一种纳米复合非线性防晕漆的制备方法与流程

文档序号:27206309发布日期:2021-11-03 14:19阅读:126来源:国知局
一种纳米复合非线性防晕漆的制备方法与流程

1.本发明涉及电晕漆的制备方法,尤其涉及应用于高压电机定子线棒的中阻防晕漆的制备方法。


背景技术:

2.在发电机的运行过程中,其稳定性很大一部分取决于绝缘的性能。随着电机的电压等级不断提高,绝缘存在的问题也就越显突出,在很多情况下,电机故障的原因是由于绝缘的击穿导致。因此为了提高发电机的单机容量以及电压等级,均化绝缘的电场分布、提高绝缘材料的电导非线性系数就成为制造过程中有待解决的重要问题。公开号为cn103160183b的《中国专利纳米防电晕漆的制备方法》公开了一种发电机用双组份高阻纳米防电晕漆,它是以有机化蒙脱土和碳化硅粉末对漆进行改性,得到的纳米防电晕漆固化后表面电阻率为 1
×
109~ 8
×
10 12
ω,耐热等级达到f级。但是它并没有提及到高温下非线性系数会变低的问题。


技术实现要素:

3.本发明是为了解决现有的耐高温防晕漆的非线性系数低的技术问题,而提供一种纳米复合非线性防晕漆的制备方法。该方法可以提高高温下的漆的非线性系数,有效的改善表面电场分布,均化电场。
4.本发明的纳米复合非线性防晕漆的制备方法是采取如下方案予以实现的:一、二氧化硅颗粒修饰:将粒径为60~90nm的二氧化硅颗粒加入到kh550溶液中搅拌1h~2h时间,然后过滤,将固相物放在真空干燥箱内在温度为80~100℃的条件干燥12~15h,得到修饰的二氧化硅颗粒;二、按防晕漆、固化剂、修饰的二氧化硅颗粒的质量比为100:10:(2~3)称取防晕漆、固化剂、修饰的二氧化硅颗粒,再按防晕漆的质量与稀释剂的体积的比为(7~8)g:1ml的比例称取稀释剂;三、先将修饰的二氧化硅颗粒和稀释剂加入到防晕漆中,以500~1000r/min的速度搅拌40~60min,得到混合液;再加入固化剂,继续以500~1000r/min的速度搅拌3~5min,得到纳米复合非线性防晕漆。
5.更进一步地,步骤二中所述的稀释剂为二甲苯或甲苯。
6.本发明的纳米复合非线性防晕漆的制备方法,是利用kh550修饰的二氧化硅颗粒,通过纳米复合材料协同效应,使漆的非线性系数β提高至0.9~0.93,提高漆的防晕性能,进而提高电机运行稳定性,减少事故的发生,提高电机电压等级及容量。
附图说明
[0007][0008]
图1是实施例1的步骤二中原始防晕漆在高温下的非线性特性曲线。
[0009]
图2是实施例1、2制备的纳米复合非线性防晕漆在高温下的非线性特性曲线。
[0010]
图3是对比实施例1、2的防晕漆在高温下的非线性特性曲线。
[0011]
图4是对比实施例3的防晕漆在高温下的非线性特性曲线。
具体实施方式
[0012][0013]
下面结合实施例对本发明的技术方案做进一步的说明。
[0014]
实施例1:本实施例的纳米复合非线性防晕漆的制备方法,按以下步骤进行:一、二氧化硅颗粒修饰:将粒径为80nm的二氧化硅颗粒加入到kh550溶液中,并与适量的无水乙醇混合,搅拌12h后过滤,将固相物放在真空干燥箱内在温度为80℃的条件干燥12h,得到修饰的二氧化硅颗粒;二、称取15g防晕漆、1.5g固化剂、0.3g修饰的二氧化硅颗粒,再称取2ml二甲苯作为稀释剂;三、先将修饰的二氧化硅颗粒和稀释剂加入到防晕漆中,以500r/min的速度搅拌60min,得到混合液;再加入固化剂,继续以500r/min的速度搅拌60min,得到耐高温发电机定子线棒用防晕漆。
[0015]
实施例2:本实施例与实施例1不同的是步骤二的操作如下:称取15g防晕漆、1.5g固化剂、0.45g修饰的二氧化硅颗粒,再称取2ml二甲苯作为稀释剂;其它与实施例1相同。
[0016]
对比实施例1:本实施例与实施例1不同的是步骤二的操作如下:称取15g防晕漆、1.5g固化剂、0.15g修饰的二氧化硅颗粒,再称取2ml二甲苯作为稀释剂;其它与实施例1相同。
[0017]
对比实施例2:本实施例与实施例1不同的是步骤二的操作如下:称取15g防晕漆、1.5g固化剂、0.75g修饰的二氧化硅颗粒,再称取2ml二甲苯作为稀释剂;其它与实施例1相同。
[0018]
对比实施例3:本对比例的纳米复合非线性防晕漆的制备方法按以下步骤进行:一、称取15g防晕漆、1.5g固化剂、0.15g粒径为80nm的氧化锌纳米颗粒,再称取2ml二甲苯作为稀释剂;二、先将氧化锌纳米颗粒和稀释剂加入到防晕漆中,以500r/min的速度搅拌60min,得到混合液;再加入固化剂,继续以500r/min的速度搅拌60min,得到耐高温防晕漆;将防晕漆刷在pvc管中间,在室温下完全固化后,两侧贴上铝箔,再缠上铜丝,作为电极试样;将电极试样放入高低温交变箱中,将温度设置为125℃,采用二电极测量系统方式,用高阻计测量表面电导,测量不同电压梯度下的电流值,算出电场与电导率的值。
[0019]
在工程领域,通常用经验公式表征非线性结构的非线性特征,式中,i为流过试样的泄露电流;u为施加在试样两端的直流电压;k为与材料属性和结构参数有关的系数;为绝缘结构的非线性系数。将上式进行转换可得电流密度j与电场强度e的关系为:式中:为与材料属性有关的常数。为此可得到材料的电导率γ与场强e之间的关
系为:γ=a式中,,为材料的电导非线性系数,用来表征材料的电导率对场强的依赖程度,对两端取对数可得:可以看出,在双对数坐标下,非线性材料的电导率γ与外施电场强度e之间呈线性关系,所以在得到测量数据i与u之后,可以利用上述关系式对数据进行处理,从而求得电导非线性系数β。
[0020]
实施例1的步骤二中的防晕漆的电导率随电场强度变化的曲线关系如图1所示,利用 算出非线性系数为0.827。
[0021]
实施例1、2制备的纳米复合非线性防晕漆的电导率随电场强度变化的曲线关系如图2所示,利用算出非线性系数为0.9、0.93,比改性前的防晕漆分别提高8.8%和12.45%。
[0022]
对比实施例1、2制备的漆的电导率随电场强度变化的曲线关系图,如图2所示,利用算出非线性系数分别为0.622、0.681,比实施例2的漆分别低33.12%和26.77%,这是因为二氧化硅颗粒的加入量不足和过量而导致的,在无机填料含量较低的情况下,二氧化硅填料基团在环氧基体中独立均匀分布,且基团之间间距较大,载流子只有获得较大能量才能跃迁,而当无机填料过高时,纳米颗粒会发生团聚现象,界面结构较少,因此对温度依赖反而不明显。
[0023]
对比实施例3制备的漆的电导率随电场强度变化的曲线关系图,如图3所示,利用算出非线性系数为0.65。比实施例1、2的漆分别低27.78%和30.11%。


技术特征:
1.一种纳米复合非线性防晕漆的制备方法,其特征在于该方法按以下步骤进行:一、二氧化硅颗粒修饰:将粒径为60~90nm的二氧化硅颗粒加入到kh550溶液中搅拌1h~2h时间,然后过滤,将固相物放在真空干燥箱内在温度为80~100℃的条件干燥12~24h,得到修饰的二氧化硅颗粒;二、按防晕漆、固化剂、修饰的二氧化硅颗粒的质量比为100:10:(2~3)称取防晕漆、固化剂、修饰的二氧化硅颗粒,再按防晕漆的质量与稀释剂的体积的比为(7~8)g:1ml的比例称取稀释剂;三、先将修饰的二氧化硅颗粒和稀释剂加入到防晕漆中,以500~1000r/min的速度搅拌40~60min,得到混合液;再加入固化剂,继续以500~1000r/min的速度搅拌3~5min,得到纳米复合非线性防晕漆。2.根据权利要求1所述的一种纳米复合非线性防晕漆的制备方法,其特征在于步骤二中所述的稀释剂为二甲苯或甲苯。

技术总结
一种纳米复合非线性防晕漆的制备方法,它涉及电晕漆的制备方法,它是要解决现有的耐高温防晕漆的非线性系数低的技术问题。本发明的方法:一、二氧化硅颗粒修饰;二、称取防晕漆、固化剂、修饰的二氧化硅颗粒和稀释剂;三、将修饰的二氧化硅颗粒和稀释剂加入防晕漆中混合,再加入固化剂混合,得到纳米复合非线性防晕漆。本发明的纳米复合非线性防晕漆的非线性系数β在高温下提高至0.9~0.93,可用于电机领域。可用于电机领域。可用于电机领域。


技术研发人员:张晓虹 李云雷 张跃 吕晓玉 郭宁 何明鹏 谢志辉 胡波 梁智明
受保护的技术使用者:东方电气集团东方电机有限公司
技术研发日:2021.05.17
技术公布日:2021/11/2
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1