聚集诱导发光有机荧光小分子材料及其在DNT和TNT气体荧光检测中的应用的制作方法

文档序号:16065666发布日期:2018-11-24 12:38阅读:686来源:国知局

本发明属于荧光传感技术领域,具体涉及一种聚集诱导发光(aie)有机荧光小分子材料及其在2,4-二硝基甲苯(dnt)和2,4,6-三硝基甲苯(tnt)气体荧光检测中的应用,从而用于爆炸物检测。

背景技术

人们对硝基芳香化合物(nacs)的关注不仅仅因为国内外反恐的严峻形势,还因为nacs对环境和人类健康的威胁日益剧增。因此,开发新型高效的nacs爆炸传感材料已成为一个重要的课题。

目前比较常见的nacs检测技术主要包括表面增强拉曼光谱(sers)、等离子体解吸质谱(pdms)、离子迁移谱(ims)、电化学伏安法、气相色谱法结合质谱(gc-ms)、荧光传感法等。除了荧光传感法外,上述的其它技术都存在一些需要改进的地方,尤其是携带困难、不能实地检测、预处理复杂等。而荧光传感器由于选择性好、灵敏度高、操作简单及便携式实时监控,受到了越来越多的关注。

目前用于荧光传感的材料主要包括荧光共轭聚合物(cps)、有机荧光小分子材料、量子点(qds)材料、金属有机框架(mofs)材料和树枝状分子材料。这些材料都显示了优越的传感性能。其中,有机荧光小分子材料因为合成简单、结构清晰和易于表征的特点一直受到科研工作者的关注。然而,由于有机荧光小分子材料大多存在光稳定性差、聚集导致的荧光效率低等问题,限制了这类材料的进一步应用。为解决上述问题,我们设计并合成了新的聚集诱导发光(aie)有机荧光小分子材料,并应用于2,4-二硝基甲苯(dnt)和2,4,6-三硝基甲苯(tnt)爆炸物的荧光检测。

aie荧光材料在稀溶液中通常会表现出弱发射,然而在聚集过程或固态下其发射会增强。这种现象主要是由芳香环分子内的旋转受到限制从而导致非辐射能量耗散的降低,进而使其荧光增强。aie荧光材料通常含有四苯乙烯(tpe)和噻咯、二苯基苯并氧化噻吩、多苯基磷杂环戊二烯氧化物、六苯基苯、二苯基乙烯蒽等这些单元。因此,由于aie荧光材料在固态下具有较强的荧光,以及在固态下的低聚集(多孔)的结构,使得aie荧光材料是一类很有潜力的荧光检测分子。

我们开发了一类新的aie有机荧光小分子。这类分子都含有三氮唑、aie构筑单元(tpe)、强给电子的单元(咔唑、二苯胺、三苯胺)。强给电子的单元(咔唑、二苯胺、三苯胺)可以增加检测材料的给电子能力,从而提高从检测分子到待测分子的光诱导电子转移(pet)的效率,使得检测分子的检测性能提高。引入aie构筑单元(tpe)赋予材料aie性质,可提高其固态高荧光效率的构筑多孔薄膜,从而可获得高性能的检测结果。



技术实现要素:

本发明的目的是提供一种聚集诱导发光(aie)有机荧光小分子材料及其在2,4-二硝基甲苯(dnt)和2,4,6-三硝基甲苯(tnt)气体荧光检测中的应用。

本发明具体涉及一类以3,4,5-三苯基-4h-1,2,4-三氮唑为结构中心,连接四苯乙烯、三苯胺或咔唑的aie型荧光传感材料。这类材料在稀溶液中的荧光微弱,而在聚集过程或固态时表现出强的荧光。四苯乙烯作为该荧光分子的核心构筑单元,不但使材料具有aie特性,而且其可自由旋转的苯环对构建多孔结构的薄膜有促进作用,保证了该荧光材料对于dnt和tnt检测不但具有极高的选择性和灵敏度,且响应快速。

本发明所述的一种聚集诱导发光(aie)有机荧光小分子材料,其结构式如下所示:

分子主链骨架由单元a、单元b与单元c构成,单元a可以是3,4,5-三苯基-4h-三氮唑、3,4,5-三[1,1-联苯]-4h-2,4-三氮唑等;单元b可以是1,2,3,4,5-五苯基-2,5-二氢-1h-吡咯、四苯乙烯、1-甲基-1,2,3,4,5-五苯基-2,5-二氢-1h-噻咯等;单元c可以是三苯胺、苯咔唑、n,n-二苯基-[1,1'-联苯]-4-胺-9-[1,1'-联苯]-9h-咔唑、二苯基蒽等。

各单元的结构式如下所示:

该类分子有如下特点:

(1)这类分子含有3,4,5-三苯基-4h-三氮唑(taz),分子具有良好的电子传输性能。

(2)这类分子含有aie基团,固态下荧光量子效率高。分子刚性较大且具有自由旋转的苯环。即可形成多空穴结构的薄膜又易与nacs类爆炸物形成π-π堆积,提高爆炸物检测的灵敏度。

(3)这类分子含有强给电子的基团(苯胺、咔唑),增强了材料的给电子能力,有利于荧光检测物到nacs类爆炸物的光诱导电子转移(pet),有利于提高其检测性能。

综合以上因素,通过进一步地优化筛选,我们合成了化合物3,5-二(1,1,2,2-四苯乙烯)-4-三苯胺-1,2,4-三氮唑(btt)和3,5-二(1,1,2,2-四苯乙烯)-4-9h-咔唑-1,2,4-三氮唑(bpt),其结构式如下所示:

这类分子含四苯乙烯具有aie特性,固态下荧光量子效率高。除此之外,分子刚性大且具有自由旋转的苯环。即可形成多空穴结构的薄膜又可以与nacs类爆炸物形成π-π堆积,提高爆炸物检测的灵敏度。

2、旋涂薄膜的制备

旋涂薄膜具有操作简单,成本低等优点。本发明所采用的基底可以为玻璃片、石英片或以氧化铟锡(ito)为代表的半透明光学材料。本发明所使用的溶剂可以为n,n-二甲基乙酰胺、n,n-二甲基甲酰胺、乙腈、四氢呋喃、三氯甲烷、二氯甲烷或吡啶,或是上述溶剂的混合。

3、该类薄膜在dnt、tnt等硝基类爆炸物检测方面的应用:

将dnt和tnt等硝基类爆炸物100mg置于密封的石英池内60min,然后将步骤2制备的薄膜放入到石英池中,利用荧光光谱仪记录在不同时间下薄膜荧光强度的变化,进而发现爆炸物蒸气能够导致薄膜荧光快速淬灭(图3与图5),从而利用荧光强度的变化实现对dnt、tnt等硝基类爆炸物浓度的检测。

附图说明

图1:归一化的btt薄膜的紫外吸收光谱和荧光发射光谱;

配制btt溶液的浓度为0.5mg/ml,溶剂为四氢呋喃,匀胶机转速为1500r/min,匀胶时间为30s,最后将薄膜真空干燥10min,在基底上得到的薄膜的厚度约10nm。用荧光光谱仪记录该有机荧光小分子溶液的紫外吸收光谱和荧光发射光谱。330nm为三苯胺或咔唑的电子吸收带,360nm被认为是tpe双键的吸收带,当在360nm激发时,btt和bpt薄膜的pl光谱分别在480nm和475nm左右,为蓝光发射。

图2:btt薄膜在dnt蒸气(a)和tnt蒸气(b)中荧光淬灭效率随时间的变化曲线;

通过荧光光谱仪记录btt薄膜在dnt蒸气(a)和tnt蒸气(b)中荧光淬灭效率随时间的变化。btt薄膜对dnt和tnt响应迅速,可应用于实际检测。

图3:归一化的不同水与四氢呋喃比例的btt溶液的荧光发射光谱(上图)和将其放入4ml的玻璃小瓶中在365nm紫外灯照射下所照的照片(下图)。

准备十个50ml的容量瓶,在其中分别加入0.5mgbtt,然后加入水的体积百分比由0增加到90%的水与四氢呋喃混合溶剂至50ml。分别各取3ml加入到石英比色皿中,用荧光光谱仪记录已配置好的水的体积百分比由0增加到90%时溶液的荧光发射光谱。随着水的比例的增加,荧光强度增加,这个现象证明了btt具有aie性能。

准备十个4ml的玻璃瓶,在其中分别加入3μl、0.01mbtt,然后加入水的体积百分比由0增加到90%的水与四氢呋喃混合溶剂3ml,用365nm紫外灯照射并拍下照片。随着水的比例的增加,照片中材料亮度增加,这个现象证明了btt具有aie性能。

图4:btt薄膜荧光循环测试曲线;

淬灭过程(实线)和恢复过程(虚线)。将已经暴露于dnt蒸气后的btt薄膜置于甲醇溶液中,搅动60min,然后置于氮气保护的真空干燥箱中45℃干燥3h。再将薄膜置于dnt气体中,进行测试。尽管重复3次,荧光强度依然可以恢复。

图5:btt薄膜暴露于多种爆炸物蒸气(dnt、tnt、dnp,tnp,hmx、petn、tetryl和rdx)中的荧光淬灭率柱形图;

将btt薄膜置于不同爆炸物饱和蒸气中30s,记录薄膜的荧光淬灭率。btt薄膜暴露于dnt蒸气30s,荧光淬灭率将近80%,对于tnt在30s内淬灭率不超过30%,对其他爆炸基本没响应,表现出很好的选择性。

图6:btt滤纸在实际应用中的测试。

将滤纸浸润在btt溶液中,取出晾干后,将涂有dnt粉末的手指按压在滤纸上30s,在紫外灯的照射下,可以清晰的看到滤纸上的手指印。(a)滤纸浸没btt溶液后,烘干,日光灯下的照片;(b)滤纸浸没btt溶液后,烘干,暴露于紫外灯(365nm)下照片;(c)涂有dnt粉末的手指按压btt滤纸后,在紫外灯照射下的照片。

我们可以看到在日光灯下浸润我们材料的滤纸不发光如图a,在紫外灯下要浸润我们材料的滤纸发蓝光如图b,该滤纸被涂有dnt粉末的手指按压,在紫外灯照射下我们可以看到手指按压的地方发生了荧光淬灭,周围仍然发很亮的蓝光。

尽管结合优选实例对本发明进行了说明,但本发明并不局限于上述实例,应当理解,在本发明构思引导下,本领域技术人员可以进行各种修改和改造,所附权利要求该概括了本发明的范围。

具体实施方式

实施例1:化合物btt的合成

4-n,n-二苯基胺-3,5-二-(4-溴苯基)-4h-1,2,4-三氮唑的合成

在氩气保护下,向100ml双口瓶中依次加入单体氨基三苯胺(0.54g,2mmol)、1,2-二((4-溴苯基)氯代亚甲基)联肼(0.87g,2mmol)和15mln,n-二甲基苯胺,135℃反应12h后加入2mhcl(30ml)溶液。再次反应30min后生成大量沉淀物,减压抽滤、水洗、干燥后,将反应粗产物用二氯甲烷:乙酸乙酯/5:1(体积比)的混合溶剂作为展开剂柱层色谱提纯分离,得到白色固体5,反应产率为67%。

1hnmr(500mhz,cdcl3):δ8.20(d,1h),7.75(d,1h),7.57(d,2h),7.51(t,1h),7.43(d,4h),7.38(t,1h)。maldi-tofms(massm/z):620.00[m]+

btt的合成

将622.45mg4-n,n-二苯基胺-3,5-二-(4-溴苯基)-4h-1,2,4-三氮唑(1mmol)、1.54g四苯乙烯基硼酸频哪醇酯(2.3mmol)、46mg四(三苯基膦)钯(0.04mmol)加入圆底烧瓶中,再加入甲苯、2m碳酸钾水溶液和无水乙醇混合溶剂(体积比3:2:1)48ml。在氩气保护下,反应混合物85℃回流48h。待冷却至室温,用稀盐酸除去过多的碳酸钾,然后用二氯甲烷萃取。萃取液用无水硫酸镁干燥后,除去有机溶剂得到粗产物。以二氯甲烷和乙酸乙酯的混合液(体积比3:1)为洗脱剂,粗产物经过硅胶色谱柱提纯,最后得到白色固体793mg,产率70.5%。

1hnmr(500mhz,cd2cl2):δ7.64(s,3h),7.44(s,2h),7.15(m,14h),7.07(s,3h).13cnmr(126mhz,cd2cl2):δ131.82,131.20,129.40,127.69,126.77,126.39,54.15,53.73,53.56,53.30,52.98.maldi-tofms(massm/z):1125.38[m]+

实施例2:化合物bpt的合成:

9-9h-咔唑-3,5-二-(4-溴苯基)-4h-1,2,4-三氮唑

在氩气保护下,向100ml双口瓶中依次加入单体4-(9h-咔唑)苯胺(0.52g,2mmol)、1,2-二((4-溴苯基)氯代亚甲基)联肼(0.87g,2mmol)和15mln,n-二甲基苯胺,135℃反应12h后加入2mhcl(30ml)溶液。再次反应30min后生成大量沉淀物,减压抽滤、水洗、干燥后,将反应粗产物用二氯甲烷:乙酸乙酯/5:1(体积比)的混合溶剂作为展开剂柱层色谱提纯分离,得到白色固体5,反应产率为67%。

1hnmr(500mhz,cdcl3;25℃,tms)δ=8.20(d,j=7.7hz,2h;arh),7.75(d,j=8.5hz,2h;arh),7.57(d,j=8.5hz,4h;arh),7.51(t,j=7.7hz,2h;arh),7.43(d,j=8.4hz,8h;arh),7.38(t,j=7.4hz,2h;arh).maldi-tofms(massm/z):620.00[m]+

bpt的合成

将620.45mg9-9h-咔唑-3,5-二-(4-溴苯基)-4h-1,2,4-三氮唑(1mmol)、1.52g四苯乙烯基硼酸频哪醇酯(2.3mmol)、46mg四(三苯基膦)钯(0.04mmol)加入圆底烧瓶中,再加入甲苯、2m碳酸钾水溶液和无水乙醇混合溶剂(体积比3:2:1)48ml。在氩气保护下,反应混合物85℃回流48h。待冷却至室温,用稀盐酸除去过多的碳酸钾,然后用二氯甲烷萃取。萃取液用无水硫酸镁干燥后,除去有机溶剂得到粗产物。以二氯甲烷和乙酸乙酯的混合液(体积比3:1)为洗脱剂,粗产物经过硅胶色谱柱提纯,最后得到白色固体793mg,产率70.5%。

1hnmr(500mhz,cd2cl2)δ8.21(d,j=7.7hz,1h),7.75(d,j=8.5hz,1h),7.65(q,j=8.5hz,3h),7.48(m,4h),7.38(dd,j=7.7,4.4hz,1h),7.12(m,13h).13cnmr(126mhz,cd2cl2)δ143.66(dd,j=9.3,3.8hz),131.83,131.17,129.28,127.68,126.92,126.49,126.19,53.84,53.63,53.41,53.19,52.98.ei-ms(m/z):maldi-tofms(massm/z):1123.41[m]+

实施例3:归一化的不同水与四氢呋喃体积比例的btt溶液的荧光发射光谱

准备十个50ml的容量瓶,在其中分别加入0.5mgbtt,然后加入水的体积百分比由0增加到90%的水与四氢呋喃混合溶剂至50ml。取3ml加入石英比色皿中,用荧光光谱仪记录已配置好的水的体积百分比由0增加到90%时溶液的荧光发射光谱。我们可以从图中看到,随着水的比例增加,荧光强度也增强,亮度增加。这个现象也证明了我们材料的aie性质。

实施例4:旋涂薄膜的制备

配制浓度为0.5mg/ml的btt溶液,溶剂为四氢呋喃,匀胶机转速为1500r/min,匀胶时间为30s,最后将薄膜真空干燥10min,在基底上得到的薄膜厚度是10nm,基底选用ito(氧化铟锡)玻璃电极,ito在使用前需要用水、乙醇、丙酮、甲苯等溶剂分别超声10min,进而去除表面杂质。

实施例5:btt薄膜检测多种爆炸物气体

将比色皿中分别放入爆炸物粉末:2,4–二硝基甲苯(dnt)或2,4,6-三硝基甲苯(tnt),粉末覆盖比色皿底部,密封放置60min后,快速放入实施例2制备得到的btt薄膜,荧光光谱仪记录300s内薄膜在不同爆炸物蒸气中的荧光淬灭率(1-i/i0)(i0:薄膜的初始荧光强度;i:薄膜置于爆炸物蒸气淬灭后的强度)(如图3)。

将比色皿中分别放入爆炸物粉末:2,4,6-三硝基甲苯(tnt)、2,4–二硝基甲苯(dnt)、2,4,6-三硝基苯酚(tnp)、2,4-二硝基苯酚(dnp)、三次甲基三硝基胺(rdx)、三硝基苯甲硝胺(tetryl)、环四亚甲基四硝胺(hmx)和季戊四醇四硝酸酯(petn),粉末覆盖比色皿底部,密封放置60min后,快速放入实施例2制备得到的btt薄膜,荧光光谱仪记录30s内薄膜在不同爆炸物蒸气中的荧光淬灭率(1-i/i0)(i0:薄膜的初始荧光强度;i:薄膜置于爆炸物蒸气淬灭后的强度)(如图4)。

将已经暴露于dnt蒸气后的btt薄膜置于甲醇溶液中,搅动60min,然后置于氮气保护的真空干燥箱中45℃干燥3h。再将薄膜置于dnt气体中,进行测试。尽管重复4次,荧光强度依然可以恢复(如图5)。

综上表明由于btt薄膜对dnt和tnt具有特性强、响应时间短与可重复利用等优点,所以btt薄膜适用于dnt和tnt气体传感。

实施例6:btt荧光滤纸在实际应用中的检测。

在实际生产过程中(生产、运输爆炸物等),经常不可避免的接触到爆炸物,所以开发低成本、快速检测痕量爆炸物的方法显得迫切需要。将滤纸浸润在btt溶液中,取出晾干后,将涂有dnt粉末的手指按压在滤纸上10s,在紫外灯的照射下,可以清晰的看到滤纸上的手指印(如图6)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1