,不使对树脂组合物的在溶剂中的溶解性降低,容易操作。需要说明的是,重均分子量为凝胶渗透色谱法(GPC)中使用由标准聚苯乙烯得到的标准曲线而得的聚苯乙烯换算值。
将树脂组合物的总量设定为100重量%时,上述高分子量成分的含量优选为50 65重量%,更优选为52 63重量%,特别优选为53 60重量%。如果上述含量小于50 重量%,则有可能固化后的粘接片的175°C时的弹性模量升高,对线路板的凹凸的填充性降低。上述含量超过65重量%时,有可能固化前的粘接片的(TC时的断裂伸长率变大,基于扩张的粘接片的切割性差,单片化困难,另外,有可能固化后的粘接片的175°C时的弹性模量变低,可靠性降低。
作为本发明中使用的高分子量成分,可列举聚酰胺树脂、聚酰亚胺树脂、聚酰胺酰亚胺树脂、丙烯酸系共聚物等,优选与环氧树脂不相容的丙烯酸缩水甘油酯或甲基丙烯酸缩水甘油酯等含有官能性单体的含环氧基的丙烯酸系共聚物。作为官能性单体,由于使用含有丙烯酸等羧酸型或(甲基)丙烯酸羟甲酯等羟基型的丙烯酸系共聚物时,存在容易进行交联反应、清漆状态下的凝胶化、因固化前的状态中的固化度上升而引起粘接力降低等问题,因此不优选。
上述含环氧基的丙烯酸系共聚物中所含的(甲基)丙烯酸缩水甘油酯的含量优选为I 6重量%,更优选为2 5重量%。通过使上述含量为I重量%以上,防止粘接力的降低,通过使其为6重量%以下,易于抑制凝胶化。上述(甲基)丙烯酸缩水甘油酯的含量表示相对于构成共聚物的单体的总重量的(甲基)丙烯酸缩水甘油酯的重量比例。
上述含环氧基的丙烯酸系共聚物的Tg优选为-10 60°C。通过使上述Tg为_10°C 以上,防止固化前的状态下的粘接剂层的胶粘性增加,操作性良好。另一方面,通过使上述Tg为60°C以下,抑制粘接片的软化,容易使扩张时的粘接片的切割良好。另外,从耐热性的观点出发,上述含环氧基的丙烯酸系共聚物的重均分子量优选为50万以上,更优选为 60万 80万。作为这种含环氧基的丙烯酸系共聚物,没有特别限制,可以使用由Nagase chemtex株式会社市售的商品名为HTR-860P-3DR等的商品。另外,作为通过合成得到含环氧基的丙烯酸系共聚物的方法,可列举将(甲基)丙烯酸缩水甘油酯,以及(甲基)丙烯酸乙酯或(甲基)丙烯酸丁酯或者(甲基)丙烯酸乙酯和(甲基)丙烯酸丁酯的混合物用作单体,利用成珠聚合法、溶液聚合法等公知的方法进行聚合的方法。
在本发明中,从耐热性的观点出发,树脂组合物含有填料。作为填料,没有特别限定,优选无机填料,可列举例如氢氧化铝、氢氧化镁、碳酸钙、碳酸镁、硅酸钙、硅酸镁、氧化钙、氧化镁、氧化铝、氮化铝、硼酸铝晶须、氮化硼、结晶性二氧化硅、非晶性二氧化硅、锑氧化物等。为了提高热传导性,优选氧化铝、氮化铝、氮化硼、结晶性二氧化硅、非晶性二氧化硅等。为了调整熔融粘度及赋予触变性,优选氢氧化铝、氢氧化镁、碳酸钙、碳酸镁、硅酸钙、 硅酸镁、氧化钙、氧化镁、氧化铝、结晶性二氧化硅、非晶性二氧化硅等。另外,为了使耐湿性提高,优选氧化铝、二氧化硅、氢氧化铝、锑氧化物等。其中,从通用性的观点出发,更优选二氧化硅。
将树脂组合物的总量设定为100重量%时,上述填料的含量优选为35 50重量%,更优选为27 48重量%,特别优选为27 40重量V0。如果上述含量小于35重量V0, 则难以减小固化前的粘接片的0°C时的断裂伸长率,超过50重量%时,有可能粘接片的润湿性降低,晶片粘贴性、可靠性降低。
上述填料的平均粒径没有特别限定,一次粒子的平均粒径优选为0. 005 10 m。 通过将上述平均粒径设定为10 y m以下,容易将粘接片薄膜化,通过使其为0. 005 y m以上, 操作性变得良好。从提高填料的含量、使弹性模量及填充性良好的方面考虑,优选只要为上述平均粒径的范围,混合使用具有不同的粒径分布的多种填料。为了减小固化前的粘接片的(TC时的断裂伸长率,优选含有一次粒子的平均粒径为0. 005 0. I y m的填料,更优选含有粒径为0. 010 0. 05 ii m的填料,特别优选含有粒径为0. 015 0. 03 ii m的填料。在树脂组合物中,优选上述一次粒子的平均粒径为0. 005 0. I ii m的填料的含量为I 15重量%,更优选含量为2 13重量%。通过使上述含量为I重量%以上,容易缩小断裂伸长率,通过使其为15重量%以下,防止粘接剂层的胶粘性的降低,操作性良好。
上述平均粒径可以通过例如利用激光衍射法的粒度分布测定来测定。另外,平均粒径可以作为中位径求出。
在本发明中,从粘接性的观点出发,优选树脂组合物含有树脂成分。作为树脂成分,可列举丙烯酸树脂、甲基丙烯酸树脂、苯氧基树脂、环氧树脂、酚醛树脂、甲酚树脂、氰酸酯树脂等,为了提高耐热性,优选含有热固化性的官能团,其中,更优选环氧树脂。作为环氧树脂,可列举例如Yuka_Shell Epoxy Company 制,商品名Epicoat 1001、1002、1003、 1055、1004、1004AF、1007、1009、1003F、1004F ;Dow Chemical 日本株式会社制,商品名 D. E. R. 661、662、663U、664、664U、667、642U、672U、673MF、668、669 等双酚 A 型环氧树脂;东都化成株式会社制,商品名YDF-2004、YDF-8170C等双酚F型环氧树脂;日本化药株式会社制,商品名EPPN_201等苯酹酹醒清漆型环氧树脂;Yuka-Shell Epoxy Company制,商品名Epicoat 180S65 ;汽巴公司制,商品名AralditeECN1273、1280、1299 ;东都化成株式会社制,商品名:YDCN-701、702、703、704、700-10 ;日本化药株式会社制,商品名:E0CN_1020、 102S、103S、104S ;住友化学工业制,商品名ESCN-195X、200L、220等甲酚酚醛清漆型环氧树脂;Yuka-Shell Epoxy Company 制,商品名Epon 1031S、Epicoatl032H60、157S70 ; 日本化药株式会社制,商品名EPPN501H、502H等多官能环氧树脂;汽巴公司制,商品名 Araldite PT810等含杂环环氧树脂等;但并不限定于这些树脂。
环氧树脂的重均分子量没有特别限定,优选为400 10000,更优选为500 5000,特别优选为600 3000。如果上述重均分子量小于400,则为低粘度的液体的情况多, 有可能使粘接片的断裂性降低。上述重均分子量超过10000时,伴随高分子量化,利用树脂间的分子的互相缠绕,对溶剂的溶解性会降低,操作性容易降低。
使用热固化性树脂作为树脂成分时,优选并用固化剂,进一步优选并用固化促进剂。
作为本发明中使用的固化剂,只要是通常用作热固化性树脂的固化剂的固化剂, 就没有特别限定,可列举例如胺类、聚酰胺、酸酐、多硫化物、三氟化硼、双酚A、双酚F、双酚S之类的I分子中具有2个以上酚性羟基的双酚类;苯酚酚醛清漆树脂、双酚A酚醛清漆树脂、甲酚酚醛清漆树脂等酚醛树脂等。
其中,从耐热性的观点出发,优选酚醛树脂,更优选投入在85°C、湿度85% RH的恒温恒湿槽中48小时后的吸水率为2重量%以下的酚醛树脂,进一步特别优选以热重量分析仪(TGA)测定的350°C下的加热质量减少率(升温速度5°C /分钟、氛围气氮气)小于5 重量%的酚醛树脂。所述的酚醛树脂可以通过使苯酚化合物和作为2价连结基的亚二甲基苯化合物在无催化剂或酸催化剂的存在下反应而得到。作为市售品,有三井化学株式会社制的商品名Mirex XLC-系列、XL-系列等。
热固化性树脂和固化剂的配合比例没有特别限定,从化学计量的观点出发,优选反应基当量相同。
另外,作为本发明中使用的固化促进剂,没有特别限制,可以使用例如季鱗盐类、 季铵盐类、咪唑类、DBU脂肪酸盐类、金属螯合物类、金属盐类、三苯基膦类等。这些固化促进剂单独使用I种或并用2种以上。在这些固化促进剂中,优选咪唑类,作为其具体例,可列举2-甲基咪唑、2-乙基-4-甲基咪唑、I-氰基乙基-2-苯基咪唑、I-氰基乙基-2-苯基咪唑鎗偏苯三酸酯等。
相对热固化性树脂及固化剂的总量100重量份,固化促进剂的添加量优选0.001 5重量份,更优选为0. 05 3重量份。
在本发明中,从断裂性的观点出发,树脂组合物优选含有低分子量聚合物。低分子量聚合物的重均分子量没有特别限定,优选为0. I万 I万,更优选为0. 2万 I万,特别优选为0. 3万 0. 5万。如果上述重均分子量小于0. I万,则为低粘度的液体的情况多,有可能使粘接片的断裂性降低。上述重均分子量超过I万时,随着高分子量化,由于树脂间的分子的互相缠绕,有可能使粘接片的断裂性降低。
本发明中使用的低分子量聚合物优选含有末端具有羧基的丁二烯的均聚物或共聚物,例如,作为可以优选使用的低分子量聚合物,可列举作为末端具有羧基的丙烯腈聚丁二烯共聚物的 Hycar CTB-2009X 162、CTBN-1300X31、CTBN-1300X8、CTBN-1300X 13, CTBNX-1300X9(都是宇部兴产株式会社制)及作为末端具有羧基的液状聚丁二烯的 NISS0-PB-C-2000(日本曹达株式会社制)等。这些低分子量聚合物可以单独使用或2种以上组合使用。
在本发明中,为了使不同种材料间的界面结合良好,树脂组合物优选含有各种偶联剂。作为偶联剂,可列举硅烷类偶联剂、钛类偶联剂、铝类偶联剂等,最优选硅烷类偶联剂。
作为硅烷类偶联剂,没有特别限制,可以使用例如乙烯基三氯硅烷、乙烯基三 (¢-甲氧基乙氧基)硅烷、乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷等乙烯基硅烷类; Y-甲基丙烯酰氧基丙基三甲氧基硅烷、Y-甲基丙烯酰氧基丙基甲基二甲氧基硅烷、3-甲基丙烯酰氧基丙基-三甲氧基硅烷、甲基三(甲基丙烯酰氧基乙氧基)硅烷等甲基丙烯酰基硅烷类;¢-(3,4-环氧基环己基)乙基三甲氧基硅烷、Y-环氧丙氧基丙基三甲氧基硅烷、Y-环氧丙氧基丙基甲基二甲氧基硅烷、Y-环氧丙氧基丙基甲基二乙氧基硅烷、甲基三(缩水甘油氧基)硅烷等含环氧基硅烷类(氨基乙基)Y-氨基丙基三甲氧基硅烧、N- 0 (氛基乙基、、-氛基丙基甲基二甲氧基娃烧、Y -氛基丙基二乙氧基娃烧、N-苯基-Y _氛基丙基二甲氧基娃烧、3-氛基丙基甲基二乙氧基娃烧、3_氛基丙基二甲氧基娃烧、3-氨基丙基_ 二(2-甲氧基-乙氧基-乙氧基)娃烧、N-甲基-3-氨基丙基二甲氧基硅烷、三氨基丙基-三甲氧基硅烷、3-4,5_ 二氢咪唑-I-基-丙基三甲氧基硅烷、戊基三氯娃烧等氨基娃烧类;Y -疏丙基二甲氧基娃烧、Y -疏丙基二乙氧基娃烧、3-疏丙基-甲基~■甲氧基娃烧等疏基娃烧类;3-服基丙基二乙氧基娃烧、3-服基丙基二甲氧基娃烧等含脲键硅烷类;三甲基甲硅烷基异氰酸酯、二甲基甲硅烷基异氰酸酯、甲基甲硅烷基三异氰酸酷、乙稀基甲娃烧基二异氛酸酷、苯基甲娃烧基二异氛酸酷、四异氛酸酷娃烧、乙氧基娃烧异氰酸酯等含异氰酸酯基硅烷类;3_氯丙基-甲基二甲氧基硅烷、3-氯丙基-二甲氧基硅烷、3-氰基丙基-三乙氧基硅烷、六甲基二硅氮烷、N,0-双(三甲基甲硅烷基)乙酰胺、甲基二甲氧基娃烧、甲基二乙氧基娃烧、乙基二氣娃烧、正丙基二甲氧基娃烧、异丁基二甲氧基硅烷、辛基三乙氧基硅烷、苯基三甲氧基硅烷、苯基三乙氧基硅烷、N-P (N-乙烯基苄基氨基乙基)-Y _氨基丙基二甲氧基娃烧、十八烧基二甲基[3_( 二甲氧基甲娃烧基)丙基]氯化铵、Y-氯丙基甲基二氯硅烷、Y -氯丙基甲基二甲氧基硅烷、Y -氯丙基甲基二乙氧基硅烷等。这些偶联剂可以单独使用I种或并用2种以上。
本发明的半导体用粘接片可以通过下述方法得到将含有高分子量成分及填料、 进一步根据需要的其它成分的树脂组合物溶解或分散于溶剂而制备清漆,并涂敷于支撑体膜上,并加热除去溶剂。
作为上述支撑体膜,可以使用聚四氟乙烯膜、聚对苯二甲酸乙二醇酯膜、聚乙烯膜、聚丙烯膜、聚甲基戊烯膜、聚萘二甲酸乙二醇酯膜、聚醚砜膜、聚醚酰胺膜、聚醚酰胺酰亚胺膜、聚酰胺膜、聚酰胺酰亚胺膜、聚酰亚胺膜等塑料膜,另外,根据需要,这些塑料膜可以进行等离子体涂敷、UV处理、电晕放电处理、研磨处理、蚀刻处理、脱模处理等表面处理。 支撑体膜可以在使用时剥离而仅使用粘接剂层,也可以在支撑体膜和粘接剂层层叠的状态下使用,其后除去支撑体膜。支撑体膜的厚度没有特别限制,可适当选择,优选为10 100 Ii m。
作为用于清漆制备的溶剂,只要是可以将各成分均匀地溶解、混炼或分散的溶剂, 就没有限制,可以使用现有公知的溶剂。例如,考虑粘接片制作时的挥发性等,优选使用甲基乙基酮、丙酮、甲基异丁酮、2-乙氧基乙醇、甲苯、二甲苯、丁基溶纤齐U、甲醇、乙醇、2-甲氧基乙醇等比较低沸点的溶剂。另外,为了使涂膜性提高等,也可以加入二甲基乙酰胺、二甲基甲酰胺、N-甲基吡咯烷酮、环己酮等比较高熔点的溶剂。
用于清漆的制备时的使用量没有特别限制,为通过加热干燥等可以从粘接片中除去的使用量,但是粘接片制备后的溶剂量按总重量基准计,优选为2重量%以下,从操作性的观点出发,按总重量基准计,更优选为I重量%以下。
对于树脂组合物含有填料时的清漆的制备而言,考虑填料的分散性,优选使用擂溃机、三辊机、球磨机及珠磨机等,也可以将它们组合使用。另外,通过预先混合填料和低分子量物质后,再配合高分子量物质,也可以缩短混合的时间。另外,也可以在制备清漆后,利用真空脱气等除去清漆中的气泡。
作为在支撑体膜上涂敷清漆的方法,可以使用公知的方法,可列举例如刀涂法、 辊涂法、喷雾涂敷法、凹版涂敷法、棒涂法、幕涂法等。
在支撑体膜上形成的粘接剂层的厚度,作为B阶段状态的膜厚,优选为I 100 u m,但并不限制于此。通过使上述膜厚为I U m以上使其成膜性良好,通过使其为 100 以下而更为经济。另外,为了得到期望的厚度,本发明的粘接片中的粘接剂层也可以粘合2张以上。此时,需要不使粘接剂层相互之间产生剥离的粘合条件。
本发明的粘接片的厚度优选为I 100 ym,但并不限制于此。通过使上述片材的厚度为I U m以上,容易保持片形状,通过使其为100 ii m以下,断裂性良好。
本发明的粘接片也可以单独使用,作为一个实施方式,也可以作为在现有公知的切割带上层叠本发明的粘接片而成的切割带一体型半导体用粘接片来使用。此时,从一次性完成对晶片的层压工序方面考虑,可以实现操作的高效化。
作为用于本发明的切割带,可列举例如聚四氟乙烯膜、聚对苯二甲酸乙二醇酯膜、聚乙烯膜、聚丙烯膜、聚甲基戊烯膜、聚酰亚胺膜等塑料膜等。另外,可以根据需要进行等离子体涂敷、UV处理、电晕放电处理、研磨处理、蚀刻处理等表面处理。切割带需要具有粘合性,可以在切割带的单面设置粘合剂层。粘合剂层可以通过以下方法形成特别地调整粘合剂层的树脂组合物中液体状成分的比率、高分子量成分的Tg来得到的具有适当的胶粘强度的树脂组合物,再将其涂敷干燥。
切割带的膜厚没有特别限制,可以根据粘接片的膜厚及切割带一体型粘接片的用途,基于本领域技术人员的知识适当确定,从经济性良好、膜的操作性良好方面考虑为 60 200 u m,优选为 70 170 u m。
另外,在制造半导体装置时使用本发明的粘接片的情况中,该粘接片在切割时具有使半导体元件不飞散的粘接力,其后在拾取时,需要能够从切割带剥离。例如,粘接片及切割带的粘合性过高,粘合两者时的剥离强度为150N/m以上时,有时难以分离。因此,优选适当调节粘接片的胶粘强度,作为其方法,利用以下规律即可,即,通过使粘接片的室温时的流动性上升,粘接强度及胶粘强度也有上升趋势,如果使流动性降低,则粘接强度及胶粘强度也有降低的趋势。例如,在使流动性上升时,有增加增塑剂的含量、增加粘合赋予剂含量等方法。相反,在使流动性降低的情况下,使上述增塑剂的含量减少即可。作为上述增塑剂,可列举例如单官能的丙烯酸单体、单官能环氧树脂、液体状环氧树脂、丙烯酸系树脂、 环氧系的所谓的稀释剂等。
粘接片和切割带层叠而成的切割带一体型粘接片的切割时的剥离强度优选为小于150N/m,更优选为50N/m以下。作为在切割带上层叠粘接片的方法,除印刷之外,可列举将预先制成的粘接片按压在切割带上并进行碾压的辊压方法,也可以根据需要进行加热。 从可以连续地制造、效率良好方面考虑,优选辊压方法。
实施例
下面,利用实施例对本发明进行详细说明,但本发明并不限定于这些实施例。
实施例I 3及比较例I 8
〈粘接片的制作〉
在含有表I所示的规定量的作为环氧树脂的YDCN-700-10 (东都化成株式会社制商品名,甲酚酚醛清漆型环氧树脂,环氧当量210)或YDF-8170C(东都化成株式会社制商品名,BPF型环氧树脂,环氧当量160)、作为酚醛树脂的Mirex XLC-LL(三井化学株式会社制商品名,酚醛树脂,羟基当量175,吸水率1.8%,350°C时的加热质量减少率4% )或 LF-2882(大日本油墨化学工业株式会社制商品名,苯酚酚醛清漆树脂)、作为硅烷偶联剂的A-1160 (GE东芝株式会社制商品名,Y -脲基丙基三乙氧基硅烷)、作为填料的S0-C2 (株式会社Admatechs制商品名,二氧化娃,比表面积7m2/g,平均粒径0. 4 0. 6 ii m)或AER0SIL R972(日本AER0SIL株式会社制商品名,二氧化硅,平均粒径0. 016 iim)的组合物中,加入环己酮并进行搅拌混合,进一步使用珠磨机混炼90分钟。
其中将作为高分子量成分的HTR-860P-3DR(Nagase chemtex株式会社制商品名, 重均分子量为70万,Tg为5°C,含有丙烯酸缩水甘油酯或甲基丙烯酸缩水甘油酯2 6重量%的丙烯酸橡胶)、作为低分子量聚合物的CTBNX-1300X9(宇部兴产株式会社制商品名,重均分子量为3500,末端具有羧基的丙烯腈聚丁二烯共聚物)、作为固化促进剂的 Curezol 2PZ_CN(四国化成株式会社制商品名,1_氰基乙基_2_苯基咪唑)按照表I所示的规定量进行混合搅拌,进行真空脱气,得到溶剂成分20%的清漆。
将清漆涂敷在作为支撑体膜的厚75 Pm的经脱模处理的聚对苯二甲酸乙二醇酯膜上,在140°C下加热干燥5分钟,形成膜厚为40i!m的B阶段状态(固化前)的涂膜,制得具备支撑体膜的粘接片。
表I中示出了实施例I 3、比较例I 8的各成分的配合重量份。
<粘接片的评价方法>
关于由上述实施例I 3、比较例I 8得到的各粘接片,对以下的项目进行评价。
(I)固化前的断裂伸长率
使用TENSILON万能拉力机(T0Y0 BALDWIN制,UTM-III-500),在卡盘间距离 20mm、 拉伸速度3_/分钟、温度(TC的条件下,对剥离了支撑体膜的固化前的厚度40 y m的粘接片进行拉伸,测定断裂时的片材的长度,利用以下的式子求出断裂伸长率(%)。将结果示于表I。
断裂伸长率)=(断裂时的粘接片的长度(mm)-20)/20X 100
(2)固化后的弹性模量
使用动态粘弹性测定装置(Rheology社制、DVE-V4),使粘接片(宽度4mm、厚度 40iim)在175°C条件下热固化3小时,然后对剥离支撑体膜而得到的固化物施加拉伸负荷 (IOg),采用以卡盘间距离20mm、频率IOHz、升温速度3°C /分钟从25°C至300°C进行测定的温度依赖性测定模式来测定。将结果示于表I。
(3)粘接片的切割性
使用精密万能试验机(岛津制作所制、AGS-1000G),将剥离了支撑体膜的粘接片在80°C的温度下热层压于晶片后,在晶片中间部用金刚石刀片切入,仅切割晶片。将具有切断的晶片的带粘接片的晶片冷却,安装在精密万能试验机上,在0°C的状态下进行扩张,目视观察粘接片的切割性。扩张条件设定为扩张速度50_/分钟,扩张量设为1_。将可以切割粘接片的情况记为“〇”,将不能切割的情况记为“ X ”,并示于表I。
(4)对线路板的凹凸的填充性
将上述实施例I 3及比较例I 8的粘接片的粘接剂层分别贴合于半导体晶片,根据需要剥离支撑体膜后,借助粘接层将半导体晶片粘合于市售的紫外线固化型切割带(古河电工株式会社制商品名UC-334EP-110)。该切割带在基材上形成有粘合剂层,在贴合时,使切割带的粘合剂层和粘接片的粘接剂层接合。接着,使用切割机切割半导体晶片及粘接剂层,然后从切割带的基材侧照射紫外线(500mJ/cm2),通过将粘接剂层和粘合剂层之间分离,得到带粘接剂层的半导体元件。将得到的带粘接剂层的半导体元件借助粘接剂层在具有平均约10 Pm凹凸的配线基材上,一边在150°C下施加0.4X9. 8N的力3秒钟,一边加热压接。其后,在高温加热时,在170°C的电热板上加热I小时,赋予与引线接合相同的受:热过程。
接着,使用环氧密封树脂(日立化成工业株式会社制商品名CEL_9700HF),在 180°c,6. 75MPa、90秒的条件下进行树脂密封,制造半导体装置的试样。
对各试样,使用超声波探测图像装置,以粘接剂层和线路板之间有无空隙来对树脂密封后的线路板的凹凸的填充性进行评价。将没有确认空隙的情况设定为“〇”,将确认有空隙的情况设定为“ X ”,并示于表I。
[表 I]
权利要求
1.一种半导体芯片的搭载方法,其包括将在切割带上层叠有粘接片的切割带一体型半导体用粘接片层压于晶片的工序;使用切割机切割所述晶片和所述粘接片,得到带粘接剂的芯片的工序;以及拾取所述带粘接剂的芯片进行搭载的工序,其中,所述粘接片,固化前的粘接片的0°c条件下的断裂伸长率为40%以下,固化后的粘接片的175°C下的弹性率为0. I lOMPa。
2.如权利要求I所述的半导体芯片的搭载方法,其特征在于,所述粘接片由含有高分子量成分和填料的树脂组合物构成。
3.根据权利要求2所述的半导体芯片的搭载方法,其特征在于,所述高分子量成分的 Tg为-10 60°C,重均分子量为2万 100万。
4.根据权利要求2所述的半导体芯片的搭载方法,其特征在于,将所述树脂组合物的总量设定为100重量%时,所述树脂组合物含有50 65重量%的高分子量成分及35 50重量%的填料。
5.根据权利要求2所述的半导体芯片的搭载方法,其特征在于,所述填料含有一次粒子的平均粒径为0. 005 0. I ii m的填料。
6.根据权利要求5所述的半导体芯片的搭载方法,其特征在于,在所述树脂组合物中含有I 15重量%的所述一次粒子的平均粒径为0. 005 0. I ii m的填料。
7.根据权利要求2所述的半导体芯片的搭载方法,其特征在于,在所述树脂组合物中还含有低分子量聚合物。
8.根据权利要求7所述的半导体芯片的搭载方法,其特征在于,所述低分子量聚合物的重均分子量为0.1万 I万。
9.根据权利要求7或8所述的半导体芯片的搭载方法,其特征在于,所述低分子量聚合物为末端具有羧基的丁二烯聚合物。
全文摘要
本发明提供通过扩张而可以切割性良好地单片化,且模制时对线路板的凹凸的填充性优良的半导体用粘接片及切割带一体型半导体用粘接片及使用其的半导体芯片搭载方法。该半导体用粘接片由含有高分子量成分及填料的树脂组合物构成,其特征在于,固化前的粘接片的0℃时的断裂伸长率为40%以下,固化后的粘接片的175℃时的弹性模量为0.1~10MPa。
文档编号C09J7/00GK102543809SQ20121000346
公开日2012年7月4日 申请日期2008年11月7日 优先权日2007年11月8日
发明者增野道夫, 山田真树 申请人:日立化成工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1