一种多红光发射调谐全色碳点及其制备方法和应用与流程

文档序号:17089440发布日期:2019-03-13 23:16阅读:595来源:国知局
一种多红光发射调谐全色碳点及其制备方法和应用与流程

本发明属于碳点的制备技术领域,具体涉及一种多红光发射调谐全色碳点及其制备方法和应用。



背景技术:

碳点(carbondots,cds)为一种无机纳米材料,具有许多优良的性质,如化学惰性,低毒性,生物适宜性和稳定的发光性,因此在光催化、光电子、药物递送、传感和医学成像方面具有潜在的应用价值。而多红光发射的碳点由于发射和激发波长能量均较低,更适用于生物成像。因此,探索一种简单易行,利于工业生产的多红光发射调谐全色碳点的合成方法是非常重要的。



技术实现要素:

针对现有技术中存在的上述问题,本发明提供一种多红光发射调谐全色碳点及其制备方法和应用,该制备方法简单,制得的全色碳点在不同激发波长的激发下发出不同颜色的荧光,荧光颜色从蓝到红,并具有多红光发射调谐独特上转换发光属性,低毒性,生物相容性,其最高发光量子产率可达到73.89%,超级抗光漂白。

为实现上述目的,本发明解决其技术问题所采用的技术方案是:

一种多红光发射调谐全色碳点,其制备方法包括以下步骤:

将萘二胺的同分异构体与有机溶剂混合,然后置于水热釜中,于170-190℃条件下反应12-16h,再经透析,纯化,干燥,制得。

进一步地,有机溶剂为乙醇或丙酮。

进一步地,萘二胺的同分异构体为1,5-二氨基萘和/或1,8-二氨基萘。

进一步地,萘二胺的同分异构体与有机溶剂混合后,萘二胺的同分异构体的浓度为3-7wt%,优选为5wt%。

进一步地,反应温度为180℃,反应时间为12h。

上述制得的多红光发射调谐全色碳点可用于生物成像、离子检测、多维传感和荧光开关等方面的应用。

本发明提供的多红光发射调谐全色碳点及其制备方法和应用,具有以下有益效果:

本发明通过简易的方法制得全色碳点,在不同激发波长的激发下发出不同颜色的荧光,荧光颜色从蓝到红,并具有多红光发射调谐独特上转换发光属性,且该全色碳点的多红光调谐来自于单粒子而不是多向发光物的混合物,因此,本发明制得的全色碳点可扩展到发光材料制造业,而并不限于生物传感。此外,该全色碳点在低波长下即可实现上转换发光特性,在浅层/表层生物成像和体内外光活化技术具有重要的潜在应用价值,其最高发光量子产率可达到73.89%,超级抗光漂白。hela细胞和斑马鱼体内外多色成像,表明了该全色碳点低毒,具有良好的生物相容性,而且所制备的碳点可用于多维金属离子传感和fe3+荧光开关。

附图说明

图1为多红光发射调谐全色碳点的制备流程和应用。

图2为全色碳点的tem图。

图3为全色碳点的afm图。

图4为全色碳点的ft-ir光谱图。

图5为全色碳点的拉曼光谱图。

图6为全色碳点的xps光谱图。

图7为全色碳点在不同激发波长下的荧光发射图谱(pl)。

图8为不同激发波长下全色碳点的荧光和紫外吸收光谱。

图9为全色碳点的荧光衰减图谱和拟合曲线结果。

图10为cd1和cd2的荧光稳定性结果图。

图11为全色碳点单粒子颗粒发光成像图。

图12为离子强度对碳点发光强度的影响数据图。

图13为ph值对碳点发光强度的影响数据图。

图14为hela细胞中全色碳点的共聚焦荧光图像。

图15为斑马鱼幼虫的中全色碳点的共聚焦荧光图像。

图16为14种金属离子对cd2荧光强度的影响结果。

图17为fe2+/fe3+荧光开关的检测。

图18为cd2定量检测fe3+的结果。

具体实施方式

实施例1

将萘二胺的同分异构体1,5-二氨基萘和1,8-二氨基萘分别与乙醇或丙酮混合,采用水热法在180℃反应12h,再经透析,纯化,干燥,制得多红光发射调谐全色碳点,具体为:

1、将1,5-二氨基萘与乙醇水溶液混合,使得1,5-二氨基萘的浓度为5wt%,采用水热法在180℃反应12h,再经透析,纯化,干燥,所得产物记为cd1。

2、将1,8-二氨基萘与乙醇水溶液混合,使得1,8-二氨基萘的浓度为5wt%,采用水热法在180℃反应12h,再经透析,纯化,干燥,所得产物记为cd2。

3、将1,8-二氨基萘与丙酮溶液混合,使得1,8-二氨基萘的浓度为5wt%,采用水热法在180℃反应12h,再经透析,纯化,干燥,所得产物记为cd3。

对所制备的全色碳点进行了如下测试:

1、利用透射电镜(tem)和原子力显微镜(afm)对cd1、cd2和cd3进行表征,cd1(a)、cd2(b)和cd3(c)的tem图见图2,cd1(d)、cd2(e)和cd3(f)的afm图和高度轮廓分析曲线见图3。

图2中包括全色碳点颗粒尺寸分布的直方图和高斯拟合曲线,由图2和图3可知,cd1的平均粒径分布在2.2nm,cd2的平均粒径分布在3.0nm,cd3的平均粒径分布在5.4nm,由afm的高度分布可知,cd1(1-1.5nm),cd2(2-3nm),cd3(3-4.5nm)。

2、利用红外光谱(ft-ir)、拉曼光谱(raman)和x-射线光电子能谱(xps)对cd1、cd2和cd3进行表征,cd1、cd2和cd3的ft-ir光谱图见图4,拉曼光谱图见图5,xps光谱图见图6。

由图4可知,三种碳点的ir相接近,所以它们具有相同的化学键和官能团。cd1,cd2新增的吸收峰为1633cm-1,1394cm-1,1045/1049cm-1,分别为c=c,c-h键的面外伸缩振动,c-o键的伸缩振动,cd3的ir知1600cm-1为c=c的伸缩振动,1363cm-1处为c-n键的伸缩振动。

由紫外光谱图8-1,图8-2,图8-3悬浮图可知,cds的紫外吸收峰在346-350nm为芳香π域的吸收,400-550nm的吸收是由n-π的吸收,此时的吸收强度变弱。

由图6可知,三种碳点均含c,n,o(cd1,c:o:n=1:0.15:0.07,cd2,c:n:o=1.0:0.02:0.06,cd3,c:n:o=1.0:0.16:0.05),均含c-c/c=c(284.7ev),c-n(285.5ev),c-o(286.3ev)。

由图5可知,cd1的拉曼谱图中无d带和g带,故cd1为无定形碳。cd2的拉曼光谱的特征峰为1345cm-1和1575cm-1,分别为d带(sp3杂化)g带(sp2杂化),d带的相对强度是结晶结构紊乱程度的反映,g带代表一阶的散射e2g振动模式,d带和g带的相对强度比值id/ig比值为1.017,因此证明cd2有类似石墨烯的碳结构。

3、在led的相应激发波长下激发全色碳点,使其发射荧光,其荧光发射图谱(pl)见图7。图7中从左到右的参数分别为:

ⅰ:cd1,ex=360nm,用50%乙醇溶解样品;

ⅱ:cd2,ex=380nm,用50%乙醇溶解样品;

ⅲ:cd1,ex=400nm,用50%乙醇溶解样品;

ⅳ:cd1,ex=430nm,用50%乙醇溶解样品;

ⅴ:cd3,ex=400nm,用50%乙醇溶解样品;

ⅵ:cd2,ex=470nm,用50%乙醇溶解样品;

ⅶ:cd3,ex=470nm,用50%乙醇溶解样品;

ⅷ:cd2,ex=460nm,用50%乙醇溶解样品;

ⅸ:cd3,ex=470nm,用50%dmso溶解样品。

由图7可知,cd1的最大发射波长到绿光区,cd2和cd3的最大发射波长可到红光区。

4、不同激发波长下cd1、cd2和cd3的荧光和紫外吸收光谱结果见图8。图8-1、8-2和8-3中分别为cd1、cd2和cd3的荧光和紫外吸收光谱,图8-4为在ex=660nm的led光下,cd1的ucpl光谱图。

5、测定cd1、cd2和cd3的量子产率和荧光寿命

在乙醇溶液中,当λex=346nm和λex=410nm时cd1的量子产率分别为73.89%和70.05%;当λex=346nm和λex=510nm时cd2的量子产率分别为53.81%和13.87%;当λex=346nm和λex=510nm时cd3的量子产率为69.02%和10.11%。

不同的发射波长对应不同的荧光寿命,其荧光寿命具体见表1,荧光衰减图谱和拟合曲线见图9。

表1在相应的激光波长下cd1、cd2和cd3的荧光寿命

由表1可知,cd1在λex=280nm和λex=410nm处的平均荧光寿命分别为5.25ns和4.96ns;cd2在λex=280nm和λex=510nm处的平均荧光寿命分别为3.07ns和0.76ns;cd3在λex=320nm和λex=510nm处的平均荧光寿命分别为1.44ns和0.258ns。

6、荧光稳定性

将cd1、cd2和cd3置于波长为365nm的紫外灯(功率为150w)下照射,其荧光稳定性见图10,图10中a为cd1,b为cd2。

由图10可知,cd1、cd2和cd3有较强的抗光漂白性,尤其是cd1和cd2在波长为365nm的紫外灯下照射1小时后,其荧光强度仍然不衰减。

7、为了更清楚的说明cd1、cd2和cd3的全色发光特性,本发明对此进行了单粒子颗粒发光成像实验,结果见图11,由图11可知,在不同的激光波长(405nm、454nm和546nm)下,这3种全色碳点的荧光发射图像非常清晰,所有分布的亮点都是重叠的,由此可知,本发明制得的全色碳点的多色发射来自于单个粒子而不是多向发光物的混合物,因此本发明制得的全色碳点可以扩展到发光材料制造领域,而不局限于生物传感方向。

8、离子强度、ph对全色碳点(cds)荧光强度的影响

不同浓度的离子对cds的荧光强度影响很小且峰位置没有改变,如图12所示,图中a为离子强度对cd1发光强度的影响数据图,b为离子强度对cd2发光强度的影响数据图。由此可知,本发明制得的cds可应用于不同盐浓度的环境中。

不同的ph(2-10)对cds的荧光强度影响较大,如图13所示,图中a为ph值对cd1发光强度的影响数据图,b为ph值对cd2发光强度的影响数据图。

对于cd1,当ph=7时,其荧光强度最大,当ph<7时,随着ph值的增加,cd1的荧光强度增大,且发射波长蓝移,当ph>7时,随着ph值的增加,cd1的荧光强度递减,但减小的幅度较小,此时发射波长不再改变。

对于cd2,当ph=9时,其荧光强度最大,当ph<9时,随着ph值的增加,cd2的荧光强度增大,当ph>9时,随着ph值的增加,cd2的荧光强度呈递减趋势。但cd2的发射波长没有移动,这种现象可能是因为荧光共振能量转移产生的。

上述结果表明,本发明制得的cds在ph传感方面有着潜在的应用价值。

9、cds的生物相容性以及在生物标记、生物成像方面的应用

用hela细胞为实验对象,将10-50mg/ml的cds分别作用于hala细胞培育24h,hela细胞的存活率超过90%,证实了cds的良好生物相容性和低毒性。然后用50μg/ml的cds与hela细胞培育6小时,用扫面激光共聚焦成像,结果见图14。由图14可知,在激发波长为405nm、458nm、546nm激发下呈现出蓝色、绿色、红色,cd2和cd3能穿过细胞膜进入细胞质,在细胞之内显现出明亮的荧光,cd1不仅能穿过细胞膜还能进入细胞核,在整个细胞区域能显现出明亮的荧光。

体内成像:将50nl的50μg/mlcds注射到5天大的斑马鱼体内培育24小时后,用扫面激光共聚焦成像,结果见图15。由图15可知,在405nm、458nm、546nm激发下分别呈蓝色、绿色、红色。cds还有转化现象,此现象更有利于深度组织成像,由此证实cds在生物标记,生物成像方面有着潜在的应用。

10、金属离子对cds荧光强度的影响

检测14种金属离子对cd2荧光强度的影响,具体过程为:分别向浓度为10-2mol/l-1的fe2+,fe3+,cu2+,ag+,ni+,na+,mg2+,co2+,pb2+,cd2+,mn2+,sn4+,k+,zn2+中加入0.1mg/ml-1的cd2,在365nm下,检测上述金属离子对cd2荧光强度的影响,其结果见图16。

fe3+,cu2+,ag+,ni2+,sn4+均对cd2有猝灭效果,但fe2+使cd2的荧光强度增强到原来的5倍,而fe3+对cd2则有荧光猝灭作用。由此可知,cd2可作为fe2+/fe3+的荧光开关(图17)。

fe3+能使cd2的荧光猝灭,可能是由于cds的羟基与fe3+形成配合物,并且fe3+的浓度不同,荧光猝灭的程度也不同。因此cds可用作fe3+的检测探针,检测条件为lod=1μm,pbs溶剂,ph=7.4,其检测限可达到1μm级,检测结果见图18。

综上所述,本发明通过简易的方法制得全色碳点,在不同激发波长的激发下发出不同颜色的荧光,荧光颜色从蓝到红,并具有多红光发射调谐独特上转换发光属性,且该全色碳点的多红光调谐来自于单粒子而不是多向发光物的混合物,因此,本发明制得的全色碳点可扩展到发光材料制造业,而并不限于生物传感。此外,该全色碳点在低波长下即可实现上转换发光特性,在浅层/表层生物成像和体内外光活化技术具有重要的潜在应用价值,其最高发光量子产率可达到73.89%,超级抗光漂白。hela细胞和斑马鱼体内外多色成像,表明了该全色碳点低毒,具有良好的生物相容性,而且所制备的碳点可用于多维金属离子传感和fe3+荧光开关。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1